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Midterm Il Grades were really good!
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Applications of Network Flow



Applications of Network Flow

If I have seen further than others, it is
by standing upon the shoulders of giants.

Isaac Newton




Applications of Network Flow

* Algorithms for maximum flow can be used to solve:
* Bipartite Matching
 Disjoint Paths
* Survey Design

Matrix Rounding
Auction Design
Fair Division

Project Selection

Baseball Elimination
Airline Scheduling



Reduction

* Definition: a reduction is an efficient algorithm
that solves problem A using calls to a library
function that solves problem B.



Mechanics of Reductions

* What exactly is a problem?
* A set of legal inputs X
* Aset A(x) of legal outputs for each x € X

* Example: integer maximum flow
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Mechanics of Reductions
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When is a Reduction Correct?
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What is the Running Time?
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Bipartite Matching

* Input: bipartite graph ¢ = (V,E)withV =LUR
* Qutput: a maximum cardinality matching

A matching M C E is a set of edges such that every
node v is an endpoint of at most one edge in M

* Cardinality = |M|

Models any problem where one type
of object is assigned to another type:

e doctors to hospitalsﬁ T S ]
* jobs to processors matching

e advertisements to websites




Bipartite Matching

* There is a reduction that uses integer maximum s-t
flow to solve maximum bipartite matching.



Step 1: Transform the Input
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Step 2: Receive the Output
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Step 3: Transform the Output
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Reduction Recap

e Step 1: Transform the Input
* Given G = (L,R,E), produce G’ = (V,E,{c(e)},s,t) by...
e ...orientedgesefromLtoR
* ...add a node s with edges from s to every node in L
e ...add a node t with edges from every notinRtot
* ...setall capacitiesto 1

* Step 2 Receive the Output
* Find an integer maximum s-t flow in G’
* Step 3: Transform the Output

* Given an integer s-t flow f(e)...
* Let M be the set of edges e going from L to R that have f(e)=1



Correctness

* Need to show:
* (1) This algorithm returns a matching
* (2) This matching is a maximum cardinality matching
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Correctness

 This algorithm returns a matching
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Correctness

* Claim: G has a matching of cardinality at least k if
and only if G’ has an s-t flow of value at least k
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Correctness

* Claim: G has a matching of cardinality at least k if
and only if G’ has an s-t flow of value at least k
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Running Time

* Need to analyze the time for:
e (1) Producing G’ given G~ O (m=+n)
* (2) Finding a maximum flow in G’
* (3) Producing M given G O(m=+n)
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Summary

Solving maximum s-t flow in a graph with n+2
nodes and m+n edges and c(e) =1 intime T

!

Solving maximum bipartite matching in a graph
with n nodes and m edges in time T + O(m+n)

e Can solve maximum bipartite matching in time
O(nm) using Ford-Fulkerson

* Improvement for maximum flow gives improvement for
maximum bipartite matching!



