CS3000: Algorithms & Data
Jonathan Ullman

Lecture 20:
* Applications of Network Flow

Nov 27, 2018

Midterm Il Stats

Midterm Il Grade Distribution .., 3%

Top 80% Top 30%
—

i

N
N
~N
()}
(o0
o
00
s
00
(oo}

92 96

Midterm Il Grades were really good!

Homework Grade Distribution

Top 80% Top 30%
—) —)

93 9

w
~N
~N
(o]
=
[*]
v
00
(o]

| have dropped your lowest grade (so far)

Applications of Network Flow

Applications of Network Flow

If I have seen further than others, it is
by standing upon the shoulders of giants.

Isaac Newton

Applications of Network Flow

* Algorithms for maximum flow can be used to solve:
* Bipartite Matching
 Disjoint Paths
* Survey Design

Matrix Rounding
Auction Design
Fair Division

Project Selection

Baseball Elimination
Airline Scheduling

Reduction

* Definition: a reduction is an efficient algorithm
that solves problem A using calls to a library
function that solves problem B.

Mechanics of Reductions

* What exactly is a problem?
* A set of legal inputs X
* Aset A(x) of legal outputs for each x € X

* Example: integer maximum flow

y - ‘moo netoorks &= (V) E s, %, 3 C(e\is
sucy that c(ew ¢ 2 \ c(e) » O Ho everJ <

maximum 5-T }{005 _r m & ,i
A(CY\ : z ol —Hm—# _’C(e')ez ‘fo, ~e\./*€/\‘) e

Mechanics of Reductions

eﬂ“’aw
Input x for Input u for #
Problem B Problem A

&
S,

0
Output y in B(x) 04 Output vin A(u) «
for Problem B for Problem A
©
@ TfGn SWCOrm ‘Hr\e mpu+ \
® Solve prollem A

@ Transform +he oot put /

SolveA

Sm olmijln ’H/le&&

When is a Reduction Correct?

Input x for Input u for (
Problem B Problem A
SolveA

Output y in B(x) Output vin A(u)
for Problem B for Problem A \

HF So\wehA = correct -Fo/
‘H—U\ +\'~€, a\C‘o/\"H’IM S Cor!‘c('{’ ‘poj

®A550me Solve A & carrect nrﬂ«m e\.\z\
®A(‘3ue that 1Cof eueﬁj \Gja] X 1COJ) w (%) « legm\ «[e/ A

@FOI all X and all \IQA((L xﬂo SQB(K\

What is the Running Time?

0,
Input x for # Input u for "~ A
Problem B Problem A

—>
@ | solveA
-

Output y in B(x)
for Problem B

Output v in A(u)
for Problem A
& J

Total ?unnmj Tl“me‘; O+ +&

)

ceveat. tome —Fa/ @ oL(F.u(‘)J on |M.\)
‘0&* e need 4o sate ‘Hrg r\mnmﬂ tsme
al o ’ch{—mn 'D‘F IX | .

Example: Minimum Cut | oy, 5 « merfloo
G/: (V)E_,g,’(/ §¢(e3_§}

Input x for Input u for # "~ A
Problem B Problem A

?ro\oem B e mmedt)

SolveA
for Problem B for Problem A K)
o Mu¥imun s—F 7‘0&)

(Dmf’f” Q‘ 'FO G’)

® 1ot A beall nodsr ~ R
¢ ’R ; Tl\'*\e_

reaechable 7f(0m s m Gf Ummj O(mn\
@ \A @ O(m-l—rn

’ =V

et B ® o (m+n)

\@ T)\(Y\Q to solve. ry\cn(‘F/OU UJ n no&oflmedg(f O/Mw)

Bipartite Matching

* Input: bipartite graph ¢ = (V,E)withV =LUR
* Qutput: a maximum cardinality matching

A matching M C E is a set of edges such that every
node v is an endpoint of at most one edge in M

* Cardinality = |M|

Models any problem where one type
of object is assigned to another type:

e doctors to hospitalsﬁ T S]
* jobs to processors matching

e advertisements to websites

Bipartite Matching

* There is a reduction that uses integer maximum s-t
flow to solve maximum bipartite matching.

Step 1: Transform the Input
n’fm} ‘|’\V\0_

Input G for Input G’ for
MCBM MAXFLOW

ed%es ‘nawe Ccfpa(;'f

n Y‘LOD\ﬂil 1 848@3 nt2 noc‘J~U) n-+tm eﬂljei

Step 2: Receive the Output

)
Input G’ for #
MAXFLOW
flow

Can be omj Mo mom SolveA
)

G Output f for «
MAXFLOW

Red arrow means f(e)=1
Black means f(e) =0

Step 3: Transform the Output

O(m+n)
Output M for « Output f for
MCBM MAXFLOW

M= s‘((uv) s+ ’F(W\’\’l ond wel, VGR{

O\O se cvatron \ Ml - \ra\ (‘?’\

Reduction Recap

e Step 1: Transform the Input
* Given G = (L,R,E), produce G’ = (V,E,{c(e)},s,t) by...
e ...orientedgesefromLtoR
* ...add a node s with edges from s to every node in L
e ...add a node t with edges from every notinRtot
* ...setall capacitiesto 1

* Step 2 Receive the Output
* Find an integer maximum s-t flow in G’
* Step 3: Transform the Output

* Given an integer s-t flow f(e)...
* Let M be the set of edges e going from L to R that have f(e)=1

Correctness

* Need to show:
* (1) This algorithm returns a matching
* (2) This matching is a maximum cardinality matching

(Asgummig“: A Moaximvm 'ﬂou\

Correctness

 This algorithm returns a matching

Supgo&e w s the e/wl(orm" of >1 red edj;z

= {0 reel ed%,u leave w ™ I
=> {uwo red ed%bs ertes (,LNHC

=> Conkradittion

Correctness

* Claim: G has a matching of cardinality at least k if
and only if G’ has an s-t flow of value at least k

° /Proo‘g: <:—5>

mo\-&c\m\/\\f)) M u\‘ﬂ’) \L ed}ef -ﬂou 0'? valve \<

Correctness

* Claim: G has a matching of cardinality at least k if
and only if G’ has an s-t flow of value at least k

° /Proo‘g: <¢:§

mo\-&c\m\/\\f)) M u\‘ﬂ’) \L ed}ef -ﬂou 0'? valve L

Running Time

* Need to analyze the time for:
e (1) Producing G’ given G~ O (m=+n)
* (2) Finding a maximum flow in G’
* (3) Producing M given G O(m=+n)

Fact: Can ‘gmd a moax floo m G m e

O(nm) = nodes m &

m) = ed%& P Crl

=> O((M’L\(m’rr\\\: O(nm+%+ %—‘- hz\
- Otnm\

Summary

Solving maximum s-t flow in a graph with n+2
nodes and m+n edges and c(e) =1 intime T

!

Solving maximum bipartite matching in a graph
with n nodes and m edges in time T + O(m+n)

e Can solve maximum bipartite matching in time
O(nm) using Ford-Fulkerson

* Improvement for maximum flow gives improvement for
maximum bipartite matching!

