CS3000: Algorithms & Data Jonathan Ullman

Lecture 1:

- Course Overview
- Warmup Exercise (Induction, Asymptotics, Fun)

Sep 7, 2018

Me

- Name: Jonathan Ullman
 - Call me Jon
 - NEU since 2015
 - Office: 623 ISEC
 - Office Hours: Wed 10:30-12:00

Research:

- Privacy, Cryptography, Machine Learning, Game Theory
- Algorithms are at the core of all of these!

The TA Team

Jerry Lanning

• Office Hours: TBD

• Location: TBD

Lisa Oakley

• Office Hours: Thu 12:00-2:00

Location: TBD

Chandan Shankarappa

• Office Hours: Mon 2:30-4:30

Location: TBD

The TA Team

M 2:30-6:30

W

233

Th 12:00 - 4:00

• Tian Xia

• Office Hours: Thu 2:00-4:00

• Location: TBD

Lydia Zakynthinou

• Office Hours: Mon 4:30-6:30

Location: TBD

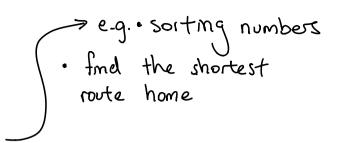
What is an algorithm?

An explicit, precise, unambiguous, mechanicallyexecutable sequence of elementary instructions for solving a computational problem.

-Jeff Erickson

• Essentially all computer programs (and more) are algorithms for some computational problem.

What is Algorithms?



The study of how to solve computational problems.

- Abstract and formalize computational problems
- Identify broadly useful algorithm design principles for solving computational problems
- Rigorously analyze properties of algorithms
 - This Class: correctness, running time, space usage
 - Beyond: extensibility, robustness, simplicity,...

What is CS3000: Algorithms & Data?

The study of how to solve computational problems. How to rigorously prove properies of algorithms.

- Proofs are about understanding and communication, not about formality or certainty
 - Different emphasis from courses on logic
 - We'll talk a lot about proof techniques and what makes a correct and convincing proof

That sounds hard. Why would I want to do that?

• Build Intuition:

- How/why do algorithms really work?
- How to attack new problems?
- Which design techniques work well?
- How to compare different solutions?
- How to know if a solution is the best possible?

That sounds hard. Why would I want to do that?

- Improve Communication:
 - How to explain solutions?
 - How to convince someone that a solution is correct?
 - How to convince someone that a solution is best?

• That sounds hard. Why would I want to do that?

- Learn Problem Solving / Ingenuity
 - "Algorithms are little pieces of brilliance..." -Olin Shivers

That sounds hard. Why would I want to do that?

Get Rich:

- Many of the world's most successful companies (notably Google) began with algorithms.
- Understand the natural world:
 - Brains, cells, networks, etc. often viewed as algorithms.

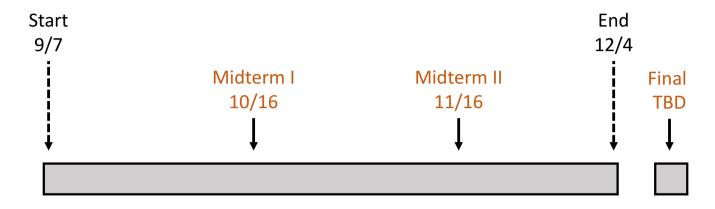
• Fun:

• Yes, seriously, fun.

• That sounds hard. Why would I want to do that?

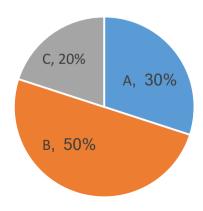
You can only gain these skills with practice!

Course Structure

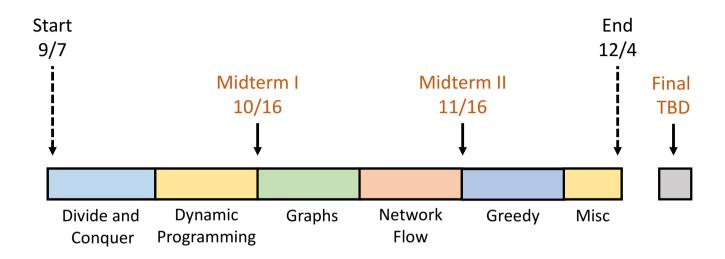


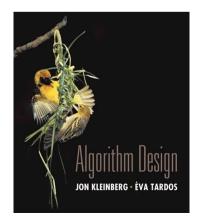
Typical Grade Distribution

- HW = 45%
- Exams = 55%
 - Midterm I = 15%
 - Midterm II = 15%
 - Final = 25%



Course Structure





Textbook:

Algorithm Design by Kleinberg and Tardos

More resources on the course website

Homework

- Weekly HW Assignments (45% of grade)
 - Due Tuesdays by 11:59pm
 - HW1 out now! Due Tue 9/18
 - No extensions, no late work
 - Lowest HW score will be dropped from your grade

A mix of mathematical and algorithmic questions

Homework Policies

- Homework must be typeset in LaTeX!
 - Many resources available
 - Many good editors available (TexShop, TexStudio)
 - I will provide HW source

The Not So Short Introduction to $\LaTeX 2_{\varepsilon}$

Or $\not\vdash T_E X \not = in 157$ minutes

by Tobias Oetiker Hubert Partl, Irene Hyna and Elisabeth Schlegl

Version 5.06, June 20, 2016

Homework Policies

- Homework will be submitted on Gradescope!
 - Entry code: 94V4YJ
 - Sign up today, or even right this minute!

Homework Policies

- You are encouraged to work with your classmates on the homework problems.
 - You may not use the internet
 - You may not use students/people outside of the class

Collaboration Policy:

- You must write all solutions by yourself
- You may not share any written solutions
- You must state all of your collaborators
- We reserve the right to ask you to explain any solution

Discussion Forum

- We will use Piazza for discussions
 - Ask questions and help your classmates
 - Please use private messages sparingly
- Sign up today, or even right this minute!

Course Website

http://www.ccs.neu.edu/home/jullman/cs3000f18/syllabus.html http://www.ccs.neu.edu/home/jullman/cs3000f18/schedule.html

		CS3000: Algorithms	& Data	
		Syllabus Sc	hedule	
		This schedule will be updated frequently-	-check back often!	
#	<u>Date</u>	Topic	Reading	<u>HW</u>
1	F 9/7	Course Overview		HW1 Out (pdf, tex)
2	T 9/11	Stable Matching: Gale-Shapley Algorithm	KT 1.1,1.2,2.3	
3	F 9/14	Divide and Conquer: Mergesort, Asymptotic Analysis	KT 5.1, 2.1-2.2	
4	T 9/18	Divide and Conquer: Karatsuba, Recurrences	KT 5.2, 5.5 Erickson II.1-3	HW1 Due HW2 Out
5	F 9/21	Divide and Conquer: Master Theorem, Median	Erickson 1.5-1.7	
6	T 9/25	Divide and Conquer: More Examples		HW2 Due

What About the Other Sections?

- I teach two sections: TF 1:35 and TF 3:25
 - These sections are completely interchangeable
 - You may collaborate on HW across my sections
 - You may go to OH for any of my TAs

- Prof. Neal Young teaches another section
 - No formal relationship with my sections
 - Will cover very similar topics and share some materials
 - You may not collaborate with Prof. Young's section
 - You should not go to OH for Prof. Young's TAs

One More Thing: I need to count how many students are in this class!

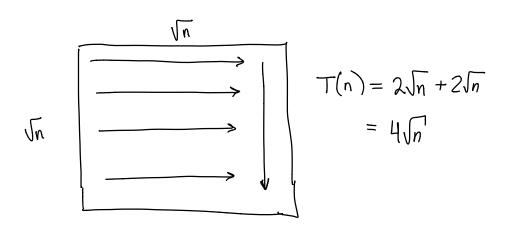
Simple Counting

41 students 22.38 seconds

```
SimCount:
   Find first student
   First student says 1
   Until we're out of students:
        Go to next student
        Next student says (what last student said + 1)
```

- Is this correct?
- How long does this take with n students?

$$T(n) = 2n$$
 steps



4Th beats 2n unless n is try

Recursive Counting

49 58.70 seconds

```
RecCount:
    Everyone set your number to 1
    Everyone stand up
    Until only one student is standing:
        Pair up with a neighbor, wait if you don't find one
        For each pair:
            Sum up your numbers
            Sit down if you are the taller person in the pair
            Say your number
```

• Is this correct? Why?

```
Loop Invariant After each iteration, the sum of the #5 of all people standing is n.
```

Recursive Counting

```
RecCount:
    Everyone set your number to 1
    Everyone stand up
    Until only one student is standing:
        Pair up with a neighbor, wait if you don't find one
        For each pair:
            Sum up your numbers
            Sit down if you are the taller person in the pair
            Say your number
```

• How long does this take with \(\chi \) students?

$$T(\chi^{m}) = \chi + T(\chi^{m-1})$$

$$T(1) = 3$$
"steps"

Running Time

$$T(2^{m}) = 2 + T(2^{m-1})$$

• Recurrence: T(1) = 3, T(n) = 2 + T([n/2])

$$T(1) = 3$$

$$T(2) = 2 + T(1) = 2 + 3$$

$$T(4) = 2 + T(2) = 2 + 2 + 3$$

$$\vdots$$

$$T(2^{m}) = 2 + 2 + 2 + ... + 2 + 3 = 2m + 3$$

$$T(n) = 2 \log_{2}(n) + 3$$

Running Time

• Claim: For every number of students $n = 2^m$ $T(2^m) = 2m + 3$

Proof by Induction

$$T(2^m) = 2 + T(2^{m-1})$$

 $T(1) = 3$

• Claim: For every number of students $n = 2^m$ $T(2^m) = 2m + 3$

- Induction: "automatically" prove for every m
 - Inductive Hypothesis: Let H(m) be the statement $T(2^m) = 2m + 3$

- Base Case: H(1) is true \checkmark
- Inductive Step: For every $m \ge 1$, $H(m) \Longrightarrow H(m+1)$
- ullet Conclusion: statement is true for every m

$$H(1) \Rightarrow H(2) \Rightarrow H(3) \Rightarrow \dots \Rightarrow H(m)$$

Proof by Induction
$$T(2^m) = 2 + T(2^{m-1})$$

$$I(2^m) = 2 + T(2^{m-1})$$

 $T(1) = 3$

• Claim: For every number of students $n=2^m$ $T(2^m) = 2m + 3$

1H:
$$H(m)$$
 is $T(2^m) = 2m+3$

BC:
$$H(1)$$
 is true b/c $T(2) = 2 + T(1) = 2 + 3$

18: Fix any m EIN. To show
$$H(m) \Rightarrow H(m+1)$$

$$T(2^{m+1}) = 2 + T(2^m) \qquad \text{Inductive}$$

$$= 2 + (2m+3)$$

$$T(2^{m+i}) = 2 + T(2^m)$$

$$= 2 + (2m + 3)$$

Ask the Audience

Who Wants to be a Millionaire?

Ask the Audience

• Claim: For every $n \in \mathbb{N}$, $\sum_{i=0}^{n-1} 2^i = 2^n - 1$

Proof by Induction:

Running Time

- Simple counting: T(n) = 2n steps
- Recursive counting: $T(n) = 2 \log_2 n + 3$ steps

But for this class, simple counting was faster???

Running Time

- Simple counting: T(n) = 2n seconds
- Recursive counting: $T(n) = 30 \log_2 n + 45$ seconds

- Compare algorithms by asymptotics!
 - Log-time beats linear-time as $n \to \infty$

