CS3000: Algorithms & Data Jonathan Ullman

Lecture 1:

- Course Overview
- Warmup Exercise (Induction, Asymptotics, Fun)

Sep 7, 2018

Me

- Name: Jonathan Ullman
 - Call me Jon
 - NEU since 2015
 - Office: 623 ISEC
 - Office Hours: Wed 10:30-12:00

- Research:
 - Privacy, Cryptography, Machine Learning, Game Theory
 - Algorithms are at the core of all of these!

The TA Team

OH 2:30-6:30 on Mondays OH 12:00-4:00 on Thursdays OH ??? on Vednesdays

- Jerry Lanning
 - Office Hours: TBD
 - Location: TBD
- Lisa Oakley
 - Office Hours: Thu 12:00-2:00
 - Location: TBD
- Chandan Shankarappa
 - Office Hours: Mon 2:30-4:30
 - Location: TBD

The TA Team

• Tian Xia

- Office Hours: Thu 2:00-4:00
- Location: TBD

Lydia Zakynthinou

- Office Hours: Mon 4:30-6:30
- Location: TBD

• What is an algorithm?

An explicit, precise, unambiguous, mechanicallyexecutable sequence of elementary instructions for solving a computational problem. -Jeff Erickson

• Essentially all computer programs (and more) are algorithms for some computational problem.

Find the shortest route home find the shortest route home find vebsites about algorithms

• What is Algorithms?

The study of how to solve computational problems.

- Abstract and formalize computational problems
- Identify broadly useful algorithm design principles for solving computational problems
- Rigorously analyze properties of algorithms
 - This Class: correctness, running time, space usage
 - Beyond: extensibility, robustness, simplicity,...

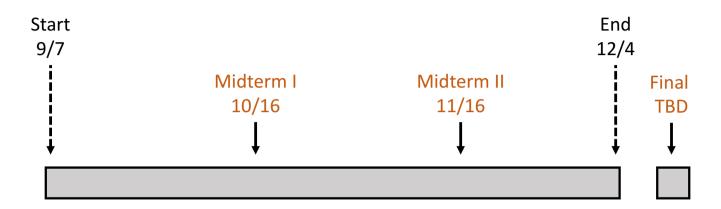
• What is CS3000: Algorithms & Data?

The study of how to solve computational problems. How to rigorously prove properies of algorithms.

- Proofs are about understanding and communication, not about formality or certainty
 - Different emphasis from courses on logic
 - We'll talk a lot about proof techniques and what makes a correct and convincing proof

- That sounds hard. Why would I want to do that?
- Build Intuition:
 - How/why do algorithms really work?
 - How to attack new problems?
 - Which design techniques work well?
 - How to compare different solutions?
 - How to know if a solution is the best possible?

- That sounds hard. Why would I want to do that?
- Improve Communication:
 - How to explain solutions?
 - How to convince someone that a solution is correct?
 - How to convince someone that a solution is best?

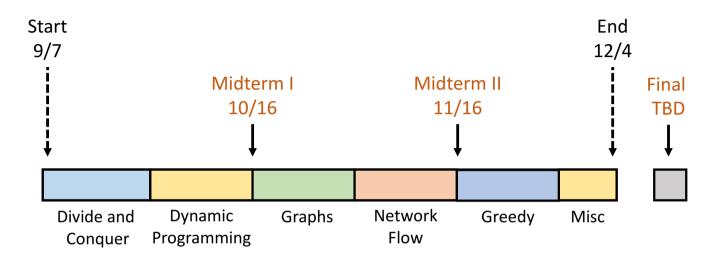

- That sounds hard. Why would I want to do that?
- Learn Problem Solving / Ingenuity
 - "Algorithms are little pieces of brilliance..." -Olin Shivers

- That sounds hard. Why would I want to do that?
- Get Rich:
 - Many of the world's most successful companies (notably Google) began with algorithms.
- Understand the natural world:
 - Brains, cells, networks, etc. often viewed as algorithms.
- Fun:
 - Yes, seriously, fun.

- That sounds hard. Why would I want to do that?
- You can only gain these skills with practice!

OH HW Textbook Other resources online

Course Structure


7-10

- HW = 45%
- Exams = 55%
 - Midterm I = 15%
 - Midterm II = 15%
 - Final = 25%

Typical Grade Distribution

Course Structure

Textbook:

Algorithm Design by Kleinberg and Tardos

More resources on the course website

Homework

- Weekly HW Assignments (45% of grade)
 - Due Tuesdays by 11:59pm
 - HW1 out now! Due Tue 9/18
 - No extensions, no late work
 - Lowest HW score will be dropped from your grade
- A mix of mathematical and algorithmic questions

Homework Policies

Homework must be typeset in LaTeX!

- Many resources available
- Many good editors available (TexShop, TexStudio)
- I will provide HW source Dn Mae

The Not So Short Introduction to $I\!\!AT_{\rm E}\!X \, 2_{\mathcal{E}}$

Or $\mathbb{A}T_E X \mathcal{Z}_{\mathcal{E}}$ in 157 minutes

by Tobias Oetiker Hubert Partl, Irene Hyna and Elisabeth Schlegl

Version 5.06, June 20, 2016

Homework Policies

• Homework will be submitted on Gradescope!

- Entry code: 94V4YJ
- Sign up today, or even right this minute!

Il gradescope · use gradescope for regrades

Homework Policies

- You are encouraged to work with your classmates on the homework problems.
 - You may not use the internet
 - You may not use students/people outside of the class

Collaboration Policy:

- You must write all solutions by yourself
- You may not share any written solutions
- You must state all of your collaborators
- We reserve the right to ask you to explain any solution

Course Website

http://www.ccs.neu.edu/home/jullman/cs3000f18/syllabus.html http://www.ccs.neu.edu/home/jullman/cs3000f18/schedule.html

		CS3000: Algorithms 8	& Data	
			hedule	
		This schedule will be updated frequently-	-check back often!	
<u>#</u>	Date	Topic	Reading	HW
1	F 9/7	Course Overview		HW1 Out (pdf, tex)
2	T 9/11	Stable Matching: Gale-Shapley Algorithm	KT 1.1,1.2,2.3	
3	F 9/14	Divide and Conquer: Mergesort, Asymptotic Analysis	KT 5.1, 2.1-2.2	
4	T 9/18	Divide and Conquer: Karatsuba, Recurrences	KT 5.2, 5.5 Erickson II.1–3	HW1 Due HW2 Out
5	F 9/21	Divide and Conquer: Master Theorem, Median	Erickson 1.5-1.7	
6	T 9/25	Divide and Conquer: More Examples		HW2 Due

Discussion Forum

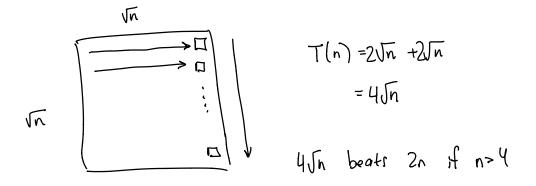
Note to self: Fix Piazza

- We will use Piazza for discussions
 - Ask questions and help your classmates
 - Please use private messages sparingly
- Sign up today, or even right this minute!

What About the Other Sections?

- I teach two sections: TF 1:35 and TF 3:25
 - These sections are completely interchangeable
 - You may collaborate on HW across my sections
 - You may go to OH for any of my TAs
- Prof. Neal Young teaches another section
 - No formal relationship with my sections
 - Will cover very similar topics and share some materials
 - You may not collaborate with Prof. Young's section
 - You should not go to OH for Prof. Young's TAs

One More Thing: I need to count how many students are in this class!


Simple Counting

74 students 43.16 seconds

SimCount:
 Find first student
 First student says 1
 Until we're out of students:
 Go to next student
 Next student says (what last student said + 1)

- Is this correct? Jes.
- How long does this take with *n* students?

$$T(n) = 2n$$

Recursive Counting

70 student 1:10.73

RecCount: Everyone set your number to 1 Everyone stand up Until only one student is standing: Pair up with a neighbor, wait if you don't find one For each pair: Sum up your numbers Sit down if you are the taller person in the pair Say your number

Recursive Counting

RecCount: Everyone set your number to 1 Everyone stand up Until only one student is standing: Pair up with a neighbor, wait if you don't find one For each pair: Sum up your numbers Sit down if you are the taller person in the pair Say your number

• How long does this take with *n* students? $T(n) = time \operatorname{Rec}(\operatorname{com} t \text{ takes with } n \text{ students})$ $T(n) = 2 + T(\lceil \frac{n}{2} \rceil)$ T(1) = 3

Running Time

• Recurrence: T(1) = 3, $T(n) = 2 + T(\lceil n/2 \rceil)$

$$T(1) = 3$$

$$T(2) = 2 + T(1) = 2 + 3 = 5$$

$$T(4) = 2 + T(2) = 2 + 2 + T(1) = 7$$

$$T(2^{m}) = 2 + 2 + ... + 2 + T(1) = 2m + 3$$

$$m$$

$$T(n) = 2 \log_{2} n + 3$$

Running Time

• Claim: For every number of students $n = 2^m$ $T(2^m) = 2m + 3$

Proof by Induction $T(n) = 2 + T(\frac{n}{2})$ T(1) = 3

- Claim: For every number of students $n = 2^m$ $T(2^m) = 2m + 3$ $\forall m \in \mathbb{N} \quad T(2^m) = 2m + 3$
- Induction: "automatically" prove for every m
 - Inductive Hypothesis: Let H(m) be the statement $T(2^m) = 2m + 3$

Claim >> ¥mEN H(m) is true

- **Base Case:** H(1) is true T(z) = 5
- Inductive Step: For every $m \ge 1$, $H(m) \Longrightarrow H(m+1)$
- Conclusion: statement is true for every m

 $\forall m \in \mathbb{N}$ if $T(2^{m}) = 2m + 3$ then $T(2^{m+1}) = 2(m+1) + 3$

Proof by Induction

- Claim: For every number of students $n = 2^m$ $T(2^m) = 2m + 3$
- |H: H(m): $T(2^m) = 2m+3$
- B(: T(2) = 2 + T(i) = 5 .: H(i) is the

18: Pick any m, assume
$$H(m)$$

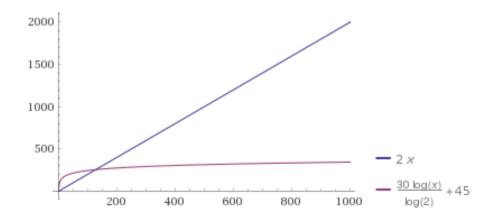
 $T(2^{m+1}) = 2 + T(2^m)$
 $= 2 + (2m+3)$ Uses the
fact that
 $H(m)$ is true
 $= 2(m+1) + 3$

Ask the Audience

Who Wants to be a Millionaire?

Ask the Audience

• Claim: For every $n \in \mathbb{N}$, $\sum_{i=0}^{n-1} 2^i = 2^n - 1$


• Proof by Induction:

Running Time n = 74 $2 \times 74 = 148$ steps $2 \times \log_2(74) + 3 \le 17$ steps

- Simple counting: T(n) = 2n steps $\chi Y3$ seconds
- Recursive counting: $T(n) = 2 \log_2 n + 3$ steps ≈ 70 seconds
- But for this class, simple counting was faster???

Running Time

- Simple counting: T(n) = 2n seconds
- **Recursive counting:** $T(n) = 30 \log_2 n + 45$ seconds
- Compare algorithms by asymptotics!
 - Log-time beats linear-time as $n \to \infty$

