CS3000: Algorithms & Data Jonathan Ullman

Lecture 19:

Midterm II Review

Nov 13, 2018

Topics to Review

- Key Graph Definitions / Properties
 - Directed/Undirected
 - Weighted/Unweighted
 - Trees, DAGs
 - Paths, Cycles
 - Connected Components, Strongly Connected Components

Graphs: Key Definitions

$$|V| = n$$
 $|E| = m$

- **Definition:** A directed graph G = (V, E)
 - *V* is the set of nodes/vertices
 - $E \subseteq V \times V$ is the set of edges
 - An edge is an ordered e = (u, v) "from u to v"
- **Definition:** An undirected graph G = (V, E)
 - Edges are unordered e = (u, v) "between u and v"
- Simple Graph:
 - No duplicate edges
 - No self-loops e = (u, u)

$$m = O(n^{a})$$

Paths/Connectivity

- A path is a sequence of consecutive edges in E
 - $P = \{(u, w_1), (w_1, w_2), (w_2, w_3), \dots, (w_{k-1}, v)\}$
 - $P = u w_1 w_2 w_3 \dots w_{k-1} v$
 - The length of the path is the # of edges
- An undirected graph is connected if for every two vertices $u, v \in V$, there is a path from u to v
- A directed graph is strongly connected if for every two vertices u, v ∈ V, there are paths from u to v and from v to u

connected, not strongly connected

Cycles

• A cycle is a path $v_1 - v_2 - \dots - v_k - v_1$ where $k \ge 3$ and v_1, \dots, v_k are distinct

Trees

- A simple undirected graph G is a tree if:
 - *G* is connected
 - G contains no cycles
- Theorem: any two of the following implies the third
 - G is connected
 - G contains no cycles
 - G has = n 1 edges

Trees

- Rooted tree: choose a root node r and orient edges away from r
 - Models hierarchical structure

Topics to Review

- Graph Representations
 - Adjacency Matrix
 - Adjacency List] All algorithms we study one for the adjacency

Adjacency-Matrix Representation

• The adjacency matrix of a graph G = (V, E) with n nodes is the matrix A[1:n, 1:n] where

$$A[i,j] = \begin{cases} 1 & (i,j) \in E \\ 0 & (i,j) \notin E \end{cases}$$

 $\frac{\text{Cost}}{\text{Space: }}\Theta(n^2)$

Lookup (u,v): $\Theta(1)$ time **List Neighbors of u:** $\Theta(n)$ time

Α	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

Adjacency Lists (Directed)

- The adjacency list of a vertex $v \in V$ are the lists
 - $A_{out}[v]$ of all u s.t. $(v, u) \in E$
 - $A_{in}[v]$ of all u s.t. $(u, v) \in E$

$$A_{out}[1] = \{2,3\} \qquad A_{in}$$
$$A_{out}[2] = \{3\} \qquad A_{in}$$
$$A_{out}[3] = \{\} \qquad A_{in}$$
$$A_{out}[4] = \{3\} \qquad A_{in}$$

$$A_{in}[1] = \{ \}$$
$$A_{in}[2] = \{1\}$$
$$A_{in}[3] = \{1,2,4\}$$
$$A_{in}[4] = \{ \}$$

Adjacency-List Representation

The adjacency list of a vertex v ∈ V is the list A[v] of all the neighbors of v

 $A[1] = \{2,3\}$ $A[2] = \{1,3\}$ $A[3] = \{1,2,4\}$ $A[4] = \{3\}$

<u>Cost</u> Space: $\Theta(n+m)$

Lookup (u,v): $\Theta(\deg(u) + 1)$ time **List Neighbors of u:** $\Theta(\deg(u) + 1)$ time

Topics to Review

- Finding (short) paths in graphs
 - BFS for finding:
 - Connected components
 - Strongly connected components
 - Shortest paths in unweighted graphs (i.e. fewest hops)
 - Dijkstra's algorithm for finding:
 - Shortest paths in graphs with non-negative lengths
 - Bellman-Ford algorithm for finding:
 - Shortest paths in graphs with negative lengths (no neg cycles)
 - Negative cycles if they exist
 - Structural properties of shortest paths
 - Dynamic programming ∀ (u,v) ∈ E
 Shortest path trees

 $d(s,v) \leq d(s,u) + l(u,v)$

 Informal Description: start at s, find all neighbors of s, find all neighbors of neighbors of s, ...

- BFS Algorithm:
 - $L_0 = \{s\}$
 - $L_1 =$ all neighbors of L_0
 - $L_2 =$ all neighbors of L_1 that are not in L_0 , L_1
 - ...
 - L_d = all neighbors of L_{d-1} that are not in L_0 , ..., L_{d-1}
 - Stop when L_{d+1} is empty.

Breadth-First Search Implementation

```
BFS(G = (V, E), s):
  Let found[v] \leftarrow false \forall v, found[s] \leftarrow true
  Let layer[v] \leftarrow \infty \forall v, layer[s] \leftarrow 0
  Let i \leftarrow 0, L_0 = \{s\}, T \leftarrow \emptyset
  While (L, is not empty):
     Initialize new layer L<sub>i+1</sub>
     For (u \text{ in } L_i):
        For ((u,v) in E):
           If (found[v] = false):
              found[v] \leftarrow true, layer[v] \leftarrow i+1
             Add (u,v) to T and add v to L_{i+1}
     i \leftarrow i+1
```

Implementing Dijkstra

```
Dijkstra(G = (V,E, {\ell(e)}, s):
  d[s] \leftarrow 0, d[u] \leftarrow \infty for every u \mathrel{!=} s
  parent[u] \leftarrow \perp for every u
  v \rightarrow v
                    // Q holds the unexplored nodes
  While (Q is not empty):
    u \leftarrow \operatorname{argmin} d[w] //Find closest unexplored
          w∈0
    Remove u from Q
    // Update the neighbors of u
    For ((u,v) in E):
       If (d[v] > d[u] + \ell(u,v)):
         d[v] \leftarrow d[u] + \ell(u,v)
         parent[v] \leftarrow u
```

```
Return (d, parent)
```

Recurrence

- Subproblems: OPT(v, j) is the length of the shortest s → v path with at most j hops
- Case u: (u, v) is final edge on the shortest s ∽ v path with at most j hops

Recurrence:

$$OPT(v, j) = \min \left\{ OPT(v, i - 1), \min_{(u,v) \in E} \{ OPT(u, i - 1) + \ell_{u,v} \} \right\}$$
$$OPT(s, j) = 0 \text{ for every } j$$
$$OPT(v, 0) = \infty \text{ for every } v$$

Implementation (Bottom Up)

```
Shortest-Path(G, s)
    foreach node \mathbf{v} \in \mathbf{V}
        M[0,v] \leftarrow \infty
        P[0,v] \leftarrow \phi
    M[0,s] \leftarrow 0
    for i = 1 to n-1
         foreach node v \in V
           M[i,v] \leftarrow M[i-1,v]
           P[i,v] \leftarrow P[i-1,v]
           foreach edge (v, w) \in E
                if (M[i-1,w] + \ell_{wv} < M[i,v])
                     M[i,v] \leftarrow M[i-1,w] + \ell_{wv}
                     P[i,v] \leftarrow w
```

Topics to Review

- Depth-First Search
 - Types of edges (tree, forward, backward, cross)
 - Post-ordering
- Topological Sort
 - Fast algorithm using DFS
- Other graph algorithms
 - 2-coloring

Depth-First Search

```
G = (V, E) is a graph
explored[u] = 0 \forall u
```

DFS(u): explored[u] = 1

```
for ((u,v) in E):
    if (explored[v]=0):
        parent[v] = u
        DFS(v)
```


Depth-First Search

- Fact: The parent-child edges form a (directed) tree
- Each edge has a type:
 - **Tree edges:** (*u*, *a*), (*u*, *c*), (*c*, *b*)
 - These are the edges that explore new nodes
 - Forward edges: (u, b)
 - Ancestor to descendant (but not a child)
 - Backward edges: (*a*, *u*)
 - Descendant to ancestor
 - Cross edges: (*c*, *a*)
 - No ancestral relation

Post-Ordering

- Maintain a counter **clock**, initially set **clock** = 1
- post-visit(u):
 set postorder[u]=clock, clock=clock+1

Directed Acyclic Graphs (DAGs)

- **DAG:** A directed graph with no directed cycles
- DAGs represent precedence relationships

- A **topological ordering** of a directed graph is a labeling of the nodes from $v_1, ..., v_n$ so that all edges go "forwards", that is $(v_i, v_j) \in E \Rightarrow j > i$
 - G has a topological ordering \Leftrightarrow G is a DAG
 - · The reverse of a post-order is a topological order

Topics to Review

- Minimum Spanning Trees
 - Cut Property / Cycle Property
 - Four Algorithms:
 - Boruvka
 - Prim
 - Kruskal
 - Anti-Kruskal

Cycles and Cuts

• Cycle: a set of edges $(v_1, v_2), (v_2, v_3), \dots, (v_k, v_1)$

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

• Cut: a subset of nodes S

Cut S	= {4, 5, 8}
Cutset	= (5,6), (5,7), (3,4), (3,5), (7,8)

Properties of MSTs

- Assume all edge weights are distinct.
- Cut Property: Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T^* contains e
 - We call such an *e* a safe edge
- Cycle Property: Let C be a cycle. Let e be the maximum weight edge in C. Then the MST T* does not contain e.
 - We call such an *e* a useless edge

MST Algorithms

- There are at least four reasonable MST algorithms
 - Borůvka's Algorithm: start with $T = \emptyset$, in each round add cheapest edge out of each connected component
 - Prim's Algorithm: start with some *s*, at each step add cheapest edge that grows the connected component
 - Kruskal's Algorithm: start with $T = \emptyset$, consider edges in ascending order, adding edges unless they create a cycle
 - Reverse-Kruskal: start with T = E, consider edges in descending order, deleting edges unless it disconnects

Topics to Review

- Network Flow
 - Definitions (Flows, Cuts, Augmenting Path, Residual Graph)
 - Ford-Fulkerson Algorithm
 - Algorithm
 - Correctness
 - Running time analysis
 - Methods for choosing good augmenting paths (but not proofs)
 - MaxFlow-MinCut Theorem

max val(f) = min cap(A,B)

$$f$$
 A,B
• Can find a max flow in O(mn) time.

Flows

- An s-t flow is a function f(e) such that
 - For every $e \in E$, $0 \le f(e) \le c(e)$ (capacity)
 - For every $v \in E$, $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation)
- The value of a flow is $val(f) = \sum_{e \text{ out of } s} f(e)$

Cuts

- An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$
- The capacity of a cut (A,B) is $cap(A,B) = \sum_{e \text{ out of } A} c(e)$

Ford-Fulkerson Algorithm

• Start with f(e) = 0 for all edges $e \in E$

S

D

- Find an augmenting path P in the residual graph
- Repeat until you get stuck flou f residual graph Gf 10 S ťt

Ford-Fulkerson Algorithm

```
FordFulkerson(G,s,t,{c})
for e \in E: f(e) \leftarrow 0
G<sub>f</sub> is the residual graph
while (there is an s-t path P in G<sub>f</sub>)
f \leftarrow Augment(G<sub>f</sub>, P)
update G<sub>f</sub>
return f
```

Review Problem intoger
Given a flow network
$$G = (V, E, s, t, \hat{s}c(e)\hat{s})$$
, and
a maximum flow f^* , output a list of all edges e,
s.t. increasing $c(e)$ by I increases the max flow.
Run in time $O(mtn)$.

Candidate Algorithm:

Find the mm cut A*, B*
Output all edges crossing from A* to B*

 $(5) \xrightarrow{1} (1) \xrightarrow{1} (f)$

Pseudocode

() Return S

If I decrease c(e) by I and f^{*}(e) = c(e) then
f^{*} is no longer a legal flow.
Ue can "fix" the flow by choosing any path through the edge e s.t. all edges on the path carry flow

P→ ¬Q P← ¬Q suppose there is a ce->u path in GF* then decreasing capacity of e by | will not reduce the max flow

Bonus Review Problem

• Prove the following by induction: in any rooted binary tree, the number of nodes with exactly two children is one less than the number of leaves.

 Design an algorithm that takes an undirected G = (V, E), and a pair of nodes s, t and outputs the number of shortest s-t paths in G.

 Design an algorithm to find a fattest s-t path in a flow network G = (V, E, s, t, {c(e)})

- There are n bank accounts A_1, \ldots, A_n , and you are given m constraints of the form
 - A_i was closed before A_j opened
 - A_i and A_j were open (at least partially) simultaneously
- Design an algorithm to determine if there are opening and closing times for the accounts that satisfy all constraints

 Prove the following by contradiction: if G is an undirected simple graph with 2n nodes, and every node has degree ≥ n, then G is connected.