CS3000: Algorithms \& Data Jonathan Ullman

Lecture 19:

- Midterm II Review

Nov 13, 2018

Topics to Review

- Key Graph Definitions / Properties
- Directed/Undirected
- Weighted/Unweighted
- Trees, DAGs
- Paths, Cycles
- Connected Components, Strongly Connected Components

Graphs: Key Definitions

$$
|V|=n \quad|E|=m
$$

- Definition: A directed graph $G=(V, E)$
- V is the set of nodes/vertices
- $E \subseteq V \times V$ is the set of edges
- An edge is an ordered $e=(u, v)$ "from u to v "
- Definition: An undirected graph $G=(V, E)$
- Edges are unordered $e=(u, v)$ "between u and v "
- Simple Graph:
- No duplicate edges
- No self-loops $e=(u, u)$ $m=O\left(n^{2}\right)$

Paths/Connectivity

- A path is a sequence of consecutive edges in E
- $P=\left\{\left(u, w_{1}\right),\left(w_{1}, w_{2}\right),\left(w_{2}, w_{3}\right), \ldots,\left(w_{k-1}, v\right)\right\}$
- $P=u-w_{1}-w_{2}-w_{3}-\cdots-w_{k-1}-v$
- The length of the path is the \# of edges
- An undirected graph is connected if for every two vertices $u, v \in V$, there is a path from u to v
- A directed graph is strongly connected if for every two vertices $u, v \in V$, there are paths from u to v and from v to u

Cycles

- A cycle is a path $v_{1}-v_{2}-\cdots-v_{k}-v_{1}$ where $k \geq 3$ and v_{1}, \ldots, v_{k} are distinct

Trees

- A simple undirected graph G is a tree if:
- G is connected
- G contains no cycles
- Theorem: any two of the following implies the third
- G is connected
- G contains no cycles
- G has $=n-1$ edges

Trees

- Rooted tree: choose a root node \boldsymbol{r} and orient edges away from r
- Models hierarchical structure

Topics to Review

- Graph Representations
- Adjacency Matrix
- Adjacency List A All algorithms we study are for the adjacency

Adjacency-Matrix Representation

- The adjacency matrix of a graph $G=(V, E)$ with n nodes is the matrix $A[1: n, 1: n]$ where
$A[i, j]= \begin{cases}1 & (i, j) \in E \\ 0 & (i, j) \notin E\end{cases}$
Cost Space: $\Theta\left(n^{2}\right)$

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

Lookup (\mathbf{u}, \mathbf{v}): $\Theta(1)$ time List Neighbors of u: $\Theta(n)$ time

Adjacency Lists (Directed)

- The adjacency list of a vertex $v \in V$ are the lists
- $A_{\text {out }}[v]$ of all u s.t. $(v, u) \in E$
- $A_{\text {in }}[v]$ of all u s.t. $(u, v) \in E$

$$
\begin{array}{ll}
A_{\text {out }}[1]=\{2,3\} & A_{\text {in }}[1]=\{ \} \\
A_{\text {out }}[2]=\{3\} & A_{\text {in }}[2]=\{1\} \\
A_{\text {out }}[3]=\{ \} & A_{\text {in }}[3]=\{1,2,4\} \\
A_{\text {out }}[4]=\{3\} & A_{\text {in }}[4]=\{ \}
\end{array}
$$

Adjacency-List Representation

- The adjacency list of a vertex $v \in V$ is the list $A[v]$ of all the neighbors of v

Cost

$$
\begin{aligned}
& A[1]=\{2,3\} \\
& A[2]=\{1,3\} \\
& A[3]=\{1,2,4\} \\
& A[4]=\{3\}
\end{aligned}
$$

Lookup (u,v): $\Theta(\operatorname{deg}(u)+1)$ time List Neighbors of $u: \Theta(\operatorname{deg}(u)+1)$ time

Topics to Review

- Finding (short) paths in graphs
- BFS for finding:
- Connected components
- Strongly connected components
- Shortest paths in unweighted graphs (i.e. fewest hops)
- Dijkstra's algorithm for finding:
- Shortest paths in graphs with non-negative lengths
- Bellman-Ford algorithm for finding:
- Shortest paths in graphs with negative lengths (no neg cycles)
- Negative cycles if they exist
- Structural properties of shortest paths
- Dynamic programming $\quad \forall(u, v) \in E$
- Shortest path trees

$$
d(s, v) \leq d(s, u)+l(u, v)
$$

- Informal Description: start at s, find all neighbors of s, find all neighbors of neighbors of s, \ldots
- BFS Algorithm:
- $L_{0}=\{s\}$
- $L_{1}=$ all neighbors of L_{0}
- $L_{2}=$ all neighbors of L_{1} that are not in L_{0}, L_{1}
- $L_{d}=$ all neighbors of L_{d-1} that are not in L_{0}, \ldots, L_{d-1}
- Stop when L_{d+1} is empty.

Breadth-First Search Implementation

```
\(\operatorname{BFS}(G=(V, E), s):\)
    Let found[v] \(\leftarrow\) false \(\forall v\), found[s] \(\leftarrow\) true
    Let layer[v] \(\leftarrow \infty \quad \forall v\), layer[s] \(\leftarrow 0\)
    Let \(i \leftarrow 0, L_{0}=\{s\}, T \leftarrow \emptyset\)
    While ( \(L_{i}\) is not empty):
    Initialize new layer \(\mathrm{L}_{\mathrm{i}+1}\)
    For (u in \(L_{i}\) ):
        For ( \((u, v)\) in \(E)\) :
            If (found[v] = false):
            found[v] \(\leftarrow\) true, layer[v] \(\leftarrow i+1\)
            Add \((u, v)\) to \(T\) and add \(v\) to \(L_{i+1}\)
    \(i \leftarrow i+1\)
```


Implementing Dijkstra

Dijkstra(G $=(\mathrm{V}, \mathrm{E},\{\ell(\mathrm{e})\}, \mathrm{s}):$
$d[s] \leftarrow 0, d[u] \leftarrow \infty$ for every $u!=s$ parent[u] $\leftarrow \perp$ for every u
$Q \leftarrow \mathrm{~V} \quad / / \mathrm{Q}$ holds the unexplored nodes While (Q is not empty):
$u \leftarrow \underset{w \in Q}{\operatorname{argmin}} d[w] \quad / / F i n d$ closest unexplored
Remove u from Q
// Update the neighbors of u
For ((u,v) in E):

$$
\begin{aligned}
& \text { If }(d[v]>d[u]+\ell(u, v)): \\
& d[v] \leftarrow d[u]+\ell(u, v) \\
& \text { parent }[v] \leftarrow u
\end{aligned}
$$

Return (d, parent)

Recurrence

- Subproblems: $\operatorname{OPT}(v, j)$ is the length of the shortest $s \leadsto v$ path with at most j hops
- Case u: (u, v) is final edge on the shortest $s \leadsto v$ path with at most j hops

Recurrence:

$\operatorname{OPT}(v, j)=\min \left\{\operatorname{OPT}(v, i-1), \min _{(u, v) \in E}\left\{\operatorname{OPT}(u, i-1)+\ell_{u, v}\right\}\right\}$
$\operatorname{OPT}(s, j)=0$ for every j
$\operatorname{OPT}(v, 0)=\infty$ for every v

Implementation (Bottom Up)

Shortest-Path (G, s)

$$
\begin{aligned}
& \text { foreach node } v \in V \\
& M[0, v] \leftarrow \infty \\
& P[0, v] \leftarrow \phi \\
& M[0, s] \leftarrow 0 \\
& \text { for } i=1 \text { to } n-1 \\
& \text { foreach node } v \in V \\
& M[i, v] \leftarrow M[i-1, v] \\
& \quad P[i, v] \leftarrow P[i-1, v] \\
& \text { foreach edge }(v, w) \in E \\
& \quad \text { if }\left(M[i-1, w]+\ell_{w v}<M[i, v]\right) \\
& \quad M[i, v] \leftarrow M[i-1, w]+\ell_{w v} \\
& \quad P[i, v] \leftarrow w
\end{aligned}
$$

Topics to Review

- Depth-First Search
- Types of edges (tree, forward, backward, cross)
- Post-ordering
- Topological Sort
- Fast algorithm using DFS
- Other graph algorithms
- 2-coloring

Depth-First Search

```
G = (V,E) is a graph
explored[u] = 0 \forallu
```

DFS (u):
explored[u] = 1
for ((u,v) in $E)$:
if (explored[v]=0):
parent[v] $=u$
DFS (v)

Depth-First Search

- Fact: The parent-child edges form a (directed) tree
- Each edge has a type:
- Tree edges: $(u, a),(u, c),(c, b)$
- These are the edges that explore new nodes
- Forward edges: (u, b)
- Ancestor to descendant (but not a child)
- Backward edges: (a, u)
- Descendant to ancestor
- Cross edges: (c, a)
- No ancestral relation

Post-Ordering

```
G = (V,E) is a graph
explored[u] = 0 \forallu
```

DFS (u) :
for ((u, v) in $E)$:
if (explored[v]=0):
parent[v] $=u$
DFS (v)
post-visit(u)


```
explored[u] = 1
```

Vertex	Post-Order
u	4
a	1
b	2
c	3

- Maintain a counter clock, initially set clock $=1$
- post-visit(u):
set postorder[u]=clock, clock=clock+1

Directed Acyclic Graphs (DAGs)

- DAG: A directed graph with no directed cycles
- DAGs represent precedence relationships

- A topological ordering of a directed graph is a labeling of the nodes from v_{1}, \ldots, v_{n} so that all edges go "forwards", that is $\left(v_{i}, v_{j}\right) \in E \Rightarrow j>i$
- G has a topological ordering $\Leftrightarrow G$ is a DAG
- The reverse of a post-order is a topological order

Topics to Review

- Minimum Spanning Trees
- Cut Property / Cycle Property
- Four Algorithms:
- Boruvka
- Prim
- Kruskal
- Anti-Kruskal

Cycles and Cuts

- Cycle: a set of edges $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{k}, v_{1}\right)$

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)
- Cut: a subset of nodes S

$$
\begin{array}{ll}
\text { Cut S } & =\{4,5,8\} \\
\text { Cutset } & =(5,6),(5,7),(3,4),(3,5),(7,8)
\end{array}
$$

Properties of MSTs

- Assume all edge weights are distmet.
- Cut Property: Let S be a cut. Let e be the minimum weight edge cut by S. Then the MST T^{*} contains e
- We call such an e a safe edge
- Cycle Property: Let C be a cycle. Let e be the maximum weight edge in C. Then the MST T^{*} does not contain e.
- We call such an e a useless edge

MST Algorithms

- There are at least four reasonable MST algorithms
- Borůvka's Algorithm: start with $T=\emptyset$, in each round add cheapest edge out of each connected component
- Prim's Algorithm: start with some s, at each step add cheapest edge that grows the connected component
- Kruskal's Algorithm: start with $T=\emptyset$, consider edges in ascending order, adding edges unless they create a cycle
- Reverse-Kruskal: start with $T=E$, consider edges in descending order, deleting edges unless it disconnects

Topics to Review

- Network Flow
- Definitions (Flows, Cuts, Augmenting Path, Residual Graph)
- Ford-Fulkerson Algorithm
- Algorithm
- Correctness
- Running time analysis
- Methods for choosing good augmenting paths (but not proofs)
- MaxFlow-MinCut Theorem

$$
\max _{f} \operatorname{val}(f)=\min _{A, B} \operatorname{cap}(A, B)
$$

- Can find a max flow in $O(m n)$ time.

Flows

- An s-t flow is a function $f(e)$ such that
- For every $e \in E, 0 \leq f(e) \leq c(e)$ (capacity)
- For every $v \in E, \sum_{e \text { in to } v} f(e)=\sum_{e \text { out of } v} f(e) \quad$ (conservation)
- The value of a flow is $\operatorname{val}(f)=\sum_{e \text { out of } s} f(e)$

Cuts

- An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$
- The capacity of a cut (A, B) is $\operatorname{cap}(A, B)=\sum_{e \text { out of } A} c(e)$

Ford-Fulkerson Algorithm

- Start with $f(e)=0$ for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck
flou f

Ford-Fulkerson Algorithm

```
FordFulkerson(G,s,t,{c})
    for e \in E: f(e) \leftarrow 0
    Gf is the residual graph
    while (there is an s-t path P in G}\mp@subsup{G}{f}{\prime
    f}\leftarrow\mathrm{ Augment (Gf
    update G}\mp@subsup{\textrm{G}}{\textrm{f}}{
return f
```

Augment ($\mathrm{G}_{\mathrm{f}}, \mathrm{P}$)
$\mathrm{b} \leftarrow$ the minimum capacity of an edge in P for $e \in P$
if $e \in E: \quad f(e) \leftarrow f(e)+b$
else: $\quad f(e) \leftarrow f(e)-b$
return \mathbf{f}

Review Problems

Review Problem
Given a flow network $G=(V, E, s, t, \widetilde{\{c(e)\}})$, and a maximum flow f^{*}, output a list of all edges e, s.t. increasing $c(e)$ by I increases the max flow. Run in time $O(m+n)$.

Candidate Algorithm:

- Find the min cut A^{*}, B^{*}
- Output all edges crossing from A^{2} to B^{+}
"Proof":
- By duality $\max _{f} \operatorname{val}(f)=\min _{A, B} \operatorname{cap}(A, B)$

Increasing $c(e)$ for any edge from A^{*} to B^{0}, mereases capacity of the min wot.
. Therefore it increases the value of the max flow.

$$
G_{f^{*}}
$$

- If $f^{*}(e)<c(e)$, then adding to che) cast create as augmenting path
- If $f^{*}(e)=c(e)$, then adding to $c(e)$ will add the edge e back to the residual graph
- adding $e=(u, v)$ to the residual graph creates as augmenting path iff
(1) u is reachable from in $G_{f *}$
(2) t is reachable from v in $G f^{*}$

Pseudocode
(1) Let G_{R} be the residual graph, and $G_{f^{*}}^{R}$ be the reverse of $G_{f^{*}}$
(2) Let L, R be [above]
(3) Let $S=\varnothing$
(4) For $((u, v) \in E)$:

If $(u \in L \quad \wedge v \in R)$: add (u, v) to S
(5) Return S

- If I decrease $c(e)$ by I and $f^{*}(e)=c(e)$ then f^{*} is no longer a legal flow.
- We can "fix" the flow by choosing any path through the edge e i.t. all edges on the path carry flow

$P \rightarrow \neg Q \quad$ - suppose there is a $u \rightarrow v$ path in $G_{f^{*}}$
$P \leftarrow \neg Q \quad$ then decreasing capacity of e by l will not reduce the max flow

Bonus Review Problem

- Prove the following by induction: in any rooted binary tree, the number of nodes with exactly two children is one less than the number of leaves.

Review Problem \#4

- Design an algorithm that takes an undirected $G=(V, E)$, and a pair of nodes s, t and outputs the number of shortest s - t paths in G.

Review Problem \#5

- Design an algorithm to find a fattest $s-t$ path in a flow network $G=(V, E, s, t,\{c(e)\})$

Review Problem \#6

- There are n bank accounts A_{1}, \ldots, A_{n}, and you are given m constraints of the form
- A_{i} was closed before A_{j} opened
- A_{i} and A_{j} were open (at least partially) simultaneously
- Design an algorithm to determine if there are opening and closing times for the accounts that satisfy all constraints

Review Problem \#7

- Prove the following by contradiction: if G is an undirected simple graph with $2 n$ nodes, and every node has degree \geq n, then G is connected.

