CS3000: Algorithms & Data Jonathan Ullman

Lecture 18:

Network Flow: choosing good paths

Nov 9, 2018

Flow Networks

- Directed graph G = (V, E)
- Two special nodes: source *s* and sink *t*
- Edge capacities c(e)

Flows

- An s-t flow is a function f(e) such that
 - For every $e \in E$, $0 \le f(e) \le c(e)$ (capacity)
 - For every where, $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation) v $\in V v \neq s_{s} \neq$
- The value of a flow is $val(f) = \sum_{e \text{ out of } s} f(e)$

Maximum Flow Problem

• Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

Cuts

- An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$
- The capacity of a cut (A,B) is $cap(A,B) = \sum_{e \text{ out of } A} c(e)$

Minimum Cut problem

• Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

cap(A,B) = 28

Flows vs. Cuts \Rightarrow val $(f^*) \leq mm cap(A,B)$ (veak duality)

• Fact: If f is any s-t flow and (A, B) is any s-t cut, then the net flow across (A, B) is equal to the amount leaving s

Ford-Fulkerson Algorithm

- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path *P* in the residual graph
- Repeat until you get stuck

Gt

original graph

$$(u) = \frac{f(e)}{c(e)} = (v)$$

(remove O capacity edges)

Summary

Gf*

 $A = \{s_1, 2_3, 3_1, 43\}$

- The Ford-Fulkerson Algorithm solves maximum s-t flow
 - Running time is O(m) per augmentation step
 - $O(val(f^*))$ augmentinations in any graph with integer capacities
- MaxFlow-MinCut Theorem: The value of the max s-t flow equals the capacity of the min s-t cut
 - If f^* is a max flow, the nodes reachable from s in G_{f^*} are a min cut

 $B = \{5, t\}$

If f* is a max flow, A*, B* is
 a minimum cut.

• Given a max flow, can find a min cut in time O(n + m) via BFS

· For any f and any G, the max flow m G can be expressed as [f+(max flow m Gf)]

ᡬ

Ask the Audience

• Is this a maximum flow?

Ask the Audience

• Is this a maximum flow?

• Is there an integer maximum flow?

Ask the Audience

• Is this a maximum flow?

- Is there an integer maximum flow?
- Does every graph with integer capacities have an integer maximum flow?
- · yes. FF will find an integer flow.

Summary

- The Ford-Fulkerson Algorithm solves maximum s-t flow
 - Running time is O(m) per augmentation step
 - $O(val(f^*))$ augmentinations in any graph with integer capacities
- MaxFlow-MinCut Theorem: The value of the max s-t flow equals the capacity of the min s-t cut
 - If f^* is a max flow, the nodes reachable from s in G_{f^*} are a min cut
 - Given a max flow, can find a min cut in time O(n + m) via BFS
- Every graph with integer capacities has an integer max flow
 - And Ford-Fulkerson finds an integer max flow

Ford-Fulkerson Algorithm

- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck

Choosing Good Augmenting Paths

- Last time: arbitrary augmenting paths
 - If FF terminates, it outputs a maximum flow
 - Might not terminate, or might require many augmentations
- Today: clever augmenting paths
 - Maximum-capacity augmenting path ("fattest augmenting path")
 - Shortest augmenting paths ("shortest augmenting path")

• Maximum-capacity augmenting path

- Can find the fattest augmenting path in time $O(m \log n)$ in several different ways
 - Variants of Prim's or Kruskal's MST algorithms
 - BFS + binary search

Fattest Augmenting Path v* = value of max flow f*

Arbitrary Paths

• Assume integer capacities

- Value of maxflow: v^*
- Value of aug path: ≥ 1
- Flow remaining in $G_f : \leq v^* 1$
- # of aug paths: $\leq v^*$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path:
- Flow remaining in *G_f*:
- # of aug paths:

- f^* is a maximum flow with value $v^* = val(f^*)$
- *P* is a fattest augmenting s-t path with capacity *b*
- Key Claim: $b \ge \frac{v^*}{m}$

- f^* is a maximum flow with value $v^* = val(f^*)$
- *P* is a fattest augmenting s-t path with capacity *b*
- Key Claim: $b \ge \frac{v^*}{m}$
- Proof:

• Let
$$G_b$$
 be the graph with nodes V and edges whose capacity $s > b$ in E.

· Let A = { v reachable from s m Gb }

- cap(A,B) = Z c(e) ≤ b.(# of edges from A t= B)
 e out of A
 b m
- $v^* \leq cap(A,B) \leq b \cdot m \iff b \geq \frac{v^*}{m}$

Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path: ≥ 1
- Flow remaining in $G_f : \leq v^* 1$
- # of aug paths: $\leq v^*$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path: > ^V/_m
- Flow remaining in $G_f: \leq (1 \frac{1}{m}) \sqrt{2}$
- # of aug paths: $\leq m \cdot |_{0} (v^{*}) + 1$

· After & augmentations, the remaining flow is $\leq \left(\left| -\frac{1}{m} \right\rangle^{k} \right)^{*}$ · If there are k+1 augmentations, then $\left(1-\frac{1}{m}\right)^{k}\sqrt{2} \approx 1$ $\left[\left(\left| -\frac{1}{m} \right)^{m} \right] \frac{1}{k} \cdot \sqrt{k} \right]$ $\left(\frac{1}{e}\right)^{\frac{k}{m}} \cdot \sqrt{\frac{k}{2}}$ $\frac{k}{m} \cdot (-1) + \ln(v^*) > 0$ k ≤ m·ln(v*) => At most m. ln (v=) +1 augmentations

Choosing Good Paths

- $\leq mm \leq m \ln(v^*), v^*$
- Last time: arbitrary augmenting paths
 - If FF terminates, it outputs a maximum flow
- Today: clever augmenting paths
 - Maximum-capacity augmenting path ("fattest augmenting path")
 - $\leq m \ln v^*$ augmenting paths (assuming integer capacities)
 - $O(m^2 \ln n \ln v^*)$ total running time
 - See KT for a slightly faster variant ("fat-ish augmenting path"?)
 - Shortest augmenting paths ("shortest augmenting path")

- Find the augmenting path with the fewest hops
 - Can find shortest augmenting path in O(m) time using BFS
- Theorem: for any capacities $\frac{nm}{2}$ augmentations suffice
 - Overall running time $O(m^2n)$
 - Works for any capacities!
- Warning: proof is challenging (you will not be tested on it)

- Let f_i be the flow after the *i*-th augmenting path
- Let $G_i = G_{f_i}$ be the *i*-th residual graph
- Let $L_i(v)$ be the distance from s to v in G_i
 - Recall that the shortest path in G_i moves layer-by-layer

• Every augmentation causes at least one edge to disappear from the residual graph, may also cause an edge to appear

Key Property: each edge disappears at most ⁿ/₂ times
 Means that there are at most ^{mn}/₂ augmentaitons

- Claim 1: for every $v \in V$ and every $i, L_{i+1}(v) \ge L_i(v)$
 - Obvious for v = s because $L_i(s) = 0$
 - Suppose for the sake of contradiction that $L_{i+1}(v) < L_i(v)$
 - Let v be the smallest such node
 - Let $s \sim u \rightarrow v$ be a shortest path in G_{i+1}
 - By optimality of the path, $L_{i+1}(v) = L_{i+1}(u) + 1$
 - By assumption, $L_{i+1}(u) \ge L_i(u)$
 - Two Cases:
 - $(u, v) \in G_i$, so $L_i(v) \leq L_i(u) + 1$

• $(u, v) \notin G_i$, so (v, u) was in the *i*-th path, so $L_i(v) = L_i(u) - 1$

- Claim 2: If an edge $u \rightarrow v$ disappears from G_i and reappears in G_{j+1} then $L_j(u) \ge L_i(u) + 2$
 - $u \rightarrow v$ is on the *i*-th augmenting path, $L_i(v) = L_i(u) + 1$
 - $v \rightarrow u$ is on the *j*-th augmenting path, $L_j(u) = L_j(v) + 1$
 - By Claim 1: $L_j(v) \ge L_i(v)$

- Claim 3: An edge (u, v) cannot reappear more than $\frac{n}{2}$ times
 - $0 \le L_i(u) \le n$
 - By Claim 2: length increases by 2 for each reappearance

Choosing Good Paths

- Last time: arbitrary augmenting paths
 - If FF terminates, it outputs a maximum flow
- Today: clever augmenting paths
 - Maximum-capacity augmenting path ("fattest augmenting path")
 - $\leq m \ln v^*$ augmenting paths (assuming integer capacities)
 - $O(m^2 \ln n \ln v^*)$ total running time
 - See KT for a slightly faster variant ("fat-ish augmenting path"?)
 - Shortest augmenting paths ("shortest augmenting path")
 - $\leq \frac{mn}{2}$ augmenting paths (for any capacities)
 - $O(m^2n)$ total running time