
CS4800:	Algorithms	&	Data
Jonathan	Ullman

Lecture	18:	
• Network	Flow:	choosing	good	paths

Nov	9,	2018

NAKAO

Flow	Networks
• Directed	graph	! = #, %
• Two	special	nodes:	source	& and	sink	'
• Edge	capacities	()

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Flows
• An	s-t	flow is	a	function	*) such	that

• For	every) ∈ %,	0 ≤ *) ≤ () (capacity)
• For	every	. ∈ %,	∑ *)�

1	34	56	7 = ∑ *)�
1	685	69	7 (conservation)

• The	value of	a	flow	is	.:; * = 	∑ *)�
1	685	69	<

4

0

0

0

0 0

0 4 4

0
0

0

0

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

4

Maximum	Flow	Problem
• Given	G	=	(V,E,s,t,{c(e)}),	find	an	s-t	flow	of	maximum	value

10

9

9

14

4 10

4 8 9

1
0

0

14

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

0

Cuts
• An	s-t	cut is	a	partition	(>, ?) of	# with	& ∈ > and	' ∈ ?

• The	capacity of	a	cut	(A,B)	is	(:A >, ? = ∑ ()�
1	685	69	B

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

nEnE

Minimum	Cut	problem
• Given	G	=	(V,E,s,t,{c(e)}),	find	an	s-t	cut	of	minimum	capacity

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Flows	vs.	Cuts
• Fact:	If	* is	any	s-t	flow	and	(>, ?) is	any	s-t	cut,	then	the	
net	flow	across	(>, ?) is	equal	to	the	amount	leaving	s	

C *)
�

1	685	69	B
− C *)

�

1	34	56	B
= .:;(*)

10

9

9

14

4 10

4 8 9

1
0

0

14

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

0

Max flow C min at

Ford-Fulkerson	Algorithm
• Start	with	*) = 0 for	all	edges) ∈ %
• Find	an	augmenting	path E in	the	residual	graph
• Repeat	until	you	get	stuck

s

1

2

t

10

10

20 0

0 20

20

20

20

30 s

1

2

t

i

original graph

s

residual graph
Cle f e

r

f e

remove edges of capacity 0

Summary
• The	Ford-Fulkerson	Algorithm	solves	maximum	s-t	flow

• Running	time	is	F(G) per	augmentation	step
• F(.:;(*∗)) augmentinations in	any	graph	with	integer	capacities

• MaxFlow-MinCut Theorem:	The	value	of	the	max	s-t	flow	
equals	the	capacity	of	the	min	s-t	cut	
• If	*∗ is	a	max	flow,	the	nodes	reachable	from	& in	!I∗ are	a	min	cut
• Given	a	max	flow,	can	find	a	min	cut	in	time	F(J + G) via	BFS

when FF is stuck f is a max flow

i

18
A Is 1,23 13 13,4 t

Ask	the	Audience
• Is	this	a	maximum	flow?

s

a

c

b

d

t

1
1

1
0.5

1
1

1
1

1
0.5

2
1.5

1
0.5

Yes
cap 2

Ask	the	Audience
• Is	this	a	maximum	flow?

• Is	there	an	integer maximum	flow?

s

a

c

b

d

t

1
1

1
0.5

1
1

1
1

1
0.5

2
1.5

1
0.5

MM 2

zAam

AMN 0

AM 0

A max flow where f e C 22 for every ec E

Ask	the	Audience
• Is	this	a	maximum	flow?

• Is	there	an	integer	maximum	flow?
• Does	every	graph	with	integer	capacities have	an	integer	
maximum	flow?

s

a

c

b

d

t

1
1

1
0.5

1
1

1
1

1
0.5

2
1.5

1
0.5

Yes And Ford Fulkerson finds one

Summary
• The	Ford-Fulkerson	Algorithm	solves	maximum	s-t	flow

• Running	time	is	F(G) per	augmentation	step
• F(.:;(*∗)) augmentinations in	any	graph	with	integer	capacities

• MaxFlow-MinCut Theorem:	The	value	of	the	max	s-t	flow	
equals	the	capacity	of	the	min	s-t	cut	
• If	*∗ is	a	max	flow,	the	nodes	reachable	from	& in	!I∗ are	a	min	cut
• Given	a	max	flow,	can	find	a	min	cut	in	time	F(J + G) via	BFS

• Every	graph	with	integer	capacities	has	an	integer	max	flow
• And	Ford-Fulkerson	finds	an	integer	max	flow

Ford-Fulkerson	Algorithm

s

1

2

t

C

C

C

C

1

• Start	with	*) = 0 for	all	edges) ∈ %
• Find	an	augmenting	path E in	the	residual	graph
• Repeat	until	you	get	stuck Might take 2C

val ft 2C c a reallybig augmenting paths

1

i
I

o

Choosing	Good	Augmenting	Paths
• Last	time:	arbitrary	augmenting	paths

• If	FF	terminates,	it	outputs	a	maximum	flow
• Might	not	terminate,	or	might	require	many	augmentations

• Today:	clever	augmenting	paths
• Maximum-capacity	augmenting	path	(“fattest	augmenting	path”)
• Shortest	augmenting	paths	(“shortest	augmenting	path”)

Fattest	Augmenting	Path

Fattest	Augmenting	Path
• Maximum-capacity	augmenting	path

• Can	find	the	fattest	augmenting	path	in	time	F G log J in	
several	different	ways
• Variants	of	Prim’s	or	Kruskal’s	MST	algorithms
• BFS	+	binary	search

argmax
bottleneck capacity P

s t pathsP
in Gf

Not too much slower than choosing an arbitrary path

Arbitrary	Paths

• Assume	integer	capacities

• Value	of	maxflow:	.∗

• Value	of	aug path:	≥ 1

• Flow	remaining	in	!I:	≤ .∗ − 1

• #	of	aug paths:	≤ .∗

Maximum-Capacity	Path

• Assume	integer	capacities

• Value	of	maxflow:	.∗

• Value	of	aug path:

• Flow	remaining	in	!I:	

• #	of	aug paths:

Fattest	Augmenting	Path

viii o

Fattest	Augmenting	Path
• *∗ is	a	maximum	flow	with	value	.∗ = .:; *∗
• E is	a	fattest	augmenting	s-t	path	with	capacity	Q
• Key	Claim:	Q ≥ 7∗

R

s

2

3

4

5 t10

10

9

8

4

9

1062

capacity of the fattest path
Max flow

19

P b 9

Fattest	Augmenting	Path
• *∗ is	a	maximum	flow	with	value	.∗ = .:; *∗
• E is	a	fattest	augmenting	s-t	path	with	capacity	Q
• Key	Claim:	Q ≥ 7∗

R
• Proof:

E cap A B
E b m

r

F a pathof capacity bit F b

Let G be G bit only with edges s 1 de bet

Gtdoesn conta.narys tpo.tt

soso.o.fioio iia iiEh ieoutofA
E b f of e outofA
E b M

Fattest	Augmenting	Path
• *∗ is	a	maximum	flow	with	value	.∗ = .:; *∗
• E is	a	fattest	augmenting	s-t	path	with	capacity	Q
• Key	Claim:	Q ≥ 7∗

R

Arbitrary	Paths

• Assume	integer	capacities

• Value	of	maxflow:	.∗

• Value	of	aug path:	≥ 1

• Flow	remaining	in	!I:	≤ .∗ − 1

• #	of	aug paths:	≤ .∗

Maximum-Capacity	Path

• Assume	integer	capacities

• Value	of	maxflow:	.∗

• Value	of	aug path:

• Flow	remaining	in	!I:	

• #	of	aug paths:

Fattest	Augmenting	Path

3
me
I f i

If there are ktlaug paths then after adding k paths theHoo
was at least I

Flow remaining after k paths e l F over

I I
k
Ms I

4 at r i

e Y m.is I

e't J s l

Em Intr no

lktm.tnrTf S ofpathmIeln r7t1

Choosing	Good	Paths
• Last	time:	arbitrary	augmenting	paths

• If	FF	terminates,	it	outputs	a	maximum	flow	

• Today:	clever	augmenting	paths
• Maximum-capacity	augmenting	path	(“fattest	augmenting	path”)

• ≤ G ln .∗ augmenting	paths	(assuming	integer	capacities)
• F(GT ln J ln .∗) total	running	time
• See	KT	for	a	slightly	faster	variant	(“fat-ish	augmenting	path”?)

• Shortest	augmenting	paths	(“shortest	augmenting	path”)

Bad FF I

of augmenting paths E Mhz for any capacities

O man total running

Shortest	Augmenting	Path

Shortest	Augmenting	Path
• Find	the	augmenting	path	with	the	fewest	hops

• Can	find	shortest	augmenting	path	in	F(G) time	using	BFS

• Theorem: for	any	capacities	URT augmentations	suffice
• Overall	running	time	F GTJ
• Works	for	any	capacities!	

• Warning: proof	is challenging	(you	will	not	be	tested	on	it)

Shortest	Augmenting	Path
• Let	*V be	the	flow	after	the	W-th augmenting	path
• Let	!V = !IX be	the	W-th residual	graph
• Let	YV . be	the	distance	from	s	to	v	in	!V

• Recall	that	the	shortest	path	in	!V moves	layer-by-layer

s

2

3

4

5 t10

10

9

8

4

9

1062

Is

Shortest	Augmenting	Path
• Every	augmentation	causes	at	least	one	edge	to	disappear	
from	the	residual	graph,	may	also	cause	an	edge	to	appear

• Key	Property: each	edge	disappears	at	most	UT times
• Means	that	there	are	at	most	RUT augmentaitons

Some edge on the augmenting path Gi is
now at capacity is not in Gitt

Shortest	Augmenting	Path
• Claim	1:	for	every	. ∈ # and	every	W,	YVZ[. ≥ YV .

• Obvious	for	. = & because	YV & = 0
• Suppose	for	the	sake	of	contradiction	that	YVZ[. < YV(.)

• Let	. be	the	smallest	such	node
• Let	&	 ↝ ^ → . be	a	shortest	path	in	!VZ[

• By	optimality	of	the	path,	YVZ[. = YVZ[^ + 1
• By	assumption,	YVZ[^ ≥ YV ^

• Two	Cases:
• ^, . ∈ !V,	so	YV . ≤ YV ^ + 1

• ^, . ∉ !V,	so	 ., ^ was	in	the	W-th path,	so	YV . = YV ^ − 1	

Shortest	Augmenting	Path
• Claim	2:	If	an	edge	^ → . disappears	from	!V and	reappears	in	
!aZ[then	Ya ^ ≥ YV ^ + 2
• ^ → . is	on	the	W-th augmenting	path,	YV . = YV ^ + 1
• . → ^ is	on	the	c-th augmenting	path,	Ya ^ = Ya . + 1
• By	Claim	1:	Ya . ≥ YV .

• Claim	3:	An	edge	(^, .) cannot	reappear	more	than	UT times
• 0 ≤ YV ^ ≤ J
• By	Claim	2:	length	increases	by	2	for	each	reappearance

Choosing	Good	Paths
• Last	time:	arbitrary	augmenting	paths

• If	FF	terminates,	it	outputs	a	maximum	flow	

• Today:	clever	augmenting	paths
• Maximum-capacity	augmenting	path	(“fattest	augmenting	path”)

• ≤ G ln .∗ augmenting	paths	(assuming	integer	capacities)
• F(GT ln J ln .∗) total	running	time
• See	KT	for	a	slightly	faster	variant	(“fat-ish	augmenting	path”?)

• Shortest	augmenting	paths	(“shortest	augmenting	path”)
• ≤ RU

T augmenting	paths	(for	any	capacities)
• F(GTJ) total	running	time

State of the Art algorithmshave 0 mn time forany capacities

