CS3000: Algorithms \& Data Jonathan Ullman

Lecture 18:

- Network Flow: choosing good paths

Nov 9, 2018

Flow Networks

- Directed graph $G=(V, E)$
- Two special nodes: source s and $\operatorname{sink} t$
- Edge capacities $c(e)$

Flows

- An s-t flow is a function $f(e)$ such that
- For every $e \in E, 0 \leq f(e) \leq c(e)$ (capacity)
- For every $v \in E, \sum_{e \text { in to } v} f(e)=\sum_{e \text { out of } v} f(e) \quad$ (conservation)
- The value of a flow is $\operatorname{val}(f)=\sum_{e \text { out of } s} f(e)$

Maximum Flow Problem

- Given $G=(V, E, s, t,\{c(e)\})$, find an s-t flow of maximum value

Cuts

- An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$
- The capacity of a cut (A, B) is $\operatorname{cap}(A, B)=\sum_{e \text { out of } A} c(e)$

Minimum Cut problem

- Given $G=(V, E, s, t,\{c(e)\})$, find an s-t cut of minimum capacity

Flows vs. Cuts max flow \leq min cut

- Fact: If f is any st flow and (A, B) is any st cut, then the net flow across (A, B) is equal to the amount leaving s

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } A} f(e)=\operatorname{val}(f)
$$

Ford-Fulkerson Algorithm

- Start with $f(e)=0$ for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck

original graph

residual graph

(remove edges of capacity 0)

Summary

$$
\text { when FF is "stuck", } f \text { is a max flow }
$$

- The Ford-Fulkerson Algorithm solves maximum s-t flow
- Running time is $O(\mathrm{~m})$ per augmentation step
- $O\left(\operatorname{val}\left(f^{*}\right)\right)$ augmentinations in any graph with integer capacities
- MaxFlow-MinCut Theorem: The value of the max s-t flow equals the capacity of the min s-t cut
- If f^{*} is a max flow, the nodes reachable from s in $G_{f^{*}}$ are a min cut
- Given a max flow, can find a min cut in time $O(n+m)$ via BFS

Ask the Audience

- Is this a maximum flow? Yes

Ask the Audience

- Is this a maximum flow?

- Is there an integer maximum flow?
(A max flow where $f(e) \in \mathbb{Z}$ for every $e \in E$)

Ask the Audience

- Is this a maximum flow?

- Is there an integer maximum flow?
- Does every graph with integer capacities have an integer maximum flow?
Yes! And Ford-Filleson funds one.

Summary

- The Ford-Fulkerson Algorithm solves maximum s-t flow
- Running time is $O(\mathrm{~m})$ per augmentation step
- $O\left(\operatorname{val}\left(f^{*}\right)\right)$ augmentinations in any graph with integer capacities
- MaxFlow-MinCut Theorem: The value of the max s-t flow equals the capacity of the min s-t cut
- If f^{*} is a max flow, the nodes reachable from s in $G_{f^{*}}$ are a min cut
- Given a max flow, can find a min cut in time $O(n+m)$ via BFS
- Every graph with integer capacities has an integer max flow
- And Ford-Fulkerson finds an integer max flow

Ford-Fulkerson Algorithm

- Start with $f(e)=0$ for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck

Might take 2C
$\operatorname{val}\left(f^{*}\right)=2 c$
C is a really big * augmenting paths

Choosing Good Augmenting Paths

- Last time: arbitrary augmenting paths
- If FF terminates, it outputs a maximum flow
- Might not terminate, or might require many augmentations
- Today: clever augmenting paths
- Maximum-capacity augmenting path ("fattest augmenting path")
- Shortest augmenting paths ("shortest augmenting path")

Fattest Augmenting Path

Fattest Augmenting Path

- Maximum-capacity augmenting path

$$
P^{*}=\underset{\substack{s-t \\ \text { in } G_{f} \text { th s }}}{\operatorname{argmax}} \quad \text { bottleneck capacity }(P)
$$

- Can find the fattest augmenting path in time $O(m \log n)$ in several different ways
- Variants of Prim's or Kruskal's MST algorithms
- BFS + binary search
- Not too much slower than choosing an arbitrary path

Fattest Augmenting Path

Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v^{*}
- Value of aug path: ≥ 1
- Flow remaining in $G_{f}: \leq v^{*}-1$
- \# of aug paths: $\leq v^{*}$

$$
\begin{gathered}
v^{*}-k \geqslant 0 \\
k \leq v^{*}
\end{gathered}
$$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^{*}
- Value of aug path:
- Flow remaining in G_{f} :
- \# of aug paths:

Fattest Augmenting Path

- f^{*} is a maximum flow with value $v^{*}=\operatorname{val}\left(f^{*}\right)$
- P is a fattest augmenting s-t path with capacity b
- Key Claim: $b \geq \frac{v^{*}}{m} \quad$ "capacty of the fattest poth
$\Rightarrow \frac{\text { max flow " }}{}$

Fattest Augmenting Path

- f^{*} is a maximum flow with value $v^{*}=\operatorname{val}\left(f^{*}\right)$
- P is a fattest augmenting st path with capacity b
- Key Claim: $b \geq \frac{v^{*}}{m}$
- Proof:

$$
\begin{aligned}
v^{*} & \leq \operatorname{cap}(A, B) \\
& \leq b \cdot m
\end{aligned}
$$

- J a path of capacity $b+1$
- Let G^{\prime} be G but only with edges sit. $c(e) \geqslant b+1$
- G^{\prime} doesn't contain ary s-t path

$$
\begin{aligned}
& A=\left\{\text { nodes reachable from sin } G^{\prime}\right\} \\
& \begin{aligned}
\operatorname{cap}(A, B) & =\sum_{e \operatorname{out} \text { of } A} c(e) \\
& =b \cdot(\# \text { of e ort of } A) \\
& \leq b \cdot m
\end{aligned}
\end{aligned}
$$

Fattest Augmenting Path

- f^{*} is a maximum flow with value $v^{*}=\operatorname{val}\left(f^{*}\right)$
- P is a fattest augmenting s-t path with capacity b
- Key Claim: $b \geq \frac{v^{*}}{m}$

Fattest Augmenting Path

Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v^{*}
- Value of aug path: ≥ 1
- Flow remaining in $G_{f}: \leq v^{*}-1$
- \# of aug paths: $\leq v^{*}$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^{*}
- Value of aug path: $\geqslant \frac{v^{*}}{m}$
- Flow remaining in $G_{f}: \leq\left(1-\frac{1}{m}\right) v^{*}$
- \# of aug paths:
- If there are k lang. paths then after adding k paths the flow was at least 1.
- Flow remaining after k paths $\leq\left(1-\frac{1}{m}\right)^{k} \cdot v^{k}$

$$
\begin{aligned}
& \left(1-\frac{1}{m}\right)^{k} \cdot v^{*} \geqslant 1 \\
& {\left[\left(1-\frac{1}{m}\right)^{m}\right]^{\frac{k}{m}} \cdot v^{*} \geqslant 1} \\
& \left(e^{-1}\right)^{\frac{k}{m}} \cdot v^{*} \geqslant 1 \\
& e^{\frac{-k}{m}} \cdot v^{*} \geqslant 1 \\
& \frac{-k}{m}+\ln \left(v^{*}\right) \geqslant 0 \\
& k \leqslant m \cdot \ln \left(v^{*}\right) \Rightarrow \text { \# paths } \leq m \cdot \ln \left(v^{*}\right)+1
\end{aligned}
$$

Choosing Good Paths

- Last time: arbitrary augmenting paths
- If FF terminates, it outputs a maximum flow
- Bad paths \Rightarrow FF never termmates
- Today: clever augmenting paths
- Maximum-capacity augmenting path ("fattest augmenting path")
- $\leq m \ln v^{*}$ augmenting paths (assuming integer capacities)
- $O\left(m^{2} \ln n \ln v^{*}\right)$ total running time
- See KT for a slightly faster variant ("fat-ish augmenting path"?)
- Shortest augmenting paths ("shortest augmenting path")
- \#of augmenting paths $\leq \frac{m n}{2}$ for any capacities
- $O\left(m^{2} n\right)$ total running

Shortest Augmenting Path

Shortest Augmenting Path

- Find the augmenting path with the fewest hops
- Can find shortest augmenting path in $O(m)$ time using BFS
- Theorem: for any capacities $\frac{n m}{2}$ augmentations suffice
- Overall running time $O\left(m^{2} n\right)$
- Works for any capacities!
- Warning: proof is challenging (you will not be tested on it)

Shortest Augmenting Path

- Let f_{i} be the flow after the i-th augmenting path
- Let $G_{i}=G_{f_{i}}$ be the i-th residual graph
- Let $L_{i}(v)$ be the distance from s to v in G_{i}
- Recall that the shortest path in G_{i} moves layer-by-layer

Shortest Augmenting Path

- Every augmentation causes at least one edge to disappear from the residual graph, may also cause an edge to appear

$$
\begin{aligned}
& \text { - Some edge on the augmenting path } G_{i} \text { is } \\
& \text { nou at copacity, is not im } G_{i+1}
\end{aligned}
$$

- Key Property: each edge disappears at most $\frac{n}{2}$ times
- Means that there are at most $\frac{m n}{2}$ augmentaitons

Shortest Augmenting Path

- Claim 1: for every $v \in V$ and every $i, L_{i+1}(v) \geq L_{i}(v)$
- Obvious for $v=s$ because $L_{i}(s)=0$
- Suppose for the sake of contradiction that $L_{i+1}(v)<L_{i}(v)$
- Let v be the smallest such node
- Let $s \sim u \rightarrow v$ be a shortest path in G_{i+1}
- By optimality of the path, $L_{i+1}(v)=L_{i+1}(u)+1$
- By assumption, $L_{i+1}(u) \geq L_{i}(u)$
- Two Cases:
- $(u, v) \in G_{i}$, so $L_{i}(v) \leq L_{i}(u)+1$
- $(u, v) \notin G_{i}$, so (v, u) was in the i-th path, so $L_{i}(v)=L_{i}(u)-1$

Shortest Augmenting Path

- Claim 2: If an edge $u \rightarrow v$ disappears from G_{i} and reappears in G_{j+1} then $L_{j}(u) \geq L_{i}(u)+2$
- $u \rightarrow v$ is on the i-th augmenting path, $L_{i}(v)=L_{i}(u)+1$
- $v \rightarrow u$ is on the j-th augmenting path, $L_{j}(u)=L_{j}(v)+1$
- By Claim 1: $L_{j}(v) \geq L_{i}(v)$
- Claim 3: An edge (u, v) cannot reappear more than $\frac{n}{2}$ times
- $0 \leq L_{i}(u) \leq n$
- By Claim 2: length increases by 2 for each reappearance

Choosing Good Paths

- Last time: arbitrary augmenting paths
- If FF terminates, it outputs a maximum flow
- Today: clever augmenting paths
- Maximum-capacity augmenting path ("fattest augmenting path")
- $\leq m \ln v^{*}$ augmenting paths (assuming integer capacities)
- $O\left(m^{2} \ln n \ln v^{*}\right)$ total running time
- See KT for a slightly faster variant ("fat-ish augmenting path"?)
- Shortest augmenting paths ("shortest augmenting path")
- $\leq \frac{m n}{2}$ augmenting paths (for any capacities)
- $O\left(m^{2} n\right)$ total running time
- State - of - the - Ait algorithms have $O(m n)$ time for any capacities

