CS3000: Algorithms & Data Jonathan Ullman

Lecture 17:

- Network Flow: flows, cuts, duality
- Ford-Fulkerson

Nov 6, 2018

Flow Networks

Flow Networks

• Directed graph G = (V, E)

$$G = (V_3 E_3, t_3, \xi_2(e))$$

- Two special nodes: source *s* and sink *t*
- Edge capacities c(e)

Flows

- An s-t flow is a function f(e) such that
 - For every $e \in E, 0 \le f(e) \le c(e)$ (capacity)
 - For every $\mathcal{W}_{\mathcal{F}}$, $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation) $v \in V_{\mathcal{F}}$, $v \neq s, t$
- The value of a flow is $val(f) = \sum_{e \text{ out of } s} f(e)$

Maximum Flow Problem

• Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value

val(f) = 10 + 4 + 14 = 28

Cuts $A \circ B = \emptyset$ $A \circ B = V$

- An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$
- The capacity of a cut (A,B) is $cap(A,B) = \sum_{e \text{ out of } A} c(e)$

Minimum Cut problem

• Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity

Flows vs. Cuts

• Fact: If f is any s-t flow and (A, B) is any s-t cut, then the net flow across (A, B) is equal to the amount leaving s

Flows vs. Cuts

• Weak Duality: Let f be any s-t flow and (A, B) any s-t cut,

 $val(f) \leq cap(A, B)$

Proof:
$$va(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

 $\stackrel{e}{=} \sum_{e \text{ out of } A} f(e) \qquad [Non-negativity]$
 $\stackrel{e}{=} e \text{ out of } A$
 $\stackrel{e}{=} \sum_{e \text{ out of } A} c(e) \qquad [Copacity]$
 $\stackrel{e}{=} cap(A,B) \qquad [Definition]$

Ask the Audience

• True of False? There is always a flow such that every edge e leaving the source s is saturated with f(e) = c(e).

$$A = \{s, 2\}$$

$$B = \{\xi\}$$

$$cop(A, B) = 1$$

$$(S) \xrightarrow{10} (2) \xrightarrow{1} \xrightarrow{1} (\xi)$$

$$(e) = 10$$

Z e out of fs3

Augmenting Paths

Given a network G = (V, E, s, t, {c(e)}) and a flow f, an augmenting path P is an s → t path such that f(e) < c(e) for every edge e ∈ P

Greedy Max Flow

- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path P (Can find using BFS)
- Repeat until you get stuck

Does Greedy Work?

- Greedy gets stuck before finding a max flow
- How can we get from our solution to the max flow?

Residual Graphs

- Original edge: $e = (u, v) \in E$.
 - Flow f(e), capacity c(e)
- Residual edge
 - Allows "undoing" flow
 - e = (u, v) and $e^{R} = (v, u)$.
 - Residual capacity

- Residual graph $G_f = (V, E_f)$
 - Edges with positive residual capacity.
 - $E_f = \{e : f(e) < c(e)\} \cup \{e^R : c(e) > 0\}.$

Augmenting Paths in Residual Graphs

- Let G_f be a residual graph
- Let *P* be an augmenting path in the **residual graph**
- Fact: $f' = \text{Augment}(G_f, P)$ is a valid flow

Ford-Fulkerson Algorithm

- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path *P* in the residual graph
- Repeat until you get stuck

Gf

Ford-Fulkerson Algorithm

```
To find one
FordFulkerson(G,s,t,{c})
                                                              path:
     for e \in E: f(e) \leftarrow 0
                                                            1) Find a poth
     G_{f} is the residual graph
                                                               O(m) using
     while (there is an s-t path P in G_{f})
          f \leftarrow Augment(G_f, P)
                                                                 BFS
          update G_{f}
                                                            <sup>2</sup> Augment
     return f
                                                               O(n) time
Augment (G_{f}, P)
                                                            3 Update Gf
     b \leftarrow the minimum capacity of an edge in P
                                                               O(n) time
     for e \in P
          if e \in E: f(e) \leftarrow f(e) + b
          else:
                         f(e) \leftarrow f(e) - b
                                                            O(m) per
augnentation
     return f
```


What do we want to prove?

Running Time of Ford-Fulkerson

- For integer capacities, $\leq val(f^*)$ augmentation steps
 - · Every augmentation addr > 1 unit of flow
- Can perform each augmentation step in O(m) time
 - find augmenting path in O(m)
 - augment the flow along path in O(n)
 - update the residual graph along the path in O(n)
- For integer capacities, FF runs in $O(m \cdot val(f^*))$ time
 - O(mn) time if all capacities are $c_e = 1$
 - $O(mnC_{max})$ time for any integer capacities
 - Problematic when capacities are large—more on this later!

Correctness of Ford-Fulkerson

- Theorem: *f* is a maximum s-t flow if and only if there is no augmenting s-t path in *G_f*
- (Strong) MaxFlow-MinCut Duality: The value of the max s-t flow equals the capacity of the min s-t cut
- We'll prove that the following are equivalent for all f
 - 1. There exists a cut (A, B) such that val(f) = cap(A, B)
 - 2. Flow f is a maximum flow
 - 3. There is no augmenting path in G_f

Optimality of Ford-Fulkerson

- **Theorem:** the following are equivalent for all *f*
 - 1. There exists a cut (A, B) such that val(f) = cap(A, B)
 - 2. Flow f is a maximum flow
 - 3. There is no augmenting path in G_f

$$(1 \Rightarrow 2)$$
 By weak duality
 $(2 \Rightarrow 3)$ If there is an augmenting path the frant be maximum

Hard Part: $(3 \Rightarrow 1)$

Optimality of Ford-Fulkerson

- $(3 \rightarrow 1)$ If there is no augmenting path in G_f , then there is a cut (A, B) such that val(f) = cap(A, B)
 - Let A be the set of nodes reachable from s in G_f
 - Let *B* be all other nodes

Optimality of Ford-Fulkerson

- $(3 \rightarrow 1)$ If there is no augmenting path in G_f , then there is a cut (A, B) such that val(f) = cap(A, B)
 - Let A be the set of nodes reachable from s in G_f
 - Let *B* be all other nodes
 - Key observation: no edges in G_f go from A to B

• If
$$e ext{ is } A \to B$$
, then $f(e) = c(e)$

• If
$$e ext{ is } B \to A$$
, then $f(e) = 0$

$$val(f) = \sum f(e) - \sum f(e)$$

out of A e into A
$$= \sum c(e) - \sum 0$$

e out of A e into A
$$= \sum c(e) = cap(A)R$$

Summary

- The Ford-Fulkerson Algorithm solves maximum s-t flow
 - Running time $O(m \cdot val(f^*))$ in networks with integer capacities
 - Space O(n+m)
- MaxFlow-MinCut Duality: The value of the maximum s-t flow equals the capacity of the minimum s-t cut
 - If f* is a maximum s-t flow, then the set of nodes reachable from s in G_{f*} gives a minimum cut
 - Given a max-flow, can find a min-cut in time O(n + m)
- Every graph with integer capacities has an integer maximum flow
 - Ford-Fulkerson will return an integral maximum flow

Ask the Audience

• Is this a maximum flow?

- Is there an integer maximum flow?
- Does every graph with integer capacities have an integer maximum flow?

Summary

- The Ford-Fulkerson Algorithm solves maximum s-t flow
 - Running time $O(m \cdot val(f^*))$ in networks with integer capacities
 - Space O(n+m)
- MaxFlow-MinCut Duality: The value of the maximum s-t flow equals the capacity of the minimum s-t cut
 - If f* is a maximum s-t flow, then the set of nodes reachable from s in G_{f*} gives a minimum cut
 - Given a max-flow, can find a min-cut in time O(n + m)
- Every graph with integer capacities has an integer maximum flow
 - Ford-Fulkerson will return an integer maximum flow