
CS3000:	Algorithms	&	Data
Jonathan	Ullman

Lecture	11:	
• Graphs
• Graph	Traversals:	BFS

Feb	16,	2018

What’s	Next

What’s	Next

• Graph	Algorithms:
• Graphs: Key	Definitions,	Properties,	Representations
• Exploring	Graphs: Breadth/Depth	First	Search

• Applications:	Connectivity,	Bipartiteness,	Topological	Sorting
• Shortest	Paths:

• Dijkstra
• Bellman-Ford	(Dynamic	Programming)

• Minimum	Spanning	Trees:
• Borůvka,	Prim,	Kruskal

• Network	Flow:
• Algorithms
• Reductions	to	Network	Flow

Graphs

Graphs:	Key	Definitions

• Definition:	A	directed	graph ! = #, %
• # is	the	set	of	nodes/vertices
• % ⊆ #×# is	the	set	of	edges
• An	edge	is	an	ordered	(=), * “from) to	*”

• Definition: An	undirected	graph ! = #, %
• Edges	are	unordered	(=), * “between) and	*”

• Simple	Graph:
• No	duplicate	edges
• No	self-loops	(=),)

11171 Notation

Ask	the	Audience

• How	many	edges	can	there	be	in	a	simple
directed/undirected graph?

directed n nodes n l possible edges per node

n n l

undirected nln b c A u u

m O R2 for simple graphs

Paths/Connectivity

• A	path is	a	sequence	of	consecutive	edges	in	%
• + =),,- , ,-, ,. , ,., ,/ , … , ,12-, *
• + =) − ,- − ,. − ,/ −⋯−,12- − *
• The	length of	the	path	is	the	#	of	edges

• An	undirected graph	is	connected if	for	every	two	
vertices), * ∈ #,	there	is	a	path	from) to	*
• A	directed graph	is	strongly	connected if	for	every	
two	vertices), * ∈ #,	there	are	paths	from) to	*
and	from	* to)

Cleaner to
write

Cycles

• A	cycle is	a	path	*- − *. −⋯− *1 − *- where		
6 ≥ 3 and	*-, … , *1 are	distinct

EH sina.is

many
cycles

Ask	the	Audience

• Suppose	an	undirected	graph	! is	connected
• True/False?		! has	at	least 9 − 1 edges0

Ask	the	Audience

• Suppose	an	undirected	graph	! has	9 − 1 edges
• True/False?		! is	connectedO

n Y

m 3 n l

G is not connected

Trees

• A	simple	undirected	graph	! is	a	tree if:
• ! is	connected
• ! contains	no	cycles

• Theorem: any	two	of	the	following	implies	the	third
• ! is	connected
• ! contains	no	cycles
• ! has	= 9 − 1 edges

Trees

• Rooted	tree:	choose	a	root	node	; and	orient	edges	
away	from	;
• Models	hierarchical	structure

IN
bio bio

Phylogeny	Trees

Exploring	a	Graph

Exploring	a	Graph

• Problem:	Is	there	a	path	from	< to	=?
• Idea: Explore	all	nodes	reachable	from	<.

• Two	different	search	techniques:
• Breadth-First	Search: explore	nearby	nodes	before	
moving	on	to	farther	away nodes

• Depth-First	Search: follow	a	path	until	you	get	stuck,	
then	go	back

Exploring	a	Graph

• BFS/DFS are	general	templates	for	graph	algorithms
• Extensions	of	Breadth-First	Search:

• 2-Coloring	(Bipartiteness)
• Shortest	Paths
• Minimum	Spanning	Tree	(Prim’s	Algorithm)

• Extensions	of	Depth-First	Search:
• Fast	Topological	Sorting
• Fast	Strongly	Connected	Components

Breadth-First	Search	(BFS)

• Informal	Description: start	at	<,	find	neighbors	of	<,	
find	neighbors	of	neighbors	of	<,	and	so	on…

• BFS	Tree:
• >? = <
• >- = all	neighbors	of	>?
• >. = all	neighbors	of	>- that	are	not	in	>?, >-
• >/ = all	neighbors	of	>. that	are	not	in	>?, >-, >.
• …
• >@ = all	neighbors	of	>@2- that	are	not	in	>?, … , >@2-
• Stop	when	>@A- is	empty

Ask	the	Audience

• BFS	this	graph	from	B = C

it

Breadth-First	Search	(BFS)

• Definition:	the	distance between	<, = is	the	number	
of	edges	on	the	shortest	path	from	< to	=
• Thm:	BFS	finds	distances	from	< to	other	nodes
• >D contains	all	nodes	at	distance	E from	<
• Nodes	not	in	any	layer	are	not	reachable	from	<

Adjacency	Matrices

• The	adjacency	matrix of	a	graph	! = #, % with	9
nodes	is	the	matrix	F 1: 9	, 1: 9 where

F E, I = 	 J1					 E, I ∈ %
	0					 E, I ∉ %

A 1 2 3 4
1 0 1 1 0
2 0 0 1 0
3 0 0 0 0
4 0 0 1 0

Cost
Space:	Θ #.

Lookup:	Θ 1 time
List	Neighbors:	Θ # time

2 1

3 4

Adjacency	Lists	(Undirected)

• The	adjacency	list of	a	vertex	* ∈ # is	the	list	F[*]
of	all) s.t.	 *,) ∈ %

2 1

3 4

F 1 = 2,3
F 2 = 3
F 3 = 	
F 4 = 3

Space 0 degli 11
AM 51,33

0 htm Ms 1,343

Cost to lookup un Oldeglutti

Cost to lat Neighbors of a

Oldeglutti

Adjacency	Lists	(Directed)

• The	adjacency	list of	a	vertex	* ∈ # are	the	lists
• FRST[*] of	all) s.t.	 *,) ∈ %
• FDU[*] of	all) s.t.), * ∈ %

2 1

3 4

FRST 1 = 2,3
FRST 2 = 3
FRST 3 = 	
FRST 4 = 3

FDU 1 = 	
FDU 2 = 1
FDU 3 = 1,2,4
FDU 4 = 	

Breadth-First	Search	Implementation

BFS(G = (V,E), s):
Let found[v]	←	false ∀v, found[s]	←	true
Let layer[v]	← ∞ ∀v, layer[s]	←	0
Let i	←	0, L0 = {s}, T ← ∅

While (Li is not empty):
Initialize new layer Li+1
For (u in Li):
For ((u,v) in E):
If (found[v] = false):
found[v]	←	true, layer[v]←	i+1
Add (u,v) to T and add v to Li+1

i	←	i+1

BFS	Running	Time	(Adjacency	List)

BFS(G = (V,E), s):
Let found[v]	←	false ∀v
Let found[s]	←	true
Let layer[v]	← ∞ ∀v, layer[s]	←	0
Let i	←	0, L0 = {s}, T ← ∅

While (Li is not empty):
Initialize new layer Li+1
For (u in Li):
For ((u,v) in E):
If (found[v] = false):
found[v]	←	true,
layer[v]←	i+1
Add (u,v) to T
Add v to Li+1

i	←	i+1

t

s
Only explore u once

Jon
a

