CS3000: Algorithms \& Data Jonathan Ullman

Lecture 11:

- Graphs
- Graph Traversals: BFS

Feb 16, 2018

What's Next

The Structure of Romantic and Sexual Relations at "Jefferson High School"

Each circle represents a student and lines connecting students represent romantic relations occuring within the 6 months preceding the interview. Numbers under the figure count the number of times that pattern was observed (i.e. we found 63 pairs unconnected to anyone else).

What's Next

- Graph Algorithms:
- Graphs: Key Definitions, Properties, Representations
- Exploring Graphs: Breadth/Depth First Search
- Applications: Connectivity, Bipartiteness, Topological Sorting
- Shortest Paths:
- Dijkstra
- Bellman-Ford (Dynamic Programming)
- Minimum Spanning Trees:
- Borůvka, Prim, Kruskal
- Network Flow:
- Algorithms
- Reductions to Network Flow

Graphs

Graphs: Key Definitions $\begin{aligned} & \left\lvert\, \begin{array}{l}|V|=n \\ |E|=m\end{array}\right.\end{aligned}$ Notation

- Definition: A directed graph $G=(V, E)$
- V is the set of nodes/vertices
- $E \subseteq V \times V$ is the set of edges
- An edge is an ordered $e=(u, v)$ "from u to v "
- Definition: An undirected graph $G=(V, E)$
- Edges are unordered $e=(u, v)$ "between u and v "
- Simple Graph:
- No duplicate edges
- No self-loops $e=(u, u)$

Ask the Audience

- How many edges can there be in a simple directed/undirected graph?

$$
\begin{aligned}
\text { directed: } & (n \text { nodes }) \times(n-1 \text { possible edges per node }) \\
& =n(n-1) \\
\text { undirected } & =\frac{n(n-1)}{2}(b / c \quad(u, v)=(v, u)) \\
m & =O\left(n^{2}\right) \text { for simple graphs! }
\end{aligned}
$$

Paths/Connectivity

- A path is a sequence of consecutive edges in E
- $P=\left\{\left(u, w_{1}\right),\left(w_{1}, w_{2}\right),\left(w_{2}, w_{3}\right), \ldots,\left(w_{k-1}, v\right)\right\}$
- $P=u-w_{1}-w_{2}-w_{3}-\cdots-w_{k-1}-v$
- The length of the path is the \# of edges

$$
\begin{aligned}
& \text { Cleaner to } \\
& \text { write }
\end{aligned}
$$

- An undirected graph is connected if for every two vertices $u, v \in V$, there is a path from u to v
- A directed graph is strongly connected if for every two vertices $u, v \in V$, there are paths from u to v and from v to u

Cycles

- A cycle is a path $v_{1}-v_{2}-\cdots-v_{k}-v_{1}$ where $k \geq 3$ and v_{1}, \ldots, v_{k} are distinct

Ask the Audience

- Suppose an undirected graph G is connected
-True/False? G has at least $n-1$ edges

Ask the Audience

- Suppose an undirected graph G has $n-1$ edges
- True False, G is connected

$$
\begin{aligned}
& n=4 \\
& m=3=n-1
\end{aligned}
$$

$G B$ not connected

Trees

- A simple undirected graph G is a tree if:
- G is connected
- G contains no cycles
- Theorem: any two of the following implies the third
- G is connected
- G contains no cycles
- G has $=n-1$ edges

Trees

- Rooted tree: choose a root node r and orient edges away from r
- Models hierarchical structure

Phylogenetic Tree of Life

Exploring a Graph

Exploring a Graph

- Problem: Is there a path from s to t ?
- Idea: Explore all nodes reachable from s.
- Two different search techniques:
- Breadth-First Search: explore nearby nodes before moving on to farther away nodes
- Depth-First Search: follow a path until you get stuck, then go back

Exploring a Graph

- BFS/DFS are general templates for graph algorithms
- Extensions of Breadth-First Search:
- 2-Coloring (Bipartiteness)
- Shortest Paths
- Minimum Spanning Tree (Prim's Algorithm)
- Extensions of Depth-First Search:
- Fast Topological Sorting
- Fast Strongly Connected Components

Breadth-First Search (BFS)

- Informal Description: start at s, find neighbors of s, find neighbors of neighbors of s, and so on...
- BFS Tree:
- $L_{0}=\{s\}$
- $L_{1}=$ all neighbors of L_{0}
- $L_{2}=$ all neighbors of L_{1} that are not in L_{0}, L_{1}
- $L_{3}=$ all neighbors of L_{2} that are not in L_{0}, L_{1}, L_{2}
-...
- $L_{d}=$ all neighbors of L_{d-1} that are not in L_{0}, \ldots, L_{d-1}
- Stop when L_{d+1} is empty

Ask the Audience

- BFS this graph from $\boldsymbol{s}=\mathbf{1}$

Breadth-First Search (BFS)

- Definition: the distance between s, t is the number of edges on the shortest path from s to t
- Thm: BFS finds distances from s to other nodes
- L_{i} contains all nodes at distance i from s
- Nodes not in any layer are not reachable from s

Adjacency Matrices

- The adjacency matrix of a graph $G=(V, E)$ with n nodes is the matrix $A[1: n, 1: n]$ where

$$
A[i, j]= \begin{cases}1 & (i, j) \in E \\ 0 & (i, j) \notin E\end{cases}
$$

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

Cost
Space: $\Theta\left(V^{2}\right)$
Lookup: $\Theta(1)$ time List Neighbors: $\Theta(V)$ time

Adjacency Lists (Undirected)

- The adjacency list of a vertex $v \in V$ is the list $A[v]$ of all u s.t. $(v, u) \in E$

$$
\begin{aligned}
\text { Space } & =\sum_{u \in V} O(\operatorname{deg}(u)+1) \\
& =O(n+m)
\end{aligned}
$$

$$
A[1]=\{2,3\}
$$

$$
A[2]=\{1,3\}
$$

$$
A[3]=\{1,2,4\}
$$

$$
A[4]=\{3\}
$$

Cost to $\operatorname{lookup}(u, v)=O(\operatorname{deg}(u)+1)$
Cost to List Neighbors of $u=$

$$
O(\operatorname{deg}(u)+1)
$$

Adjacency Lists (Directed)

- The adjacency list of a vertex $v \in V$ are the lists
- $A_{\text {out }}[v]$ of all u s.t. $(v, u) \in E$
- $A_{\text {in }}[v]$ of all u s.t. $(u, v) \in E$

$$
\begin{array}{ll}
A_{\text {out }}[1]=\{2,3\} & \\
A_{\text {in }}[1]=\{ \} \\
A_{\text {out }}[2]=\{3\} & A_{\text {in }}[2]=\{1\} \\
A_{\text {out }}[3]=\{ \} & \\
A_{\text {in }}[3]=\{1,2,4\} \\
A_{\text {out }}[4]=\{3\} &
\end{array} A_{\text {in }}[4]=\{ \},
$$

Breadth-First Search Implementation

```
\(\operatorname{BFS}(G=(V, E), s):\)
    Let found[v] \(\leftarrow\) false \(\forall v\), found[s] \(\leftarrow\) true
    Let layer[v] \(\leftarrow \infty \quad \forall v\), layer[s] \(\leftarrow 0\)
    Let \(i \leftarrow 0, L_{0}=\{s\}, T \leftarrow \emptyset\)
    While ( \(L_{i}\) is not empty):
    Initialize new layer \(\mathrm{L}_{\mathrm{i}+1}\)
    For (u in \(L_{i}\) ):
        For ( \((u, v)\) in \(E)\) :
            If (found[v] = false):
            found[v] \(\leftarrow\) true, layer[v] \(\leftarrow i+1\)
            Add \((u, v)\) to \(T\) and add \(v\) to \(L_{i+1}\)
    \(i \leftarrow i+1\)
```

BFS Running Time (Adjacency List)

$\mathrm{BFS}(\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{s}):$
Let found [v] \leftarrow false $\forall v$
Let found [s] \leftarrow true
Let layer [v] $\leftarrow \infty \quad \forall \mathrm{v}$, layer [s] $\leftarrow 0$
Let $\mathrm{i} \leftarrow 0, \mathrm{~L}_{0}=\{\mathrm{s}\}, \mathrm{T} \leftarrow \emptyset$
While (L_{i} is not empty):
Initialize new layer $\mathrm{L}_{\mathrm{i}+1}$
For (u in L_{i}):
For ((u, v) in $E)$:
If (foul div] = false):
found [v] \leftarrow true,
layer [v] $\leftarrow \mathrm{i}+1$
Add (uv) to T
Add v to $\mathrm{L}_{\mathrm{i}+1}$
$i \leftarrow i+1$

