Efficiently Estimating Erdős-Rényi Graphs with Differential Privacy

Adam Sealfon, MIT and UC Berkeley

1 – DP FOR GRAPHS hiding individual entries undirected, simple graph G = (V, E)*n* nodes, *m* edges edge DP ide one relationship • arbitrary changes of a single node

Jonathan Ullman, Northeastern University

each	Step 2: For edges incident on low-weight nodes, replace each edge with the average edge density.
$ _{k^*} = k_G = 0$	$wt_G((u,v)) = \min(wt_G(u), wt_G(v))$ $val_G(e) = wt_G(e) \mathbb{I}_{eGE} + (1 - wt_G(e))p_G$
	$f(G) = \frac{1}{2} \sum_{u \neq v} val_G((u, v))$
es if you're vg degree	Lemma: $f(G) = E $ for k^* -concentrated graphs
$_{S}(v)$	Lemma: there is a poly-time computable, β -smooth upper bound on the local sensitivity of f satisfying $S(G) = O((k_G + k^*)(1 + \beta k_G) + 1/\beta)$
	[KNRS'13] Kasiviswanathan, Nissim, Raskhodnikova, Smith. [NRS'07] Nissin Analyzing Graphs with Node Differential Privacy. TCC'13 and Sampling in