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1 - DP FOR GRAPHS

Differential privacy (DP) allows the release of
aggregate statistics from a dataset while
hiding individual entries

Graphs model entities and relationships

undirected, simple graph G = (V, E)
n nodes, m edges

Two models of DP for graphs: edge and node

easier to achieve,
well studied
less realistic

more realistic,

harder to achieve,

studied relatively little
[BBDS’13, KNRS’13]

This work

._

Most graph statistics are highly sensitive to
arbitrary changes of a single node

2 — COUNTING EDGES IN NICE GRAPHS

Our work: node-DP estimators for the edge
density p(G) = m/(g) in nice graphs

4 )
Any Graph

global sensitivity is 2/5
error is O(1/en)

Baseline

Based on Lipschitz ™\

Max Degree D [KNRS’13]
restricted sensitivity is 0(P/. ,)

error is @(D/enz)

extensions
|

J

Improvements
for nice graphs

Random Graphs G(n, p) [BCSZ'18] A
- exponential time algorithm with

error ® (‘/ﬁ/n + @/gng/z)

Erd6s-Rényi

graph model

J

3 — RESULTS: NEW EFFICIENT ESTIMATORS

4 )
Theorem: a poly time €-node-DP algorithm for computing edge

density in k*-concentrated graphs with error O (%’ ez T 1/€2n2)

J
all degrees lie in an
interval of width 2k
4 )

Optimality: any e-node-DP algorithm for computing edge density in

k™-concentrated graphs must have error Q(""* cn2 T 1/€2n2)

\_
G(n,p) graphs are /pn
concentrated whp
\

Application: there is a poly time e-node-DP algorithm for estimating

G (n,p) graphs with error © (W/n + *m/gng/z + 1/€2n2)

\_ J
Sampling error Privacy overhead

Privacy for free when € is not too small!

4 — LIPSCHITZ EXTENSIONS

graph statistic:
f:g-R

all graphs G global sensitivity:

G~G'e

nice graphs H c §
(e.g. k"-concentrated)

'/Q

restricted sensitivity:

G~G'eH

Often, RSf’g{ < GSf

Want privacy for all graphs but noise
calibrated to RS¢ 3¢ for nice graphs in H

GSy = mang(G) — f(G")

RSp5c = max f(G) = f(G")

/I.ipschitz extension [BBDS’13,KNRS’13]:\
A new graph statisticf s.t.
f(G) = f(G) for nice graphs in H

A new graph statisticf s.t.
f(G) = f(G) for nice graphs in I

We give an explicit polynomial time
ngorithm for computing f

f always exists [M’34], but can require

Q(ponential time to compute /

/Our Work (Relaxed Lipschitz Extension):\

. SmoothSensf = O(RSf'}[) [INRS'07]

5 — OUR ESTIMATOR

r D f
Step 1: assign a weight wt.(v) € [0,1] to each

node based on how “typical” its degree is
- y -

Step 2: For edges incident on low-weight nodes, replace
each edge with the average edge density.

val,((u,v)) =1

v O

wte(u) =1 wte(v) =1

\

J

SG,t — {v (& V: |deg(v) — d_G‘ > t}

kg = minfk : |Sg 3pqx| < k3

WtG((u, v)) = min(wt;(u), wt;(v))

valg(e) = wtg(e)leer + (1 — wtg(e))pe

1
F6) =3 ) valg((w,v))

val;((u,v)) = pg

Lo o

wte(u) =0 wte(v) =1

val; (u,v)) =.3+.7p;

D U

t ( ) UFV
wt-(v) 4
“ k* + 3kG weight decreases if you're (" )
11 — too far from avg degree Lemma: f(G) = |E| for k*-concentrated graphs /
. y Smooth Sensitivity Algorithm:
n\—1 S(G)
. LG e +==2)

weight is 1 in an interval

around the avg degree

&

Lemma: there is a poly-time computable, f-smooth
upper bound on the local sensitivity of f satisfying

S(G) = 0((kg + k)1 + Bkg) + 1/B)

where Z is sampled from a Student’s t-
distribution with 3 d.f. [NRS'07]
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