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Graphs	model	entities and	relationships
undirected,	simple	graph	𝐺 = 𝑉, 𝐸
𝑛 nodes,	𝑚 edges

easier	 to	achieve,	
well	studied
less	realistic

more	realistic,
harder	 to	achieve,
studied	relatively	little	
[BBDS’13,	KNRS’13]

Most	graph	statistics	are	highly	sensitive	to	
arbitrary	changes	of	a	single	node

This	work

Two	models	of	DP	for	graphs:	edge	and	node

Our	work:	node-DP	estimators	for	the	edge	
density	𝑝 𝐺 = 𝑚 )

*⁄ in	nice	graphs
Theorem:	a	poly	time 𝜀-node-DP	algorithm	for	computing	edge	
density	in	𝑘∗-concentrated graphs with	error	𝑂0 1∗

2)34 + 6
23)3⁄

Application:	there	is	a	poly	time 𝜀-node-DP	algorithm	for	estimating	
𝐺 𝑛, 𝑝 graphs	with	error	Θ 8

)4 + 8
2)9/34 + 6

23)3⁄

Optimality:	any	𝜀-node-DP	algorithm	for	computing	edge	density	in		
𝑘∗-concentrated	graphs must	have	error	Ω 1∗

2)34 + 6
23)3⁄

𝐺 𝑛, 𝑝 graphs	are	 𝑝𝑛
concentrated	whp

Sampling	error Privacy	overhead

Privacy	for	free	when	𝜀 is	not	too	small!

all	degrees	 lie	in	an	
interval	of	width	2𝑘∗

Baseline

Improvements
for	nice	graphs

Any	Graph
global	sensitivity	is	* )⁄

error	is	Θ 6 2)⁄

Max	Degree	𝑫 [KNRS’13]
restricted	sensitivity	is	𝑂 >

)3⁄
error	is	Θ >

2)3⁄

Random	Graphs	𝑮 𝒏, 𝒑 [BCSZ’18]
exponential	time algorithm	with

error	Θ 8
)4 + 8

2)9/34
Erdős-Rényi
graph	model

Based	on	Lipschitz
extensions

all	graphs	𝒢

nice	graphs	ℋ ⊂ 𝒢
(e.g.	𝑘∗-concentrated)

graph	statistic:
𝑓: 𝒢 → ℝ

global	sensitivity:
𝐺𝑆J = max

N∼NP∈𝒢
𝑓 𝐺 − 𝑓 𝐺S

restricted	sensitivity:
𝑅𝑆J,ℋ = max

N∼NP∈ℋ
𝑓 𝐺 − 𝑓 𝐺S

Want	privacy	for	all	graphs	but	noise	
calibrated	to	𝑅𝑆J,ℋ for	nice	graphs	in	ℋ

𝐺 𝐺′

Lipschitz extension	[BBDS’13,KNRS’13]:
A	new	graph	statistic	𝑓V s.t.
• 𝑓V 𝐺 = 𝑓 𝐺 for	nice	graphs	in	ℋ
• 𝐺𝑆JV = 𝑅𝑆J,ℋ

𝑓V always	exists	[M’34],	but	can	require	
exponential	time	to	compute

Our	Work	(Relaxed	Lipschitz Extension):
A	new	graph	statistic	𝑓V s.t.
• 𝑓V 𝐺 ≈ 𝑓 𝐺 for	nice	graphs	in	ℋ
• SmoothSensJV = 𝑂 𝑅𝑆J,ℋ [NRS’07]

We	give	an	explicit	polynomial	time	
algorithm	for	computing	𝑓V

Often,	𝑅𝑆J,ℋ ≪ 𝐺𝑆J

𝑘N = min{𝑘 ∶ 𝑆N ,c1d1∗ ≤ 𝑘}

𝑑̅N

𝑤𝑡N(𝑣)

𝑑𝑒𝑔N(𝑣)

𝑘∗ + 3𝑘N
1

1
𝛽4

𝑆N,s = 𝑣 ∈ 𝑉: |deg 𝑣 −𝑑̅N > 𝑡} 𝑤𝑡N 𝑢, 𝑣 = min(𝑤𝑡N 𝑢 , 𝑤𝑡N(𝑣))	

𝑓 𝐺 =
1
2z 𝑣𝑎𝑙N 𝑢, 𝑣
}~�

𝑣𝑎𝑙N 𝑒 = 𝑤𝑡N 𝑒 𝕀�∈� + 1 − 𝑤𝑡N 𝑒 𝑝N

Lemma:	there	is	a	poly-time	computable,	𝛽-smooth	
upper	bound	on	the	local	sensitivity	of	𝑓 satisfying	

𝑆 𝐺 = 	𝑂 𝑘N + 𝑘∗ 1 + 𝛽𝑘N + 1 𝛽⁄

Step	1:	assign	a	weight	𝑤𝑡N 𝑣 ∈ [0,1] to	each	
node	based	on	how	“typical”	its	degree	is

Step	2:	For	edges	incident	on	low-weight	nodes,	replace	
each	edge	with	the	average	edge	density.

Lemma:	𝑓 𝐺 = |𝐸| for	𝑘∗-concentrated	graphs
Smooth	Sensitivity	Algorithm:
)
*
�6 𝑓 𝐺 + � N

2
⋅ 𝑍

where	𝑍 is	sampled	from	a	Student’s	𝑡-
distribution	with	3 d.f. [NRS’07]

weight	decreases	 if	you’re	
too	far	from	avg degree

weight	is	1	in	an	interval	
around	the	avg	degree

	𝑣	𝑢
𝑤𝑡N 𝑢 = 1 𝑤𝑡N 𝑣 = 1

𝑣𝑎𝑙N (𝑢,𝑣) = 1

	𝑣	𝑢
𝑤𝑡N 𝑢 = 0 𝑤𝑡N 𝑣 = 1

𝑣𝑎𝑙N (𝑢,𝑣) = 𝑝N
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G ∈ ℋ:	 𝑆N,1∗ = 𝑘N = 0

	𝑣	𝑢
𝑤𝑡N 𝑢 = .3 𝑤𝑡N 𝑣 = .6

𝑣𝑎𝑙N (𝑢,𝑣) = .3+ .7𝑝N

Differential	privacy	(DP)	allows	the	release	of	
aggregate	statistics from	a	dataset	while	
hiding	individual	entries


