Problem 1 (Random Subsampling).
Given a dataset \(x \in \mathcal{X}^n \), and \(m \in \{0, 1, \ldots, n\} \), a random \(m \)-subsample of \(x \) is a new (random) dataset \(x' \in \mathcal{X}^m \) formed by keeping a random subset of \(m \) rows from \(x \) and throwing out the remaining \(n - m \) rows.

(a) Show that for every \(n \in \mathbb{N} \), \(|\mathcal{X}| \geq 2 \), \(m \in \{1, \ldots, n\} \), \(\varepsilon > 0 \), and \(\delta < m/n \), the algorithm \(A(x) \) that outputs a random \(m \)-subsample of \(x \in \mathcal{X}^n \) is not \((\varepsilon, \delta)\)-differentially private.

(b) Although random subsamples do not ensure differential privacy on their own, a random subsample does have the effect of “amplifying” differential privacy. Let \(A : \mathcal{X}^m \rightarrow \mathcal{R} \) be any algorithm. We define the algorithm \(A' : \mathcal{X}^n \rightarrow \mathcal{R} \) as follows: choose \(x' \) to be a random \(m \)-subsample of \(x \), then output \(A(x') \).

Prove that if \(A \) is \((\varepsilon, \delta)\)-differentially private, then \(A' \) is \((\varepsilon/(e^\varepsilon - 1), \delta m/n)\)-differentially private. Thus, if we have an algorithm with the relatively weak guarantee of 1-differential privacy, we can get an algorithm with \(\varepsilon \)-differential privacy by using a random subsample of a dataset that is larger by a factor of \(1/(e^\varepsilon - 1) = O(1/\varepsilon) \).

(c) (Optional.) We can also show that some sort of converse is true—for many tasks achieving \((\varepsilon, \delta)\)-differential privacy requires \(\Omega(1/\varepsilon) \) more samples than achieving \((1, \delta)\)-differential privacy. Let \(q(x) = (q_1(x), \ldots, q_k(x)) \) be a collection of statistical queries.\(^1\)

Assume that there is no \((1, \delta)\)-differentially private algorithm \(A : \mathcal{X}^n \rightarrow \mathbb{R}^k \), such that
\[
\forall x \in \mathcal{X}^n \quad \mathbb{E}\|A(x) - q(x)\|_\infty \leq 1/100.
\]

Show that for some \(n' = \Omega(n/\varepsilon) \), there is no \((\varepsilon, \varepsilon \delta/100)\)-differentially private algorithm \(A : \mathcal{X}^{n'} \rightarrow \mathbb{R}^k \) such that
\[
\forall x' \in \mathcal{X}^{n'} \quad \mathbb{E}\|A(x') - q(x')\|_\infty \leq 1/100.
\]

Solution 1.

(a) Let \(\mathcal{X} = \{0, 1\} \) and consider the two datasets \(x = 0^n \) and \(x' = 10^{n-1} \). Now define \(S = \{z \in \{0, 1\}^m | z \neq 0^n\} \). Then for every \(\varepsilon \) and every \(\delta < m/n \)
\[
e^\varepsilon \Pr[A(x) \in S] + \delta = \delta < \frac{m}{n} = \Pr[A(x') \in S],
\]
contradicting \((\varepsilon, \delta)\)-dp of \(M \).

\(^1\)Recall that a statistical query \(q(x) \) takes a dataset \(x = (x_1, x_2, \ldots) \in \mathcal{X}^* \) of arbitrary size, and outputs \(\mathbb{E}_{x_i \sim x}[\phi(x_i)] \) for some function \(\phi : \mathcal{X} \rightarrow [0, 1] \).
(b) We’ll use \(T \subseteq [1, \ldots, n] \) to denote the identities of the \(m \)-subsampled rows (i.e. their row number, not their actual contents). Note that \(T \) is a random variable, and that the randomness of \(A' \) includes both the randomness of the sample \(T \) and the random coins of \(A \). Let \(x \sim x' \) be adjacent databases and assume that \(x \) and \(x' \) differ only on some row \(t \). Let \(x_T \) (or \(x'_T \)) be a subsample from \(x \) (or \(x' \)) containing the rows in \(T \). Let \(S \) be an arbitrary subset of the range of \(A' \). For convenience, define \(p = m/n \)

To show \((p(e^\epsilon - 1), p\delta) \)-dp, we have to bound the ratio

\[
\frac{\Pr[A'(x) \in S] - p\delta}{\Pr[A'(x') \in S]} = \frac{p\Pr[A(x_T) \in S | i \in T] + (1 - p)\Pr[A(x_T) \in S | i \not\in T] - p\delta}{p\Pr[A(x'_T) \in S | i \in T] + (1 - p)\Pr[A(x'_T) \in S | i \not\in T]}
\]

by \(e^{p(e^\epsilon - 1)} \). For convenience, define the quantities

\[
C = \Pr[A(x_T) \in S | i \in T] \\
C' = \Pr[A(x'_T) \in S | i \in T] \\
D = \Pr[A(x_T) \in S | i \not\in T] = \Pr[A(x'_T) \in S | i \not\in T]
\]

We can rewrite the ratio as

\[
\frac{\Pr[A'(x) \in S]}{\Pr[A'(x') \in S]} = \frac{pC + (1 - p)D - p\delta}{C' + (1 - p)D}
\]

Now we use the fact that, by \((\epsilon, \delta)\)-dp, \(A \leq e^\epsilon \min\{C', D\} + \delta \). The rest is a calculation:

\[
pC + (1 - p)D - p\delta \\
\leq p(e^\epsilon \min\{C', D\} + \delta) + (1 - p)D - p\delta \\
\leq p(\min\{C', D\} + (e^\epsilon - 1)\min\{C', D\} + \delta) + (1 - p)D - p\delta \\
\leq p(\min\{C', D\} + (e^\epsilon - 1)(pC' + (1 - p)D) + \delta) + (1 - p)D - p\delta \\
\leq (1 + p(e^\epsilon - 1))(pC' + (1 - p)D) \\
\leq e^{p(e^\epsilon - 1)}(pC' + (1 - p)D)
\]

So we’ve succeeded in bounding the necessary ratio of probabilities. Note, if you are willing to settle for \((O(\epsilon m/n), O(\delta m/n))\)-dp the calculation is much simpler. All this algebra is mostly just to get the tight bound.

(c) Assume for the sake of contradiction that there is an \((\epsilon, \delta)\)-dp algorithm \(A' : \mathcal{X}^n' \to \mathbb{R}^k \) such that

\[
\forall x' \in \mathcal{X}^n' \quad \mathbb{E}[\|A'(x') - q(x')\|_\infty] \leq 1/100.
\]

where \(n' \approx n/\epsilon \) will be chosen later. We will construct a \((1, e\delta/\epsilon)\)-dp algorithm \(A : \mathcal{X}^n \to \mathbb{R}^k \) that satisfies

\[
\forall x \in \mathcal{X}^n \quad \mathbb{E}[\|A(x) - q(x)\|_\infty] \leq 1/100,
\]

which violates the assumption.
Let \(n = n'/m \) for \(m = 1/\varepsilon. \) We will simply assume that \(n'/m \) is an integer. Given a dataset \(x \in \mathcal{X}^n, \) we construct the dataset \(x_{\otimes m} \in \mathcal{X}^{n'} \) by making \(m \) identical copies of each row of \(x. \) Now, two observations:

- If \(x, y \) are any two datasets in \(\mathcal{X}^n \) that differ on at most one row, then the resulting datasets \(x_{\otimes m}, y_{\otimes m} \) are datasets in \(\mathcal{X}^{n'} \) that differ on at most \(m \) rows. Therefore, if we define the algorithm \(A : \mathcal{X}^m \rightarrow \mathbb{R}^k \) to be \(A(x) = A'(x_{\otimes m}) \), then the resulting algorithm \(A \) satisfies \((\varepsilon', \delta')\)-differential privacy for
 \[
 \varepsilon' = m\varepsilon = 1 \quad \delta' = me^{m}\delta = e\delta/\varepsilon
 \]
 by the “group privacy” property of differential privacy.

- Since statistical queries are linear, for every \(q, \) we have \(q(x) = q(x_{\otimes m}). \) Therefore, by assumption
 \[
 \forall x \in \mathcal{X}^n \quad E[\|A(x) - q(x)\|_\infty] \leq 1/100.
 \]

However, combining these two facts contradicts our assumption that no such \((1, e\delta/\varepsilon)\)-differentially private algorithm \(A : \mathcal{X}^n \rightarrow \mathbb{R}^k \) exists.