
Expressiveness and Complexity of Crosscut Languages

Karl J. Lieberherr
Northeastern University,

Boston, MA

lieber@ccs.neu.edu

Jeffrey Palm
Northeastern University,

Boston, MA

jpalm@ccs.neu.edu

Ravi Sundaram
Northeastern University,

Boston, MA

koods@ccs.neu.edu

ABSTRACT
Selector languages, or crosscut languages, play an important
role in aspect-oriented programming (AOP). Examples of
prominent selector languages include the pointcut language
in AspectJ, traversal specifications in Demeter, XPath, and
regular expressions. A selector language expression, also re-
ferred to as a selector, selects nodes on an instance graph
(an execution tree or an object tree) that satisfies a meta
graph (a call graph or a class graph). The implementation
of selector languages requires practically efficient algorithms
for problems such as: Does a selector always (or never) se-
lect certain nodes Select-Always (Select-Never), does a
selector ever select a node Select-Sat, does one selector im-
ply another selector Select-Impl or may an edge in an in-
stance graph lead to a node selected by the selector Select-

Completion.

We study these problems from the viewpoints of two impor-
tant selector languages called SAJ, inspired by AspectJ, and
SD, inspired by Demeter, and several of their sublanguages.
We show a polynomial-time two-way reduction between SD
and SAJ revealing interesting connections promoting trans-
fer of algorithmic techniques from AspectJ to Demeter and
vice-versa. We provide several practically useful polynomial-
time algorithms for some of the problems, and we show oth-
ers to be NP- or co-NP-complete. We present a fixed param-
eter tractable (FPT) algorithm for one of the NP-complete
problems. This early result indicates a line of attack for
dealing with the intractability inherent in these problems.

The paper provides a list of algorithmic results that are of
interest to developers of scalable AOP tools. We discuss the
consequences of this paper for our DAJ implementation.

General Terms
AspectJ, Demeter, pointcut designators, traversal strate-
gies

1. INTRODUCTION

Aspect-oriented programs consist of two building blocks:
WhereToInfluence and WhatToDo. The WhereToInfluence
part defines the points in an executing program where we
want to influence the program. The WhatToDo part defines
how to influence the program. In this paper we analyze
declarative, non Turing-complete selector (or crosscut) lan-
guages to formulate the WhereToInfluence part.

In a pioneering paper, Masuhara and Kiczales [16] compare
crosscutting in four aspect-oriented mechanisms, including
AspectJ and Demeter. We extend their work to include both
algorithmic upper bounds as well as hardness results on sev-
eral computational problems underlying AspectJ and Deme-
ter. For example, motivated by another influential paper by
Masuhara and Kiczales [17], we show that general elimina-
tion of run-time tests in AspectJ programs, even without
negation in the pointcuts, is NP-complete in the general
case.

Our analysis is at a high level of abstraction, yet detailed
enough to provide useful practical input for the implementa-
tion of selector languages. The analysis is useful to current
tools, e.g., AspectJ and Demeter (DemeterJ, DJ, DAJ[2]),
and for many more aspect-oriented languages to come. Our
model is a three level model [11] where at the top level we
have selectors (e.g., pointcut designators or traversal strate-
gies), at the second level meta graphs (e.g., static call graphs
or class graphs) and at the third level instance trees (e.g.,
dynamic call trees or object trees) conforming to the meta
graphs. The purpose of the selectors is to choose a set of
nodes in the instance trees, or equivalently to choose a set
of paths from the root of the trees to those nodes. For an
example, the meta graph for the AspectJ program in Figure
2 is sketched in Figure 1.

We study several algorithmic problems for two kinds of se-
lector languages and their sublanguages. The first language,
called SAJ, is an abstraction of the AspectJ pointcut lan-
guage. We lump all primitive pointcuts together into a term
n(l), selecting all the nodes with label l. We use flow(S),
selecting all nodes reachable from the root through a node
in S. And we add the set-theoretic operators |, & and !.

The second language, SD, is an abstraction and generaliza-
tion of the Demeter traversal strategies. We use the version
described in Palsberg et al. [21] but extended with the set-
theoretic operators & and !. SD is more flow oriented, and
we reuse the semantics from [21] in terms of path sets.

1

We consider two kinds of applications of selector languages.

AspectJ-style applications: The selector language is used to
select nodes in the execution trees and their corresponding
shadows in the program. The virtual machine decides, based
on the input data, which execution tree to construct and the
tree is traversed in full but only a subset of the nodes satisfies
the selector expression. The term pointcut language is used
instead of selector language.

Demeter-style applications: The selector language is used
to select nodes in the object trees and their corresponding
shadows in the meta graph. The object tree is given as
input, and the tree is partially traversed reaching all the
nodes satisfying the selector expression. The term traversal
language is used instead of selector language.

One point of this paper is to also consider SAJ for Demeter-
style applications and SD for AspectJ-style applications.
The paper points out the close relationship between those
two languages. We consider the following algorithmic prob-
lems for SAJ and SD and their sublanguages. For all of those
problems we consider the version where the meta graph is
given and for Select-Sat-Static we consider the case where
only the selector is given as input and we ask for the exis-
tence of a suitable meta graph. Select-Always: Does a se-
lector always select nodes with label A in all instances? This
problem is useful for AspectJ-style applications of selector
languages: it frees us from having to do any checking at run-
time. See papers by Masuhara/Kiczales [17], Oege deMoor
[23], and Wu/Lieberherr [27]. Select-Always is also useful
for Demeter-style applications of selector languages: We are
not required to do any run-time checking to ensure that the
traversal is at the right place.

Select-Never: This is similar to the previous item. Does
a selector select no nodes with label A in any instance?

Select-Sat-Static: Does a selector ever select a node? Here,
we check whether a given selector has an effect on at least
one instance graph by selecting at least one node. Selectors
that never select a node are useless and should be corrected.

Select-Sat: Like Select-Sat-Static, except that in addi-
tion to the selector a meta graph is also given as input.

Select-Impl: Does one selector imply another selector?
Select-Impl is useful in predicate dispatch languages, such
as Fred [19] and Socrates [20], where inheritance is replaced
by predicate implication. We cover here the special case
where the predicates are declarative.

Select-First: Does an edge in an instance graph lead to
a node selected by the selector? This is useful for guiding
traversals [11] and for deciding whether a selector influences
a particular branch of the execution of a program [17]. Our
results in this paper should be considered in the context of
the General Pointcut Satisfiability Problem:

Given an AspectJ pointcut p and a Java program G,
is there an execution of G in which p will select
at least one join point?

This problem is undecidable even for a very simple pointcut
language because the undecidability comes from the condi-
tional statements in G.

Therefore we consider a conservative approximation of the
program in the form of a call graph. We assume that all calls
inside a procedure could happen. Because of the simple
structure of meta graphs, we treat dynamic dispatch in a
very simple way: zero or more of the calls could happen.

In this paper we show two kinds of results: lower-bound re-
sults, like NP-hardness and co-NP-completeness results and
upper-bound results, like that certain checking problems can
be solved in polynomial time. For the lower-bound results
it is sufficient to consider only very limited programs, e.g.,
programs that only contain calls (without conditional state-
ments). For the usefulness of our upper-bound results the
conservative approximation mentioned above is an issue that
needs to be explored further. The conservative approxima-
tion allows for many more possible program executions than
can happen in practice. But still the upper-bound results are
interesting because universally quantified statements (over
all executions/instances) for the approximation are correct
statements for the real program.

The following properties are preserved by the conservative
approximation: not Select-Sat, Select-Always, Select-Never,
Select-Impl, not Select-First. Note that Select-Sat is not
preserved by the approximation because the meta graph
might have an instance in which a join point is selected but
that instance might never happen as an execution in the real
program.

We show a polynomial-time two-way reduction from SD to
SAJ revealing interesting connections and promoting the
transfer of algorithmic techniques from AspectJ to Deme-
ter and vice-versa. We provide several practically useful
polynomial-time algorithms for some of the problems ,and
we show others to be NP-complete or co-NP-complete. We
present a fixed parameter tractable (FPT) algorithm for one
of the NP-complete problems. This early result indicates a
line of attack for dealing with the intractability inherent in
these problems.

Our NP-completeness proofs are simple but not trivial. For
example, we show that satisfiability and other problems
for AspectJ pointcuts without complement are already NP-
complete. The point of our reduction is that when we trans-
late a boolean formula to a pointcut satisfiability problem,
we can use the graph to simulate negation although the
pointcut language does not itself contain negation.

In this paper we often refer to the traversal graph defined in
[13, 11]. For the purpose of this paper we view the traversal
graph as the Cartesian product of two graphs, where one
graph is the meta graph and the other is the graph version
of the SD selector expression. The Cartesian graph product
G = G1 × G2 of graphs G1 and G2 with disjoint point sets
V1 and V2 and edge sets E1 and E2 is the graph with point
set u = (u1, u2) and v = (v1, v2) adjacent with whenever
[u1 = v1 and u2 adj v2] or [u2 = v2 and u1 adj v1] [8]. We
note that the meta graph structure and selector language in
[11] are more expressive and hence required a more elaborate

2

construction of traversal graphs.

Our paper uncovers novel aspects of the interplay between
predicates and graphs. We believe that there is potential
for further connections between this paper and the seminal
work of Courcelle relating logic and graphs [1].

In summary the paper provides a novel framework for the
study of the expressiveness of selector languages and their
related algorithmic problems. We discuss the consequences
of this paper for our DAJ implementation.

The rest of the paper is organized as follows: In section 2
we introduce our framework by defining meta graphs and
instance graphs and our selector languages, SAJ and SD,
including translations between them. In section 3 we intro-
duce the problems, including the practical motivation be-
hind them. Section 4 discusses a Fixed Parameter Tractable
algorithm for Satisfiability with an application to Select-Sat.
Section 5 contains related work and section 6 conclusions
and future work.

2. GRAPH STRUCTURE AND SELECTOR
LANGUAGE

For a particular graph there are a possibly infinite number of
instances conforming to the graph structure, each of which,
later, will be mapped to an AspectJ program execution call
trace, or a Demeter object graph traversal. To select inter-
esting points in an execution call trace or an object graph
traversal, we have a general selector language which, later,
will be mapped to AspectJ’s pointcut designator language
or Demeter’s traversal specification.

2.1 Directed Graph and Instances
Definition 1 (Directed Graph). A directed graph G

is a pair < V, E >, where V is a set of vertices and E ⊆
V × V is a set of directed edges. There is a distinguished
vertex r ∈ V , which is the starting vertex in G. Start(G) is
defined on a graph G that returns its distinguished starting
vertex for G from which all other nodes are reachable.

We assume a labeling from nodes and edges to a finite al-
phabet, so that Label(x) is the label for a node or edge x.

Definition 2 (Instances of Graph). A directed graph
I is called an instance of G, if I is a tree, Root(I) = Start(G)
and for each edge e = (u, v) ∈ E(I), there is an edge e′ =
(u′, v′) ∈ G so that Label(u) = Label(u′) and Label(v) =
Label(v′).

2.2 Paths
A path in a graph is a sequence v1 . . . vn where v1, . . . , vn are
nodes of the graph; and vi → vi+1 is an edge of the graph for
all i ∈ 1..n − 1. We call v1 and vn the source and the target
of the path, respectively. If p1 = v1 · · · vi and p2 = vi · · · vn,
then we define the concatenation p1p2 = v1 · · · vi · · · vn.1

Suppose P1 and P2 are sets of paths where all paths in P1

have the target v and where all paths of P2 have the source
1The vi in a path don’t have to be distinct. v1 is a path
from source v1 to target v1 where n = 1.

v. Then we define2

P1 · P2 = {p | p = p1p2 where p1 ∈ P1 and p2 ∈ P2}.

PathsΦ(A, B) is defined as all paths from A to B in Φ where
A and B are nodes of the meta graph Φ.

2.3 General Selector Language
We use two selector languages, SAJ and SD, based roughly
on the selector languages of AspectJ and Demeter, respec-
tively. SAJ has the form

S ::= l | flow(S) | S | S | S & S | !S (1)

where l is a node label. The following are the evaluation
rules for SAJ. We state them as a reduction, SI :

SI(l) = {v|v ∈ I ∧ Label(v) = l}

SI(flow(S)) = {v|some n ∈ SI(S) reaches v ∈ I}

SI(S1 | S2) = SI(S1) ∪ SI(S2)

SI(S1 & S2) = SI(S1) ∩ SI(S2)

SI(!S) = \SI(S)

A traversal specification in SD has the form

D ::= [A, B] | D · D | D | D | D & D | !D (2)

where A and B are nodes of a meta graph. Such a spec-
ification denotes a set of paths in a given meta graph Φ,
intuitively as follows:

Selector Set of paths

[A, B] The set of paths from A to B in Φ
D1 · D2 Concatenation of sets of paths
D1 | D2 Union of sets of paths
D1 & D2 Intersection of sets of paths

!D All paths from Source(D) to Target(D)
not satisfying D

For a traversal specification to be meaningful, it has to be
well-formed. Formally, well-formedeness is defined in terms
of two functions, Source and Target, which both map a spec-
ification to a node. The following chart shows the denitions
for Source and Target where Source(D) is the source node
determined by D, and Target(D) is the target node deter-
mined by D:

Selector: D Source(D) Target(D)
[A, B] A B

D1 · D2 Source(D1) Target(D2)
D1 | D2 Source(D1) Target(D1)
D1 & D2 Source(D1) Target(D1)

!D Source(D) Target(D)

A traversal specication is well-formed if it determines a source
node and a target node, if each concatenation has a meeting
point, and if each union of a set of paths preserves the source

2P1 ∪ P2 is the set union of the paths in P1 and P2.

3

and the target. This is expressed by the predicate WF:

WF([A, B]) = true
WF(D1 · D2) = WF(D1) ∧ WF(D2) ∧

Target(D1) =nodes Source(D2)
WF(D1 | D2) = WF(D1) ∧ WF(D2) ∧

Source(D1) =nodes Source(D2)∧
Target(D1) =nodes Target(D2)

WF(D1 & D2) = WF(D1) ∧ WF(D2) ∧
Source(D1) =nodes Source(D2)∧
Target(D1) =nodes Target(D2)

WF(!D) = WF(D)

If D is well-formed and compatible with Φ, then PathSetΦ(D)
is a set of paths in Φ from the source of D to the target of
D, defined as follows:

PathSetΦ([A, B]) = PathsΦ(A, B)

PathSetΦ(D1 · D2) = PathSetΦ(D1) · PathSetΦ(D2)

PathSetΦ(D1 | D2) = PathSetΦ(D1) ∪ PathSetΦ(D2)

PathSetΦ(D1 & D2) = PathSetΦ(D1) ∩ PathSetΦ(D2)

PathSetΦ(!D) = PathsΦ(Source(D), Target(D))

−PathSetΦ(D)

We show a reduction from SD to SAJ. In the following, SD
expressions are on the left-hand side and SAJ expressions
are on the right:

T ([A, B]) → flow(A) & B

T (D1 · D2) → flow(T (D1)) & T (D2)

T (D1 | D2) → T (D1) | T (D2)

T (D1 & D2) → T (D1) & T (D2)

T (!D) → !T (D)

Here is an example reduction of [A, B] · [B, C]:

T ([A, B] · [B, C]) → flow(flow(A) & B) & flow(B) & C

= flow(flow(A) & B) & C

= flow(A) & flow(B) & C

We also show an informal3 reduction from SAJ to an SD
expression D. In the following, SAJ expressions are on the
left-hand side, and SD expressions are on the right:

T (n(l)) → [Source(D), l]

T (flow(l)) → [Source(D), l] · [l, Target(D)]

T (S1 | S2) → T (S1) | T (S2)

T (S1 & S2) → T (S1) & T (S2)

T (!S) → !T (S)

3. PROBLEMS
In the following section we present various problems related
to selector expressions and reason about their complexity.
Theorems are presented in tables of the form:

3This is informal because a resultant in SD could have mul-
tiple targets.

S

x
1
 !x
1

x
2
 !x
2

x
m
 !x
m

T

Figure 1: Ladder graph.

SD SAJ

- R1 R2

& R3 R4

! R5 R6

Each Ri is a complexity result. The first row represents
complexity results for the languages shown in grammars (1)
and (2) without intersection or negation, called the base
language; the second row shows results for these languages
without negation; and the third row shows results for these
languages without intersection. A Y in a result represents a
problem that is trivially true. All proofs are in [12].

We split this section according to general problems – e.g.
Select-Sat. We refer to particular instances of these prob-
lems for certain languages by the form A/B/C where A is a
general problem or ∗ for all problems, C is the language SD
or SAJ , B is one of −, &, or ! representing the version of
language C. For example, Select-Sat/&/SAJ represents the
Select-Sat problem over the SAJ language with intersection,
and */-/SD represents any problem on the base language, -,
over the SD language.

We use ladder graph, as shown in Figure 1, as our main tool
to represent boolean forumulas. This graph consists of a
root s, target t, and nodes xi and !xi for i = 1 to m. A path
from s to t must path through only one xi or !xi for all i to
reflect the fact that each literal in a boolean formula may
be assigned either true or false; but not both. In addition,
we use the following generic constructions.

Many of the problems have similar complexity results, which
are given in Table 3.

3.0.1 SD Generic Construction
For the */-/SD case, we turn the selector into a graph p′ (
[A, B] becomes an edge from A to B.) Then we construct
the cross product traversal graph T (G, p′) [13, 11].

4

Problem SD SAJ

- P P
& NP-complete NP-complete
! NP-complete NP-complete

Table 1: Complexity results for many problems.

The motivation for the cross product T (G, p′) is as follows:
Implementing the strategy S = [A, B] on a class graph G [14]
is straight-forward (called the FROM-TO computation): In
G we do a forward depth-first traversal from A and a back-
ward depth-first traversal from B and take the intersection
of the two. The resulting graph succinctly represents the
desired path set. For a general strategy we want to reduce
the problem of succinctly representing the path set to the
FROM-TO problem and this reduction is achieved by replac-
ing the class graph with a much larger graph and doing the
FROM-TO computation in that graph. This much larger
graph is precisely the cross product of the strategy and the
class graph.

3.0.2 SAJ Generic Construction
We need a generic construction for the */-/SAJ case. We use
the */-/SD case as a guide. In the */-/SD case we flag each
edge selected by a primitive flow(A ·B) with A ·B. This is
basically the idea behind the traversal graph construction.
We need this labeling to avoid information loss (i.e. the
short-cuts and zigzags of Palsberg et al., [21]). We use a
similar approach for */-/SAJ. The edges selected by each
primitive flow(A) are labeled by flow(A). We can reduce
the SAJ expression to the form s1 | · · · | sk for 1 ≤ k, where
each si is in the form of either n(l) or flow(s′) because

flow(n(A1) | flow(n(A2))) = flow(n(A1)) | flow(n(A2)).

Therefore we can build in polynomial time a structure, called
the flow graph, that plays the same role as the traversal
graph. The size of the flow graph is bounded by the size of
the meta graph times the number of flow expressions in the
selector (after removal of nested flows).

We use this construction for */-/SAJ where * in Select-
Never (is the node ever in the flow graph?), Select-Sat (is
the flow graph empty?), Select-Impl (is one flow graph a
subgraph of another flow graph?) and Select-First (which
edges are in the flow graph?).

In our NP-completness proofs we leave out the part that
shows that a problem is in NP and we focus on the harder
NP-hard part. We leave the NP membership part as an
exercise to the reader.

3.1 Select-Sat
We are presenting a proof sketch of one of our complexity-
theoretic results as an example of the kinds of gadgets we
use in our reductions.

Definition 3 (Select-Sat). Given a selector p and a
meta graph G, is there an instance tree for G for which p
selects a non-empty set of nodes.

SAJ Expression Pointcut

p1 = x1 | !x2 | x3 p1()

p2 = !x1 | x2 p2()

p3 = x1 p3()

p4 = !x3 p4()

pall = p1 & p2 & p3 & p4 all()

Table 2: SAJ expressions and AspectJ pointcuts.

Table 3 shows the complexity results for Select-Sat. The
Select-Sat/-/SD problem has been implemented for a spe-
cial case in Demeter/C++ and for the general case in Deme-
terJ, DJ and DAJ. Our users demanded such a test because
knowing that a traversal specification (selector) will never
select a node indicates, usually, a false assumption about
the class graph (meta graph). Select-Sat/*/SAJ is not cur-
rently implemented in AspectJ, and this can make it harder
to debug pointcut designators. A small typo in one of the
pointcuts may empty the set of selected join points. It would
be helpful to get a warning for the pointcuts that select an
empty set of join points. We hope that our FPT algorithms
in Section 4 will lead to interesting algorithms for the NP-
complete cases for AspectJ and for Demeter.

Proof Select-Sat/&/SD. The proof is by reduction from
3-SAT. Consider a 3-SAT formula φ. Let v1, v2, . . . , vn be
the variables. Create a meta graph that is a dag as follows:
a source s with arcs going to x1 and !x1, arcs from xi and
!xi to xi+1 and !xi+1 and finally from xn and !xn to a sink
t. This is G(φ), called a ladder graph, as shown in Figure 1.
Now create an atomic selector for each literal and create the
total selector S(φ) by taking the union and intersection over
literals for each clause. For a literal li = vi/!vi create the
selector ”from s to t via li” – i.e. “[s, vi] · [vi, t]”. Clearly,
(S(φ), G(φ)) is satisfiable iff φ is satisfiable. 2

Our reduction constructs a meta graph and a selector from
the Boolean formula. But our meta graph is really an ab-
straction of a Java program and the selector an abstrac-
tion of an AspectJ pointcut designator. An important point
of our paper is that the meta graph/selector abstraction is
good enough to reason about the computational complexity
at the AspectJ level. To demonstrate this point, we trans-
late an example boolean formula shown in Table 2 directly
to an AspectJ pointcut in Figure 2. Here, x1, x2, x3, nx1,
nx2, and nx3 in Figure 2 correspond to x1, x2, x3, !x1, !x2,
and !x3, respectively.

3.2 Select-Sat-Static
Definition 4 (Select-Sat-Static). Given a selector

p, is there a meta graph G and an instance tree for G for
which p selects a non-empty set of nodes.

A Select-Sat-Static test is a must for a “perfect” aspect-
oriented system, because a selector that fails for all meta
graphs is clearly useless. Yet, both AspectJ and the Demeter
Tools don’t implement such a test, maybe, because it is
perceived to be unlikely that a user writes such pointcuts or
traversal strategies. Again, we hope that our FPT ideas in
Section 4 will help to develop practically useful algorithms.

5

public class Example {

public static void main(String[] s) {x1(); nx1();}

static void x1() { x2(); nx2(); }

static void x2() { x3(); nx3(); }

static void x3() { target(); }

static void nx1() { x2(); nx2(); }

static void nx2() { x3(); nx3(); }

static void nx3() { target(); }

static void target() {}

}

aspect Aspect {

pointcut p1(): cflow(call (void x1()))

|| cflow(call (void nx2()))

|| cflow(call (void x3()));

pointcut p2() : cflow(call (void nx1()))

|| cflow(call (void x2()));

pointcut p3() : cflow(call (void x1()));

pointcut p4() : cflow(call (void nx3()));

pointcut all(): p1() && p2() && p3() && p4();

before(): all() && !within(Aspect) {

System.out.println(thisJoinPoint);

}

}

Figure 2: AspectJ example.

The following are the complexities for Select-Sat-Static:

Select-Sat-Static SD SAJ

- Y Y
& Y Y
! NP-complete NP-complete

We mention also that the following problem is NP-complete
for both SAJ and DJ (even without complement) if we allow
that an instance may be a directed acyclic graph (dag), not
just a tree. Since a tree is a dag, we restrict our definition
of the problem to trees.

Definition 5 (Select-Sat-Dynamic). Given a selec-
tor p, a meta graph G, and an instance tree I for G, does p
select a non-empty set of nodes in I?

3.3 Select-Impl
Definition 6 (SEL). SEL(s, G, I) is the set of nodes

selected by s in I (which conforms to G).

Definition 7 (Select-Impl). Given two selector ex-
pressions s1 and s2 and a graph G, for all instances I of G:
SEL(s1,G,I) is a subset of SEL(s2,G,I).

Predicate-dispatch-based aspect languages such as Socrates
[20] use selector implication as a primitive to generalize in-
heritance. Selector implication is also useful in other appli-
cations. For example, a security policy might state that a
set of nodes accessible by one role (e.g., worker) must al-
ways be a subset of the set of nodes accessible by another
role (e.g., manager). Table 3 shows the complexity results
for !Select-Impl– hence in this table all NP-complete results
are co-NP-complete results for Select-Impl.

3.4 Select-First
Definition 8 (Select-First). Given a selector p, a

meta graph G, and an instance I, compute the set of outgo-
ing edges from a node of I satisfying G that might lead to a
target node selected by p.

In the Demeter case the Select-First predicate is the fun-
damental tool to implement traversals efficiently. The ap-
proach is to combine the selector and meta graph into a
new graph that for each node tells which outgoing edges
are worthwhile traversing. Worthwhile means that it may
lead to a target node satisfying p in an appropriate sub-
object. See [15] for the generalization of this predicate to
class graphs with is-a and has-a edges. [21] contains an ef-
ficient implementation for a special case that was used in
Demeter/C++. The D*J tools use the AP Library [13] that
implements Select-First/-/SD using the ideas in [11].

The NP-completeness result for Select-Sat/&/SD has inter-
esting implications for the semantics of traversals as we make
the selector language more expressive. The DAJ tool [2] is
an extension of AspectJ with traversals and strategies. Us-
ing the AspectJ declare construct we could write:

declare strategy: sname: "{A -> B}" ;

declare traversal: void foo(): sname(Visitor);

In this DAJ example the expression "A -> B" is analogous
to the SD expression [A, B] This selector expression uses
SD without negation but with intersection. This traversal
defines an adaptive method called foo using the strategy
named sname and the Visitor, which is a normal Java class.
In DAJ intersection is used frequently because it also plays
the role of cleaning the class graph from unwanted informa-
tion.

The semantics of a traversal is defined in terms of Select-
First [11, 15]. This works well for SD without intersection
and complement because we have an efficient algorithm. In
the presence of intersection, we currently implement the fol-
lowing solution: We assume that intersection only appears
at the outermost level. This is a reasonable assumption. To
implement (s1 & s2), compute the traversal graph t1 for s1

and G and the traversal graph t2 for s2 and G. Then we
simulate both t1 and t2 on an instance graph. But unfortu-
nately this gives the wrong semantics because we might go
down an edge in the instance graph although it never leads
to a target. Instead we need to construct the cross product
of t1 and t2, leading to an explosion in the number of nodes
if we do this multiple times. We know now that there is
no way around this because of the NP-completeness of the
underlying problem.

For the AspectJ case the predicate is useful to implement
cflow. It tells us along which execution paths we are in
the scope of a pointcut designator where we have to execute
advice. Table 3 shows the complexity results for Select-First.

Consider a selector expression p and a meta graph G in
Select-Sat/&/SAJ. Let’s assume that we can compile p and

6

G into a function Super(r) that given a node r of an instance
conforming to G, computes the set of outgoing edges from
r that may lead to a selected node. The function Super en-
codes the information about p and G into a form that is
useful for deciding which edges are worthwhile to traverse
to reach a target node.

Let’s assume that we can construct Super in polynomial-time
and that Super runs in polynomial-time. This would create
a polynomial algorithm for Select-Sat/&/SAJ. Namely, we
compile the pair (p, G) into Super(r) and run Super(r) on
an instance I of G that has the root and an edge to each of
the successors of the root. Note that for each meta graph
G we can generically construct such an instance. Clearly,
the size of r is bounded by the size of G. The input (p, G)
is satisfiable iff Super(r) returns a non-empty set on I; i.e.,
there is an instance graph in which at least one node is
selected.

Note that, the same argument holds for: Select-Sat/&/SD.
In order to prove that (p,G) is unsatisfiable (co-NP-complete
problem) we need only run Super on a generically constructed
instance.

As soon as the selector language becomes too powerful, se-
lecting nodes in instances becomes expensive. We can use
this to prove that Select-First/&/SAJ and Select-First/&/SD
are NP-complete.

3.5 Select-Always
Definition 9 (Select-Always). Given a selector p and

a meta graph G and a node n in G, for all instance graphs
I of G all of the instances of n in I are selected by p.

If an AspectJ or Demeter compiler could answer this ques-
tion efficiently we could drastically speed up compilation
time. Table 3 shows the complexity results for !Select-Always.

3.6 Select-Never
Definition 10 (Select-Never). Given a selector p and

a meta graph G and a node n in G, for all instance graphs
I of G none of the instances of n in I are selected by p.

In addition to the benefits found from Select-Always, effi-
cient solutions to this problem could provide useful feed-
back to users when writing pointcuts or traversals. Often
one writes a pointcut and then refactors a system. The user
would want to know when her pointcuts were possibly no
longer valid after this refactoring. This is just one example
of why this is an important problem. Table 3 shows the
complexity results for !Select-Never.

4. FPT ALGORITHMS
We have shown that Select-Sat is NP-complete. As noted in
[6] the fact that a problem has been shown to be NP-hard is
not a cause for despair. All it really means is that the initial
hope for an exact general algorithm is in vain. There are
a few different avenues of attack at this point - the use of
randomness, the search for good approximate solutions and
use of parametrization. Here we focus on this last approach.

We look more closely at the structure of the input. Select-
SAT consists of a meta graph and a selector. We have shown
this problem to be NP-hard even when the meta graph is the
ladder graph and the selector is a 3-SAT formula. In practice
though, it is often the case that the selector rarely has too
many clauses. In particular we consider situations where our
meta graph is a generalization of the ladder graph and the
conjunctive selector formula has only k clauses. We ask the
question - what is the behavior for a fixed k? Observe that
the naive approach of trying every possible setting of the
variables in the selector leads to an exponential-time (2n)
algorithm. We now demonstrate that in fact for fixed k,
this problem, which we call the k-generalized-ladder-Select-
Sat, is solvable in time that is linear in the size of the formula
and the graph.

The approach of parametrization has been developed by
Downey and Fellows in a seminal series of papers [3]. They
show that the usual combinatorial explosion involved in NP-
hard problems can often be handled if one can get one’s
hands on the right parametrization. In cases where such
a parametrization exists, the problem is said to be Fixed
Parameter Tractable. More precisely, a parametrized prob-
lem < x, k >, where x is the input and k the parameter, is
said to be in FPT if there exists an algorithm and a con-
stant c (independent of k), and a function f such that the
algorithm accepts valid inputs in time f(k)|x|c. Note for
example that Vertex Cover is in FPT where k, the size of
the cover, is fixed. On the other hand Independent Set with
k representing the size of the independent set continues to
be intractable even when k is fixed.

We now define the problem k-generalized-ladder-Select-Sat
and present a fast kernelization scheme to solve it.

Definition 11. k-generalized-ladder-Select-Sat consists of
a generalized ladder graph and a selector formula in conjunc-
tive normal form. The generalized ladder graph is a directed
acyclic leveled graph that has a unique source s and unique
sink t. The graph contains all edges between adjacent lev-
els. At each level the graph has no more than fi(k) vertices,
where i represents the level. See Figure 3. The selector for-
mula is in CNF and has at most k clauses.

Note that our earlier NP-hardness proof goes through for k-
generalized-ladder-Select-SAT when k is considered to vary
with n, instead of being fixed.

Theorem 1. k-generalized-ladder-Select-Sat is in FPT.

Proof. At a high level our strategy is to find in time
polynomial in n, a kernel or the hard core of the problem
which only depends on k and not on n; and then we employ
a search tree strategy to try all possible cases in the ker-
nel. Let fmax = maxi fi(k) denote the maximum number of
vertices over all rows of the gneralized ladder graph.

Kernelization. Consider the selector formula. Each literal is
of the form v where v is a vertex in the asociated generalized
ladder graph and selects the set of paths from s to t going

7

S

1,1
 1,2
 1,r
1
(k)

2,1
 2,2
 2,r
2
(k)

T

m,1
 m,2
 m,r
m
(k)

Figure 3: General ladder graph.

through that vertex v. If the formula has any single literal
clauses then since all paths from s to t satisfying the formula
must pass through that vertex we can prune the metagraph
by removing all vertices other than v from its level. Note
that in this manner we account for all single literal clauses
or the metagraph gets pruned into the empty graph in which
case we know that the selector formula is unsatisfiable. We
are now left to consider the case where we have taken care of
all single literal clauses, i.e. we can assume that the formula
only consists of clauses with 2 or more literals. Consider
any clause with more than k ∗ fmax literals. Observe, that
to satisfy each of the remaining (upto) k clauses we need
to only satisfy 1 literal in each clause. Since the clause in
consideration has more than k∗fmax literals that means this
clause contains a literal that is on a level of the meta graph
different from that of any other vertex needed for satisfying
any of the other clauses. Hence such a clause can be trivially
satisfied. Thus we can eliminate all clauses with more than
k ∗ fmax literals. Thus we are left with a formula with at
most k clauses where each clause has between 2 and k∗fmax

literals.

Search tree. Now try setting to true all possible choices
of literals, one from each clause, there are at most kk∗fmax

possible choices and for each possible choice compute the
subgraph of the meta graph that satisfies that choice. If
all subgraphs are empty then we know that the selector is
unsatisfiable. If some subgraph is nonempty then consider
the clauses that were pruned for having more than k ∗ fmax

literals and pick a literal in each of these clauses on a level
different from all the previously chosen literals and prune
this subgraph so as to satisfy these clauses.

It is easy to see that the above scheme has running time
O(n) + O(kk∗fmax) and hence k-generalized-ladder-Select-
Sat is in FPT. 2

5. RELATED WORK
[16] is an interesting study of crosscutting mechanisms. They
discuss both the WhereToInfluence-part and the WhatToDo-
part while we focus on the WhereToInfluence-part only. But
in their Table 1 they also put pointcuts and traversal speci-
fications at the same level as we do in this paper. (Demeter
actually uses another incarnation of AOP which is not dis-
cussed in either paper: The visitor signatures are pointcuts
and the visitor method bodies are the advice.) The crosscut
definition in [16] can be applied to selector languages: Two
selectors p1 and p2 crosscut if the set of selected nodes in-
tersect at the instance level or meta graph level but none is
a subset of the other. Crosscutting of selector expressions
is very typical especially if we consider the nodes along the
paths as well (not just the target nodes).

The two papers differ in that we focus on algorithms and
complexity results of selector languages.

In [17], the issue of unnecessary run-time checks in AspectJ
is discussed. The meta graph is considered to be included in
the program text. They use partial evaluation to remove un-
necessary pointcut tests. They don’t analyze the complexity
of the underlying task but instead use a powerful, but po-
tentially expensive tool, to attack the problem. We show
that general elimination of run-time tests (Select-Never and
Select-Always) is NP-complete in the general case.

In Eichberg et al. [5] they use functional queries as their se-
lector language. This is an interesting generalization of the
kind of selector languages discussed in this paper. It would
be useful to analyze the combinatorial problems discussed in
this paper for a simple functional query language as selector
language. Eichberg et al. use XQuery (based on XPath) as
the query language which supports the descendent axis (de-
noted by ”//”) that can express traversal like [A, B] (from
A to B) in our SD selector language.

The study of selector languages is an active topic in the
database community over the past few years. Schwentick
[22] does an extensive study of the equivalent of the Select-
Impl problem for XPath and show it to be co-NP-complete
for a particular subset of XPath. In a paper by Neven
and Schwentick it is shown: Theorem 7. Containment of
XP(DTD, /, //, *)-expressions is in P. This problem matches
with our Select-Impl/-/SD which we also have shown to be
in P [13]. DTD’s correspond to our meta graphs. The dif-
ference with our work is that XPath slices the selector lan-
guage world in a way that is different from AspectJ pointcuts
(SAJ) or Demeter traversals (SD). Our paper also differs in
that we provide a unifying model to study key properties of
a wide variety of selector languages.

Sereni and de Moor [23] study the static determination of
cflow pointcuts in AspectJ. They reason also in terms of
sets of paths, but they use a regular expression style selector
language. They model pointcut designators as automata
which is similar to our translation of selectors into graphs.

8

They do whole program analysis on the program’s call graph
and try to determine whether a potential join point fits into
one of the following three cases: (1) it always matches a
cflow pointcut; (2) it never matches a cflow pointcut; (3)
it maybe matches a cflow pointcut. In case (3), there is still
a need to have dynamic matching code. They didn’t ana-
lyze the computational complexity of (1, Select-Always) and
(2, Select-Never). Our NP-completeness results for Select-
Always and Select-Never complement their practical analy-
sis.

In [4] an AspectJ compiler, called abc, is discussed and they
found several improvements to implementing cflow over the
AspectJ compiler ajc. Our work assumes a whole program
analysis but should provide useful input to compiler writ-
ers. Using traversal graphs for compiling certain AspectJ
programs should lead to even more speed-ups.

Mendelzon and Wood [18] analyzed the complexity of find-
ing regular paths in graphs, which is similiar to our Select-
First and Select-Sat problems with subtle differences. They
showed that finding simple regular paths in a graph is NP-
complete problem while finding regular paths is a polynomial-
time problem (if the regular expression language is not too
rich). Their selector language is a regular expression lan-
guage that could be studied in a similar way we have sudied
SAJ and SD. Mendelzon and Wood don’t consider instance
graphs: they operate at the level of selectors (regular ex-
pressions) and meta graphs only.

The work on JAsCo [24, 25] is using a pointcut-style nota-
tion and Demeter-style traversal specifications in the same
system. The selector language approach described in this
paper might lead to a tighter integration of the two lan-
guages.

Gybels and Brichau [7] present a number of language fea-
tures that could be useful for expressing more expressive
pattern-based crosscuts. The language presented is pattern-
based, similar to that found in AspectJ [9], uses Prolog, and
is implemented on SmallTalk. It first the adds unification
as a feature, which allows variable binding. Another fea-
ture are object reifying predicates that (1) provide access
to the “context object” property of the matched join point,
(2) provide direct access to the state of objects, and (3) can
express the way a certain object should respond to messages.

Lastly, join point shadows are used to access static proper-
ties of the program, and recursion is allowed in defintions.
The latter makes this language Turing complete.

Walker presents the concept of Implicit Context in his dis-
sertation [26]. Implicit context consists of three concepts:
boundaries between conflicting world views, contextual dis-
patch which is used to alter communications, and communi-
cation history which is used to retrieve previous state when
performing contextual dispatch. This allows a programmer
to express the essential structure of our software modules,
through the use of implicit context, to make those modules
easier to reuse and the systems containing those modules
easier to evolve. Expressing these context requires expres-
sive languages which could benefit from our work.

Several papers use regular expressions as selector language
[23] and [10]. Several of our results should carry over to
regular expressions but the details need to be worked out in
future work.

6. CONCLUSIONS AND FUTURE WORK
We have studied graph-theoretic decision problems funda-
mental to aspect-oriented software development. We have
simplified our model by considering only meta graphs and
instance graphs with has-a edges. But it is not hard to
generalize our algorithms and proofs to more general meta
graphs as has been done in [11] for Select-First/-/SD.

The simplified model promotes a succinct description of both
upper and lower bounds for a variety of relevant problems.
In doing so we have made contributions to complexity the-
ory – a new FPT algorithm for a subset of Select-Sat and
new NP-completeness proofs – and PL theory – two models
of selector languages and a collection of related algorithms
useful in AOSD tools (compilers, IDEs) that assume the
whole world assumption.

The NP-completeness results are useful for three reasons:
(1) The NP-completeness of the monotone version of the
Satisfiability problem for the AspectJ pointcut language (Select-
Sat/&/SAJ) is surprising because Satisfiability for mono-
tone boolean formulas can be solved in polynomial-time.(2).
They help us to steer around language features that might
be expensive to implement. (3) In case we need the NP-
complete language features, we can think carefully about
what kind of algorithms degrade gracefully if certain fea-
tures of the input are bounded. This is the topic of FPT.

Many of the efficient algorithms we describe are practically
useful, and have not been described in the literature so far.
We have implemented algorithms for several of the */-/SD
problems in D*J and they are distributed separately through
the AP Library. Select-First/-/SD is used heavily in the D*J
tools whenever an object is traversed. An empirical study
of traversals is in [28].

This is just the beginning in reasoning about the relationship
between different pointcut languages and learning how to
utilize different languages’ features in an efficient manner.
For example, a common AspectJ idiom is to capture a call
only in certain contexts; say a call to f() but not underneath
a call to g(). This is written in AspectJ as

call(void f()) & !cflow(void g())

We can use our results from this paper to see that reason-
ing about this statement uses an NP-complete sublanguage.
However, we can write an equivalent Demeter traversal as

from main() bypassing g() to f()

that uses a polynomial-time sublanguage. So, we will use
this framework to unify multiple pointcut languages in an
intelligent manner.

In future work we want to study incremental versions of the
problems which are important for incremental compilation.
We also want to focus on studying shy selector languages.
Both SAJ and SD are shy selector languages but they can
be improved and maybe integrated. A ”control-flow-shy”

9

selector language is discussed in [5]. In addition to minimiz-
ing information from the class graph, we want to minimize
information from the control-flow graph in the selectors.

7. REFERENCES
[1] B. Courcelle. Graph rewriting: An algebraic and

logical approach. In J. van Leeuwen et al, editor,
Handbook of Theoretical computer Science, Vol B.
North Holland, 1990.

[2] Doug Orleans and Karl J. Lieberherr. DAJ: Demeter
in AspectJ home page.
http://www.ccs.neu.edu/research/demeter/DAJ/.

[3] R. G. Downey and M. R. Fellows. Parameterized
Complexity. Springer, 1999.

[4] B. Dufour, C. Goard, L. Hendren, C. V. erbrugge,
O. de Moor, and G. Sittampalam. Measuring the
dynamic behaviour of aspectj programs. In
D. Schmidt, editor, OOPSLA, Vancouver, CA, 2004.
ACM Press.

[5] M. Eichberg, M. Mezini, and K. Ostermann. Pointcuts
as functional queries. In The Second ASIAN
Symposium on Programming Languages and Systems
ASPLAS, 2004.

[6] M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1990.

[7] K. Gybels and J. Brichau. Arranging language
features for more robust pattern-based crosscuts. In
Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 60–69.
ACM Press, 2003.

[8] F. Harary. Graph Theory. Addison Wesley, 1994.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An Overview of AspectJ.
In J. Knudsen, editor, ECOOP, Budapest, 2001.
Springer Verlag.

[10] S. Krisnamurthi, K. Fisler, and M. Greenberg.
Verifying aspect advice modularly. In FSE, 2004.

[11] K. Lieberherr, B. Patt-Shamir, and D. Orleans.
Traversals of object structures: Specification and
efficient implementation. TOPLAS, 26(2):370–412,
2004.

[12] K. J. Lieberherr, J. Palm, and R. Sundaram.
Expressiveness and complexity of crosscut languages.
Technical Report NU-CCIS-04-10, Northeastern
University, September 2004.

[13] K. J. Lieberherr and B. Patt-Shamir. Traversals of
Object Structures: Specification and Efficient
Implementation. Technical Report NU-CCS-97-15,
College of Computer Science, Northeastern University,
Boston, MA, Sep. 1997.

[14] K. J. Lieberherr and B. Patt-Shamir. Traversals of
Object Structures: Specification and Efficient
Implementation. Technical Report NU-CCS-97-15,
College of Computer Science, Northeastern University,
Boston, MA, Sep. 1997.

[15] K. J. Lieberherr and M. Wand. Traversal semantics in
object graphs. Technical Report NU-CCS-2001-05,
Northeastern University, May 2001.

[16] H. Masuhara and G. Kiczales. Modeling Crosscutting
in Aspect-Oriented Mechanisms. In ECOOP, June
2003.

[17] H. Masuhara, G. Kiczales, and C. Dutchyn.
Compilation semantics of aspect-oriented programs. In
R. Cytron and G. Leavens, editors, FOAL, Enschede,
Netherlands, 2002.

[18] A. O. Mendelzon and P. T. Wood. Finding regular
simple paths in graph databases. In VLDB, 1989.

[19] D. Orleans. Incremental programming with extensible
decisions. In Proceedings of the 1st International
Conference on Aspect-Oriented Software Development
(AOSD), Enschede, The Netherlands, April 2002.

[20] D. Orleans. The Socrates Programming Language,
September 2004. http://socrates-lang.sf.net/.

[21] J. Palsberg, C. Xiao, and K. J. Lieberherr. Efficient
implementation of adaptive software. TOPLAS,
17(2):264–292, Mar. 1995.

[22] T. Schwentick. Xpath query containment. SIGMOD
Rec., 33(1):101–109, 2004.

[23] D. Sereni and O. de Moor. Static analysis of aspects.
In Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 30–39.
ACM Press, 2003.

[24] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo:
an aspect-oriented approach tailored for component
based software development. In Proceedings of the 2nd
international conference on Aspect-oriented software
development, pages 21–29. ACM Press, 2003.

[25] W. Vanderperren. Combining Aspect-Oriented and
Component-Based Software Engineering. PhD thesis,
Vrije Universiteit Brussel, 2004.

[26] R. Walker. Essential software structure through
implicit context. Ph.D. dissertation, The University of
British Columbia, 2003.

[27] P. Wu and K. J. Lieberherr. Compilation of Pointcut
Designators using Traversals. Technical Report
NU-CCIS-03-16, Northeastern University, December
2003.

[28] P. Wu and M. Wand. An Empirical Study of the
Demeter System. In Proceedings of the SPLAT
workshop of the 3rd international conference on
Aspect-Oriented Software Development, 2004.

10

