
Reagent Based Lock Free Concurrent Link List Spring 2012
Ancsa Hannak and Mitesh Jain April 28, 2012

1 Introduction

The most commonly used implementation of synchronization is blocking algorithms. They
utilize locks to synchronize between concurrent processes. However, lock-based implemen-
tations can only express coarse-grain parallelism and do not scale to many cores.

Non-blocking algorithms deliver significant performance benefits over their blocking
counterparts. The building blocks for such algorithm consist of isolated atomic updates to
shared states and interactive synchronous communication through message passing. These
complementary requirements of isolation and interaction, compounded with the perfor-
mance considerations provide unique challenges in design of expressible and more impor-
tantly compassable abstractions. Reagents[3] provide a framework that abstracts away
common design patterns in concurrent algorithms and still provide compassable fine-grained
combinators.

The goal of our project is to implement a lock-free concurrent linked list data structure
that represents the ordered set abstract data type. We develop a concurrent algorithm using
reagents to express fine-grained parallelism in the linked list. We compare its scalability
by measuring its raw throughput against the lock-based and lock-free implementations in
Java.

2 Reagents

Reagents provide a basic set of building blocks for writing concurrent data structures and
synchronizers. The building blocks include isolated atomic updates to shared state, and
interactive synchronous communication through message passing. The building blocks also
bake in many common concurrency patterns, like optimistic retry loops, back-off schemes,
and blocking and signaling.

2.1 Combinators

Reagents are representation of computation as data. The computations being represented
are fine-grained concurrent operations. A value of type Reagent [A,B] represents a function
from A to B that internally interacts with a concurrent data structure through mutation,
synchronization, or both(as a side effect). Each way of combining reagents corresponds to
a way of combining their internal interactions with concurrent data structures. Memory is
shared between reagents using the type Ref[A] of atomically-updatable references. Before
introducing our algorithm, we give an overview of the combinators used in the algorithm.

1. upd: The upd combinator represents atomic updates to references. It takes an update
function, which tells how to transform a snapshot of the reference cell and some input
into an updated value for the cell and some output.

1

Although the upd combinator is convenient, it is sometimes necessary to work with
shared state with a greater degree of control. To this end, we include two combina-
tors, read and cas for working directly on Ref values. Together with the computed
combinator described below, read and cas sufce to build update.

2. read and cas: If r has type Ref[A], then read(r) has type Reagent[Unit, A] and,
when invoked, returns a snapshot of r. The cas combinator takes a Ref[A] and two A
arguments, giving the expected and updated values, respectively. Unlike its counter-
part for AtomicReference, a cas reagent does not yield a boolean result. A failure to
CAS is transient, and therefore results in retry. The retry mechanism is abstracted
away and can be changed without affecting the client code using the reagents.

3. compute: The reagents we have seen so far are constructed prior to, and indepen-
dently from, the data that ows through them. Phase separation is useful because it
allows reagent execution to be optimized based on complete knowledge of the compu-
tation to be performed. But in many cases the choice of computation to be performed
depends on the input or other dynamic data. The computed combinator expresses such
cases. It takes a partial function from A to Reagent[Unit,B] and yields a Reagent[A,B].
When the reagent computed(f) is invoked, it is given an argument value of type A,
to which it applies the function f. If f is not dened for that input, the computed
reagent issues a permanent (blocking) failure, similarly to the upd function. Other-
wise, the application of f will yield another, dynamically-computed reagent, which is
then invoked with (), the unit value.

upd : Ref [A]⇒ (A×B ⇀ A× C)⇒ Reagent[B,C]

read : Ref [A]⇒ Reagent[Unit, A]

cas : Ref [A]×A×A⇒ Reagent[Unit, Unit]

ret : A⇒ Reagent[Unit, A]

computed : (A→ Reagent[Unit, B])⇒ Reagent[A,B]

3 Linked list algorithm using reagents

A linked list is a data structure consisting of a group of nodes which together represent the
ordered set abstract data type. Under the simplest form, each node is composed of a datum
and a reference (in other words, a link) to the next node in the set. In our implementation,
the list is ordered, which provides an efficient way to detect when an item is absent. The
following figure depicts a linked-list whose elements are ordered.

For simplicity, we further restricts to set of integers and thus comparison is an inexpen-
sive < operation on integers. Since linked lists are the representation of a set, we do not
allow two nodes to have the same data field. The next field is a reference to the next node
in the list. In addition to the regular nodes, we have two special nodes: the sentinel Tail

2

to mark the end of the list and the Marker node to indicate that the node predecessor to it
has been marked for deletion. We maintain the invariant that the nodes are sorted in data
order. Thus at any moment, the data fields of regular nodes, which do not have Marked
nodes as successor are elements of the set. The head is a reference to the start of the list.
The three methods add, remove, contain are implemented to add, remove, and search for
data in the set. We maintain the following invariant for the data structure: If any node n
was reachable at any moment from the head then at all time all node m > n are reachable
from n.

We will now explain the implementation of the concurrent linked list. The head reference
is initial to the Tail node. At any moment, we use read combinator to extract the node
that the reference points to. The read combinator is immediately executed.

1. findNode : This private function starts with a curRef Ref and uses the read com-
binator to immediately execute it1 (curRef.read ! ()) to extract the node that it
references. It then uses Scala pattern matching to deconstruct the instance of the
node. A pattern like case Node(d,r) matches any instance of the node class binding
d to its data field and r to its next field. In case the curNode has Marker node as
its successor, it indicates that the the node has been logically marked for deletion by
some thread. In such a case, the findNode method physically and atomically updates
the curRef to point to the node referenced by the Marker . Notice that this preserves
the invariance: all nodes greated that the curNode can be reached from the curNode
even after physically delinking it. Since findNode is private and tail-recursive, Scala
will compile it to a loop.

2. add, Reagent[Int,Unit] : The add reagent takes as input the data to be inserted.
Unlike in stack, where all activity is focused on head, the operations on the linked list
do not apriori have the Refs for the reagents to compute and in particular depend on
the current state of the list. Thus for adding a new node in the list, we compute a
dynamic reagent by calling the private function addNode. This uses findNode function
to acquire the reference to the node,predRef and the node curNode, before which
the new node must be inserted. In case the data already exists in the list, then it
returns a constant reagent, which always succeeds and does not modify the state of
the underlying concurrent data structure. Note that add is lock-free.

3. remove, Reagent[Int,Unit] : Similar to the add reagent, remove must also dy-
namically compute the reagent using the compute combinator. It calls the findNode
to get the node to be marked for deletion and atomically update its next field to
point to special Marker node. The next field of the Marker to point to successor of
the current node. Notice that this updates need not be done atomically. Since we
maintain the invariant, even if the successor node has been marked for deletion by a
concurrent process, any future access will be able to reach nodes greater than current
or its successor. Note that remove is lock-free.

1In the terminology of regents, we call this a reaction

3

4. contains, Reagent[Int,Boolean] : This is a simple reagent which uses the findCon-
tain private method to traverse the list. It ignores the nodes which have a Marker
node as their successor and returns true if it finds a node, false if it reaches a node
with a data field greater than the input or reaches the Tail node. Note that contains
is wait-free.

1 f i n a l c l a s s L inkedLis t {
// data d e f i n i t i o n

3 p r i v a t e ab s t r a c t c l a s s N
p r i v a t e f i n a l case c l a s s Node (data : Int , next : Ref [N]) extends N

5 p r i v a t e f i n a l case c l a s s Marker (next : Ref [N]) extends N
p r i v a t e f i n a l case ob j e c t Ta i l extends N

7 p r i v a t e va l head : Ref [N] = Ref (Ta i l)

9 // a c c e s s methods and he lpe r func t i on .
// f i n d the node with data d

11 p r i v a t e de f f indNode (curRef : Ref [N] , d : Int) : (Ref [N] , N) = {
va l curNode = curRef . read ! ()

13 curNode match {
case curNode@Node (, Ref (Marker (Ref (n)))) => {

15 curRef . cas (curNode , n) ! ? () ; // update and move on
findNode (curRef , d)

17 }
case Node (x , r@Ref ()) i f x < d => f indNode (r , d)

19 case n => (curRef , n) // x >= d (i f n i s the t a i l s e n t i n a l node x > d)
}

21 }

23 // f i n d s the node f o r d e l e t i o n and l o g i c a l l y (mark) d e l e t e i t .
p r i v a t e de f markForDel (d : Int) : Reagent [Unit , Unit] = {

25 va l (predRef , curNode) = findNode (head , d)
curNode match {

27 // curNode s t i l l po in t s to some Node and has not a l r eady been ”marked”
case Node (x , r@Ref (ov)) i f x == d => r . cas (ov , new Marker (new Ref (ov)))

29 case => r e t (())
}

31 }
va l remove : Reagent [Int , Unit] = computed {

33 (d : Int) => markForDel (d)
}

35

p r i v a t e de f addNode (d : Int) : Reagent [Unit , Unit] = {
37 va l (predRef , curNode) = findNode (head , d)

curNode match {
39 // the data a l r eady e x i s t s in the s e t

case Node (x ,) i f x == d => r e t (())
41 case => predRef . cas (curNode , new Node (d , new Ref (curNode)))

}
43 }

va l add : Reagent [Int , Unit] = computed {
45 (d : Int) => addNode (d)

}
47

p r i v a t e de f f indConta in (curRef : Ref [N] , d : Int) : Boolean = {

4

49 i f (d < 0) f a l s e
e l s e {

51 curRef . read ! () match {
case Node (, Ref (Marker (r))) => f indConta in (r , d)

53 case Node (x , r) i f x < d => f indConta in (r , d)
case Node (x ,) i f (x == d) => t rue // found

55 case => f a l s e // went past node
}

57 }
}

59

// search i f input d i s in Set .
61 va l conta in s : Reagent [Int , Boolean] = computed {

(d : Int) => r e t (f indConta in (head , d))
63 }
}

4 Micro-benchmark and Experiments

The runtime compilation and garbage collection in managed systems induce complexity in
performance measurements. The complex interaction of (1) architecture (2) JIT compiler
(3) virtual machine (4) memory management and (5) application provide multiple param-
eters. We measure the steady-state runs to reduce the impact of the JIT compilation so
that interaction is mainly limited between the application and the memory management
system. But this does not guarantee that the JIT compiler behaves deterministically across
each run. So we measure the covariance to estimate the variation in execution time. Before
each run we run the garbage collector, and since the memory footprint of these benchmarks
is small, we do not expect the heap size to grow large. To confirm this, we run the experi-
ments by decreasing the probability of remove operation to an existing data in the set. This
effectively allows the list to grow to larger sizes and thus have bigger memory footprints.
We observe no significant difference in the raw throughput of the micro-benchmarks.

4.1 Micro-benchmarks

The micro-benchmarks we use try to emulate the real workload and corresponding access
patterns for the concurrent linked-list. This is achieved by varying the ratio of concurrent
accesses (of the data-structure) to the total work in an iteration. Each thread executes
the same chunk of computation with some amount of variation around the mean number
of iterations. This variation in number of iterations across threads assists in avoiding the
states where all threads end up in perfect sync and therefore can potentially end up backing
off in sync causing a live-lock.

We developed two micro-benchmarks to emulate light threads and heavy threads. The
first benchmark (b1) has 3 phases of pure (local) work, each of them interleaved by an access
to the concurrent linked list. (An add, a remove and contains, in this order.) For each node
call to the add method, we make a call to remove method. Therefore, on an average the
same number of nodes are added and removed from the queue. And for the data chosen

5

uniformly at random, the expected length of the linked list in 0. This methodology ensures
that the garbage collector, on an average has the same effect on individual measurements.
The second micro-benchmark performs 1 phase of pure work and 1 access randomly chosen
with equal probably among add/remove/contains) to the concurrent data structure.

1 // l o c a l work
de f pureWork (work : Int , i t e r s : Int) = {

3 va l r = new Random
f o r (<−1 to i t e r s) {

5 U t i l . noop (r . fuzz (work))
U t i l . noop (r . fuzz (work)) }

7

// Benchmark 1
9 f o r (<− 1 to i t e r s) {

l l . add ! SomeIntData
11 U t i l . noop (r . fuzz (work))

wh i l eFa l s e (l l . conta in ! SomeIntData)
13 U t i l . noop (r . fuzz (work))

l l . remove ! SomeIntData
15 }

17 // Benchmark 2
f o r (i <− 1 to i t e r s) {

19 r . next (3) match {
case 0 => l l . add (SomeIntData)

21 case 1 => l l . c onta in s (SomeIntData)
case 2 => l l . remove (SomeIntData)

23 }
U t i l . noop (r . fuzz (work))

25 }

4.2 Experimental Methodology

We now summarize the measurement methodology adopted from [3] framework.

1. timePerWork : Work local to threads is modeled with the computed function from
the java.util.concurrent library. The two parameters, work and iters, determine the
number of iteration of the inner and outer-loop respectively. For each call to this
function, the inner loop iterates k times, where |k − work| < σ, for some σ. We
measure the time required to execute one unit of pure work for each given value of
work parameter.

2. We repeat the following procedure for each thread count and work ranging from 200
to 1000 units:

(a) Warmup: Launch a list of threads in parallel, each executing the microbmk,
and increase the number of iterations in steps of 1000 until the runtime is 1000
ms. Before each run the garbage collector is kicked of the clean up the memory
footprints of the previous iteration. This gives us the expected raw throughput ,

6

estimate time for concurrent operations in the bmk and number of trial iterations,
trialIters.

(b) Trials: Time the benchmark for trialIters. If the variance of the runtime exceeds
a threshold, then the trial is repeated.2

We measure the mean raw throughput(rTP) and mean concurrent operations through-
put(copTP). We observe that copTP has larger deviation around the mean and less pre-
dictable to infer the scalability of the algorithm. We conjecture that this variation primarily
arises from two factors: change in the timePerWork between the warm up run and the actual
run and , secondary effect attributed to the processor.3

4.2.1 Observation and Inference

We used a 16 core Intel Xeon CPU 3.47Ghz and total cache (L1,L2 and L3) of 12MB to
conduct our experiments. There are in total 2 sockets, 4 cores per socket and 2 threads
per core. We compare the scalability of the following implementations of the concurrent
linked-list[1].

• Coarse grain Lock based: This implementation locks the list as a whole

• Fine-grained synchronization: This implementation locks the individual nodes

• Lazy synchronization: In this implementation add and remove are blocking and con-
tain is wait free.

• Lock free hand designed: In this implementation add and remove are lock free and
contains is wait free.

• Reagents based: In this implementation add and remove are lock free and contain is
wait free and implemented using reagents are explained above.

The amount of contention for the shared resource (nodes in the linked list) among
threads is inversely proportional to the value of the work parameter.

1. As the contention for data structure increases , the throughput of the lock based
blocking algorithm decreases Figure 1a. The throughput does not scale beyond 4
cores. Thus the potential speed up with the multiple threads cannot be harnessed
because the synchronization cost dominates the execution time.

In contrast, the throughput of the reagent based implmentation scales Figure 1b fairly
well until 6 cores even for high contention and for lower contention continues to scale
uptil 12 cores.

2. At low contention Figure 3a and 3b the hand coded lock free implementation and the
Reagent based implementation have very comparable raw throughput (17% upto 10
cores).

2We should have repeated the experiment until the measurements are in the confidence Interval
3primarily behavior of cache misses due to false sharing, as this perturbation increase with increase in

number of parallel threads and small number of nodes.

7

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

ite
ra

tio
n/

us
ec

)

Number of Threads

Lock Based Algorithm

Work Load 300
Work Load 500
Work Load 700

Work Load 1000

(a) Locked Based

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10 12

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

ite
ra

tio
n/

us
ec

)

Number of Threads

Reagent Algorithm

Work Load 300
Work Load 500
Work Load 700

Work Load 1000

(b) Reagent Based

Figure 1: Normalized throughput for Reagents-based and Lock-based Algorithm. Increase
in throughput on increasing pureWork indicates decrease in contention between threads

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (i

te
ra

tio
n/

us
ec

)

Number of Threads

Workload 300

Reagent
Lock based

Fine-grained java
Lazy java

Lock free java

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (i

te
ra

tio
n/

us
ec

)

Number of Threads

Workload 500

Reagent
Lock based

Fine-grained java
Lazy java

Lock free java

(b)

Figure 2: High Contention

3. There is a change (decrease) in the slope at thread count of 4 and 8. The first
change can be attributed to the interaction of hyper-threading, virtual machine and
JIT compilation. This leads to sharing of the CPU resource including the L1 cache
. At thread count of 8, some thread must be scheduled on a different node. A cache
line (synchronization) shared between two threads scheduled on different nodes incur
the inter-node memory latency, which is considerably larger.

4. Throughput for the reagent is lower than the hand coded lock free implementation

8

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (i

te
ra

tio
n/

us
ec

)

Number of Threads

Workload 700

Reagent
Lock based

Fine-grained java
Lazy java

Lock free java

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (i

te
ra

tio
n/

us
ec

)

Number of Threads

Workload 1000

Reagent
Lock based

Fine-grained java
Lazy java

Lock free java

(b)

Figure 3: Low Contention

: One of the reason is that the extra layer of abstraction provided by the reagent
adds an overhead and the JIT compiler is not able to completely optimize away the
differences.

5 Conclusion and Future work

Reagents provide a fairly expressive framework for implementing fine-grained concurrent
algorithm. Our experience as user of the framework was very positive. Also the perfor-
mance of the algorithm compares fairly with the hand optimized lock-free implementation.
Further work needs to be done to isolate the performance overheads of the abstraction
layer and the impact of the garbage collection in benchmark which have larger footprints.
Also hardware performance monitor must be used to measure the total number of CAS
instruction executed to accurately measure the concurrent op throughput[2]. Also further
sophisticated concurrent algorithm must be implemented.

Acknowledgment We greatly appreciate Aaron Turon for helping us understand the
Reagent framework, being very responsive to our queries, and most importantly constantly
encouraging us.

References

[1] M. Herlihy and N. Shavit, The art of multiprocessor programming, Morgan Kaufmann,
2008.

[2] P.F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D. Grove, and M. Hind,
Using hardware performance monitors to understand the behavior of java applications,

9

Proc. of the Third USENIX Virtual Machine Research and Technology Symp, 2004,
pp. 57–72.

[3] Aaron Turon, Reagents: Expressing and composing fine-grained concurrency, 2012.

10

