
Toward Flexible Auditing for In-Network Functionality
Anonymous Author(s)

1 RESEARCHPROBLEM&MOTIVATION
Networks today increasingly support in-network function-
ality via network function virtualization (NFV) or similar
technologies. Such approaches enable a wide range of func-
tionality to be deployed on behalf of end systems, such as
offloading Tor services [5], enforcing network usage policies
on encrypted traffic [6], or new functionality in 5G [3]. An
important open problem with such approaches is auditing.
Namely, such services rely on third-party network providers
to faithfully deploy and run their functionality as intended,
but oftenhave little to no insight as towhether providers do so.
To address this problem, prior work provides point solutions
such as verifiable routing with per-packet overhead [1], or
audits of security practices [4]; however, these approaches
are not flexible—they are limited to auditing a small set of
functionality and do not allow tradeoffs between auditing
coverage and overhead. In this paper, we propose NFAudit,
which allows auditing of deployed NFs with a flexible ap-
proach where a wide range of important properties can be
audited with configurable, low overhead. Our key insight is
that the design of simple, composable, and flexible auditing
primitives, combined with limited trust (in the form of secure
enclaves) can permit a wide range of auditing functionality
and configurable—and often low—cost.

2 BACKGROUND&THREATMODEL
Background: Prior work identified the problem of verifying
whether deployed in-network services, policies, and config-
urations are operating correctly. This includes verified rout-
ing [1] and secure logging for detecting policy violations [4].
A key limitation of such prior work is that they require new
per-packet fields and processing, increasing bandwidth and
CPU overhead. In addition, these solutions do not general-
ize to auditing a wide range of properties that in-network
functionality may want to guarantee.
Threatmodel: The various parties in our threat model are
illustrated in Figure 1. We adopt a threat model similar to the
one for SafeBricks [2], as we trust the customer, and we do
not trust the provider and otherNFs running in the network.
The customer also trust the NF deployed by the customer in a
secure enclave, which consists of code, rules, and/or configu-
rations supplied by anNF vendor. Building on this prior threat
model, NFAudit includes a controller and an append-only
log that is a trusted third party. NFAudit also include agents
that are deployed at various points in the system. Agents are
trusted by the entities that deploy them, and we assume no
collusion with adversarial parties.

Figure 1:Different parties that we consider in the deploy-
ment environment of NFs. Communications between
NFAudit components use secure channels (not shown).

In our threat model, the adversary is the provider, whose
goal is to not faithfully provide in-network services specified
by the customer and/or NF vendor.1 The attacker can modify
the software stack anywhere in the provider network (outside
the enclave) to inject, modify, reorder, drop, or duplicate pack-
ets. These attacks may be transparent or stealthy. The goal
of our auditing approach is to detect such attacks in a reliable
and flexible way, both in terms of which NF deployment prop-
erties can be audited and at what cost in terms of overhead.
Further, our approach places evidence of such violations in
an append-only log, to assist subsequent investigations of
the violations by all parties. To enable this, we propose our
system, NFAudit, that serves as an independent observer to
gather and publish evidence of NF deployment violations.

3 APPROACH
Goals: The high-level goal of our approach is to enable real-
time audits of deployed NFs, to detect provider misbehavior.
Tomake the approachflexible andpractical,we include the fol-
lowing subgoals. First, we seek to enable reliable audits with
limited support from NF providers. We thus assume only that
secure enclaves are available to our system for establishing
trust in the provider. Second, we aim to support awide range of
auditable properties that canbe specifiedby customers andNF
vendors. To support such flexibility, we develop composable
auditing primitives that rely on a limited set of trusted parties.
Third, we seek to support explicit trade-offs between auditing
fidelity and overhead. To this end, we design our system to
support probabilistic audits that can detect violations with
high probability and at substantially lower cost than solutions
that guarantee to always detect violations.
NFAuditArchitecture: NFAudit achieves thehigh-level goal
of real-time auditing by deploying auditing agents at key lo-
cations along network paths to be audited. These agents can
generate active measurements for auditing (e.g., end-to-end
latency measurements) or can passively monitor traffic flow-
ing through the provider network (e.g., for verifying that
1A related adversarial model pits the customer and/or NF vendor against the
provider. While important, this problem is not our focus.

1



Anon.

deployed NFs are traversed by customer traffic). To establish
trust for customer-issued audits, we rely on secure enclaves
in the provider that can attest to the fidelity of code, data,
and computation for agents (and their corresponding NFs)
in those enclaves. When an auditing violation occurs, it is
essential that the correct auditing data is made available to all
parties involved so they can conduct post-hoc resolution. To
support this, the agents use secure connections to transmit
their auditing data for storage in a distributed append-only
log (e.g., a ledger) hosted by an independent third party.
Auditing Primitives: NFAudit supports a wide range of NF
audits via composable auditing primitives. They allow cus-
tomers and NF providers to specify audits as a combination of
these common building blocks for many auditable properties
in NF deployments. These primitives can address the follow-
ing auditable properties (and non-exhaustive examples): ➀
Packet traversal: Does a packet travel from node𝐴 to 𝐵 (or
alongsomepath𝑃 )?➁NFperformance: Is packetprocessing
time below the agreed latency? ➂ Policy compliance: Are
policy rules such as “ensure packets sent by A never reach B”
enforced? ➃ Network performance: What are the latency,
packet loss, bandwidth along path 𝑃?
Fidelity/Cost Trade-offs: Prior work ensures high-fidelity
auditingby instrumentingeverypacket that traversesaprovider.
In NFAudit, we not only support such per-packet audits, but
also allow auditing users to reduce this cost at the expense of
auditing coverage. We use probabilistic audits, where mea-
surement of auditing properties is performed on one of the
packets with probability 𝑟 (typically random). Assuming that
the adversary cannot predict when the audit will occur, such
audits place limits on how often the adversary can violate
audited guarantees without detection.

4 TRAVERSALAUDITING EXAMPLE
Tomake our approach concrete, we now focus on traversal
auditing as an example. In this scenario, referring to Figure 1,
we assume that the adversary manipulates (at least some of)
the packet contents before they entering the NF (X), or after
leaving the NF (i.e., along paths {X’, Y’, Y} or {X’, Z}). Our goal
is to detect this with high probability and low cost.
Auditing with primitives: We use a primitive that collects
per-packet payloadhashes at eachagent along thepath.NFAu-
dit then detects violations of traversal without modification by
comparing the payload hashes collected by any pair of agents
Evaluation of tradeoffs: We now demonstrate the tradeoffs
between auditing coverage and cost, when compared to ap-
proaches that use per-packet auditing. For this analysis, we
must specify the rate of packets traversing the system. In the
case of 40Gbps link, there will be 22Mpps if the packet size
is 64 B, or 2.75Mpps if the average packet size is 500 B. We
denote the fraction of traffic that the adversary will modify is
𝑝 and the sampling rate of NFAudit to be 𝑟 . The probability of

System Setup 2.75Mpps 22Mpps

Overhead 𝑃𝑟𝑒𝑣𝑎𝑑𝑒 Overhead 𝑃𝑟𝑒𝑣𝑎𝑑𝑒

AuditBox 𝑝 =0.001, 𝑟 =1 2 66.0MB/s, 2,750 kops/s 0 528.0MB/s, 22,000.0 kops/s 0
𝑝 =0.0001, 𝑟 =1 ” 0 ” 0

VRP (OPT) 𝑝 =0.001, 𝑟 =1 231.0MB/s, 5,500 kops/s 0 1,848.0MB/s, 44,000.0 kops/s 0
𝑝 =0.0001, 𝑟 =1 ” 0 ” 0

NFAudit 𝑝 =0.001, 𝑟 =0.001 0KB/s, 5.5 kops/s 0.0638 0KB/s, 44.0 kops/s 2.76E-10
𝑝 =0.0001, 𝑟 =0.01 0KB/s, 55.0 kops/s 0.0639 0KB/s, 440.0 kops/s 2.79E-10

Table 1:Auditing overhead and coverage comparison of
AuditBox [4], OPT [1], and NFAudit to detect an attack.
“Operation” means MAC/GMAC of the packet payload
or pseudo-random function (only for VRP). The MB/s
denotes the size of required headers or trailers.
detecting such an attackwithin one second: 𝑃𝑟 =1−(1−𝑝)𝑚∗𝑟 .
Note thatweassume simple randomsamplingover all packets,
thoughwe could adopt more sophisticated samplingmethods
according to different adversarial models and auditing goals.

Importantly, the probability of evading detection is vanish-
ingly small even for low auditing sampling rates. For example,
the attacker will evade detection for one second of time with
a probability of 2.76E-10 given a packet rate of 22Mpps, an
auditing sample rate of 1/100 packets (𝑟 =0.01) and a stealthy
adversary that manipulates only 1/10,000 packets (𝑝 =0.0001).
Even with a lower packet rate of 2.75Mpps, the likelihood of
evasion for one second is only 0.0638, and this becomes expo-
nentially smaller with additional monitoring time (1.139E-12
with 10 seconds).

Table 1 compares the auditing overhead and coverage of
recent approaches and NFAudit. To simplify the setup we do
not consider the impact of hops as VRP (OPT [1]) will per-
form the operations for every hop. The main takeaway is that
NFAudit can provide extremely high fidelity (up to nine 9’s
of coverage) at three orders of magnitude less overhead.
5 CONCLUSION
We proposed a flexible approach to NFmonitoring that can
achieve flexible auditing goals with configurable cost, and
demonstrated its advantages using audits of packet-traversal
guarantees. We are building a prototype of NFAudit that uses
Intel SGX for a secure enclave, and developing, implement-
ing, and evaluating proposed auditing primitives. Key future
work entails building more auditing use cases and evaluating
cost/benefit trade-offs for alternative implementation choices.

Ethics: This work does not raise any ethical issues.
REFERENCES
[1] T.H.-J.Kimetal. Lightweight sourceauthenticationandpathvalidation.

(SIGCOMM ’14).
[2] R. Poddar et al. SafeBricks: Shielding Network Functions in the Cloud.

(NSDI ’18).
[3] 5G Network Slicing - Make Network Slicing easy. Retrieved Septem-

ber 14, 2022 from https://www.ericsson.com/en/network-slicing.
[4] G. Liu et al. Don’t Yank My Chain: Auditable NF Service Chaining.

(NSDI ’21).
[5] M. Reininger et al. Bento: safely bringing network function virtualiza-

tion to Tor. (SIGCOMM ’21).
[6] P. Grubbs et al. Zero-Knowledge Middleboxes. (USENIX Security ’22).

2

https://www.ericsson.com/en/network-slicing

	1 Research Problem & Motivation
	2 Background & Threat Model
	3 Approach
	4 Traversal Auditing Example
	5 Conclusion

