
Enhancing End-to-End Tracing Systems
for Automated Performance Debugging in Distributed
Systems

Jethro S. Sun
January 23, 2018
MassOpenCloud Research Group

1



Introduction



A Sad Story ...

2



A Sad Story ...

A distributed system is one in which
the failure of a computer you didn’t
even know existed can render your own
computer unusable.

– Leslie Lamport

2



A Sad Story ...

What developers and operators really
need is a way to understand and
troubleshoot a distributed system as a
whole.

2



Performance Diagnosis in OpenStack

OPENSTACK Bug # 1587777 was filed againstHORIZON.

3



Performance Diagnosis in OpenStack

And only took 10Month to figure out it was something wrong
in KEYSTONE.

3



Performance Diagnosis in OpenStack

Question:
Is there a way to make developers’ and operators’ life

less miserable?

3



Performance Diagnosis in OpenStack

Question:
Is there a way to make developers’ and operators’ life

less miserable?

YES. End-to-end tracing

3



End-to-End Tracing, what is it and
where we are today?



End-to-End Tracing

Definition (End-to-End Tracing)
End-to-end tracing captures theworkflow of causally-related
activity (e.g., work done to process a request) within and among
every component of a distributed system.1

App server
Table store

Distributed
lesystem

Client Server

Request work ows

Boundary 2ms 3ms3ms

2ms 2ms1ms

Work

Storage nodes

Distributed application1So, you want to trace your distributed system? Key design insights from
years of practical experience. Raja Sambasivan et al.

4



A Typical End-to-End Tracing Infrastructure

Definition (TraceMetadata)
Fields propagated with causally-related event to identify

their workflows. They are usually unique IDs or in a format of
logical clock stored thread-locally or context-locally.

Definition (Trace Points)
Instrumentation points in the system used to identify

individual work done, and also propagate necessary metadata.

Definition (Backend)
Central collector that gathers pieces of trace data and

reconstruct them into full feature-riched trace.

5



End-to-end Tracing gains its popularity gradually...

TABLE 1 Timeline
2002 • Pinpoint

2004 • Magpie, SDI

2005 • Causeway

2006 • Pip, Stardust

2007 • X-Trace

2010 • Google Dapper

2012 • Zipkin, HTrace

2013 • Node.js CLS

2014 • Apple Activity Tracing, Blkin

2015 • AppNeta, AppDynamics, NewRelic,
OSProfiler

2017 •

6



End-to-end Tracing gains its popularity gradually...

TABLE 1 Timeline
2002 • Pinpoint

2004 • Magpie, SDI

2005 • Causeway

2006 • Pip, Stardust

2007 • X-Trace

2010 • Google Dapper

2012 • Zipkin, HTrace

2013 • Node.js CLS

2014 • Apple Activity Tracing, Blkin

2015 • AppNeta, AppDynamics, NewRelic,
OSProfiler

2017 • ..., Twitter, Prezi, SoundCloud, HDFS, HBase,
Accumulo, Phoenix, Baidu, Neflit, Pivotal,
Coursera, Census (Google), Canopy
(Facebook), Jaeger (Uber), ... 6



End-to-End Tracing Systems Service Model

To distinguish tracing systems:

• On-demand (Rudimentary)
• Be always on (Smart Sampling)
• Collect trace data asynchronously
•
• Logical clock support

7



End-to-End Tracing Systems Service Model

To distinguish tracing systems:
• On-demand (Rudimentary)

• Be always on (Smart Sampling)
• Collect trace data asynchronously
•
• Logical clock support

7



End-to-End Tracing Systems Service Model

To distinguish tracing systems:
• On-demand (Rudimentary)
• Be always on (Smart Sampling)

• Collect trace data asynchronously
•
• Logical clock support

7



End-to-End Tracing Systems Service Model

To distinguish tracing systems:
• On-demand (Rudimentary)
• Be always on (Smart Sampling)
• Collect trace data asynchronously

•
• Logical clock support

7



End-to-End Tracing Systems Service Model

To distinguish tracing systems:
• On-demand (Rudimentary)
• Be always on (Smart Sampling)
• Collect trace data asynchronously
• DAG-basedmodel to represent events

• Logical clock support

7



End-to-End Tracing Systems Service Model

To distinguish tracing systems:
• On-demand (Rudimentary)
• Be always on (Smart Sampling)
• Collect trace data asynchronously
• DAG-basedmodel to represent events
• Logical clock support

7



Comparing End-to-End Tracing Systems

Table 2: Comparing end-to-end tracing systems features between
Jaeger, Zipkin, Pivot Tracing, Dapper, Canopy, OSProfiler and Blkin.

Systems Can Be Applied to Rudimentary Features Needed to Be Always on Advanced Features

On-demand Sampling Async. Collect. DAG-basedModel Interval Tree Clock

Jaeger Tracing Broadly (K8s, OpenShift) 7 X X 7 7

Zipkin Tracing Broadly 7 X X 7 7

Pivot Tracing Hadoop/Java based systems 7 X X X X

Dapper N/A 7 X X 7 7

Canopy N/A 7 X X X 7

OSProfiler

Blkin

8



Comparing End-to-End Tracing Systems

Table 2: Comparing end-to-end tracing systems features between
Jaeger, Zipkin, Pivot Tracing, Dapper, Canopy, OSProfiler and Blkin.

Systems Can Be Applied to Rudimentary Features Needed to Be Always on Advanced Features

On-demand Sampling Async. Collect. DAG-basedModel Interval Tree Clock

Jaeger Tracing Broadly (K8s, OpenShift) 7 X X 7 7

Zipkin Tracing Broadly 7 X X 7 7

Pivot Tracing Hadoop/Java based systems 7 X X X X

Dapper N/A 7 X X 7 7

Canopy N/A 7 X X X 7

OSProfiler OpenStack X 7 7 7 7

Blkin Ceph X 7 7 7 7

8



Approaches for Enabling
Sophisticated Tracing in OpenStack



Jaeger vs OSProfiler

Jaeger Tracing

ADVANTAGES
• Support smart
sampling

• Support collecting
trace data async.

DISADVANTAGES
• Doesn’t support
DAG-basedmodel

• Doesn’t use advanced
logical clock as the
metadata

9



Jaeger vs OSProfiler

OSProfiler

ADVANTAGES
• Rudimentary on-demand
tracing

• Already adopt by
OpenStack and have
instrumentation

DISADVANTAGES
• Doesn’t have sampling
• Doesn’t collect trace data
asynchronously

• Doesn’t support
DAG-basedmodel

• Doesn’t use advanced
logical clock as the
metadata

9



Jaeger vs OSProfiler

OSProfiler

ADVANTAGES
• Rudimentary on-demand
tracing

• Already adopt by
OpenStack and have
instrumentation

DISADVANTAGES
• Doesn’t have sampling
• Doesn’t collect trace data

asynchronously
• Doesn’t support
DAG-basedmodel

• Doesn’t use advanced
logical clock as the
metadata

9



Jaeger vs OSProfiler

OSProfilerwith Jaeger Tracing
ADVANTAGES
• Rudimentary on-demand
tracing

• Already adopt by
OpenStack and have
instrumentation

DISADVANTAGES
• Doesn’t have sampling
• Doesn’t collect trace data
asynchronously

• Doesn’t support
DAG-basedmodel

• Doesn’t use advanced
logical clock as the
metadata

9



Jaeger vs OSProfiler

OSProfilerwith Jaeger Tracing
ADVANTAGES
• Rudimentary on-demand
tracing

• Already adopt by
OpenStack and have
instrumentation

• Modifications we done
can be directly other
Jaeger instrumented
systems

DISADVANTAGES
• Doesn’t have sampling
• Doesn’t collect trace data
asynchronously

• Doesn’t support
DAG-basedmodel

• Doesn’t use advanced
logical clock as the
metadata

9



Feasibility

Key Challenges:
TraceMetadata/OSProfiler library change
• Implement CONTEXT generation using Jaeger
• Implement CONTEXT propagation using Jaeger

Trace Points/OpenStack instrumentation
• All of the instrumentation will be able to be
reused2

Backend side
• Need to deploy Backend/Collector for Jaeger
Tracing

2Modifying instrumentation for the purpose of our research is orthogonal.
10



Feasibility

Key Challenges:
TraceMetadata/OSProfiler library change
• Implement CONTEXT generation using Jaeger
• Implement CONTEXT propagation using Jaeger

Trace Points/OpenStack instrumentation
• All of the instrumentation will be able to be
reused2 X

Backend side
• Need to deploy Backend/Collector for Jaeger
TracingX

2Modifying instrumentation for the purpose of our research is orthogonal.
10



Feasibility

Definition (Context)
Context is an abstraction of themetadata so that it is

easier to interact with (injecting/extracting a trace to/from).

Example Implementation

// Context holds the basic metadata.
type Context struct {

TraceID uint64
SpanID uint64
Sampled bool
Baggage map[string]string // initialized on first use

}

11



Feasibility: Context Generation

CONTEXT generation:
All of themodification will be done in OSProfiler
library3

• The span context generation will be done using
Jaeger to substitute the OSProfiler implementation.

3In OpenStack developers instrument their codebase using functionalities
implemented in OSProfiler library.

12



Feasibility: Context Propagation

CONTEXT propagation:
OpenStack Instrumentation side
• REST API
Transform themetadata propagation in OpenStack
clients to propagate Jaeger metadata. Wemight
only need to change OSProfiler library.

• RPC API
Need to implement helper functions for metadata
propagation RPC. Wemight need tomodify
component codebase depends on the RCP is
handled in different components.

OSProfiler Library side
• Need to deploy Backend/Collector for Jaeger
Tracing 12



Status Update

CONTEXT generation:
• A talk during 2017 OpenStack Sydney Summit
demonstrates how easy to plainly record all the
OSProfiler tracing information in Jaeger. (i.e.
Context generation is done in OSProfiler)

• Additionally we need to generate context using
Jaeger tracing.

CONTEXT propagation:
• Will begin to look at ways to enforcemetadata
propagation in OpenStack RPC API and REST API

13



Jaeger Tracing Approach



OSProfiler with Jaeger

Two key challenges to address:

• Doesn’t support DAG-basedmodel
• Doesn’t use advanced logical clock as themetadata

14



OSProfiler with Jaeger

Two key challenges to address:

• Doesn’t support DAG-basedmodel
• Doesn’t use advanced logical clock as themetadata

14



DAG-basedModel vs SpanModel

Definition (Span)
A Span represents a logical unit of work in the system that

has an operation name, the start time of the operation, and the
duration. Spansmay be nested and ordered tomodel causal
relationships. An RPC call is an example of a span.

15



DAG-basedModel vs SpanModel

Definition (DAG-basedModel)
Modeling traces as directed, acyclic graphs (DAGs), with

nodes representing events in time, and edges representing
causality.

15



DAG-basedModel vs SpanModel

bar.Start

thud.Start

grunt.Start

grunt.Stopbar.Stop

S

foo.Start

foo.Stop

thud.Stop

Pattern #1
func bar and func grunt are
issued by func foo
concurrently, and func foo
only ends after both of the
individual work are done in
func bar and func grunt.

15



DAG-basedModel vs SpanModel

bar.Start

thud.Start

grunt.Start

grunt.Stopbar.Stop

S

foo.Start

foo.Stop

thud.Stop

Pattern #1
func bar and func grunt are
issued by func foo
concurrently, and func foo
only ends after both of the
individual work are done in
func bar and func grunt.

This pattern we referred to
fan-in-and-fan-out in our
group.

15



DAG-basedModel vs SpanModel

foo.Start

bar.Start

S

foo.Stop

thud.Start

bar.Stop

thud.Stop

grunt.Start

grunt.Stop

Pattern #2
func bar and func grunt are also both
issued by func foo, but func grunt
can start only after the work in func
bar is done.

15



DAG-basedModel vs SpanModel

foo.Start

bar.Start

S

foo.Stop

thud.Start

bar.Stop

thud.Stop

grunt.Start

grunt.Stop

Pattern #2
func bar and func grunt are also both
issued by func foo, but func grunt
can start only after the work in func
bar is done.

func bar and func grunt are executed
in sequential instead of in parallel.

15



DAG-basedModel vs SpanModel

bar.Start -- bar.Stop

thud.Start -- thud.Stop

grunt.Start -- grunt.Stop

foo.Start -- foo.Stop

Since spanmodel doesn’t really capture concurrency
and synchronization, PATTERN #1 and PATTERN #2 are
both recognized and documented as the same.

15



Applying DAG-basedModel

To be able to adopt the DAG-basedmodel, start and stop
of a spanmust be treated as separate events, and get
captured.

16



Status Update

• Implemented a Proof-of-Concept in OSProfiler
before we are consideringmove to Jaeger Tracing.

• Now need to re-implement in Jaeger and evaluate it

17



Logical Clock Support for Metadata Propagation

18



Metadata Propagation

19



Metadata Propagation

• At the heart of end-to-end tracing is
metadata propagation to identify
causally-related events across nodes.

• Usually themetadata are stored in
thread-local or context-local storage.

19



Metadata Propagation

• At the heart of end-to-end tracing is
metadata propagation to identify
causally-related events across nodes.

• Usually themetadata are stored in
thread-local or context-local storage.

19



Metadata Propagation

Example Implementation
Span (

Tracer tracer,
String operationName,
SpanContext context,
long startTimeMicroseconds,
long startTimeNanoTicks,
...

)
// SpanContext holds the basic Span metadata.
type SpanContext struct {

TraceID uint64
SpanID uint64
Sampled bool
Baggage map[string]string // initialized on first use

} 20



Logical Clock Support for Metadata Propagation

Limitations:

• Simple timestamp are not resilient to failures
• Extremely tricky to deal with “fan-in and fan-out”
• Usually need a static view of the distributed system
for generating the globally unique identifier

21



Interval Tree Clock

Interval Tree Clock:
• Can create, retire and reuse identifiers
autonomously.

• Works in dynamically setting (stamps grow and
shrink adapting to the system)

Interval Tree Clockmodels causality tracking by
operations:
• FORK
Branch a stamp into a pair.

• EVENT
Add a new event to the component.

• JOIN
Merge two stamps to create a new one.

22



Status Update

Our Plan:
Use Interval Tree Clock as the logical clock to avoid

dealing with the branching and rejoining using random
identifiers.

23



Additional Changes If without
Jaeger



Requirements for Always-on

To control the cost of themetadata propagation,
Tracing Agents are deployed to:
• collection trace data asynchronously
• enforce smart samplingmethods
• control the usage of local resources

24



Requirements for Always-on

Jaegr Tracing:
The agent abstracts the routing and discovery of the

collectors away from the client.

24



Summary

• We think adopting Jaeger in OSProfiler can avoid
unnecessary effort for performance diagnosis in
OpenStack.

• We identify implementing DAG-basedmodel and
advanced logical clock in the tracing infrastructure to be
the important part in a novel and efficient end-to-end
tracing system.

25


	Introduction
	End-to-End Tracing, what is it and where we are today?
	Approaches for Enabling Sophisticated Tracing in OpenStack
	Jaeger Tracing Approach
	Additional Changes If without Jaeger

