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Abstract

An ordinal embedding positions objects in a Euclidean space to satisfy a partial or1

total ordering of object distances. We present an algorithm to select a small subset2

of distance comparisons such that an embedding which satisfies all comparisons3

will recover point positions with high accuracy. The number of comparisons4

our algorithm uses is close to the proven lower bound of Ω(nd log(n)) for the5

problem, and we conjecture that on datasets with certain “nice” distributional6

properties it always achieves nearly-perfect embeddings within a constant factor7

of this lower bound. We believe it capable of finding all possible triples using just8

O(n2) comparisons, and provide theoretical support for this belief. We validate9

these results with an empirical study on real and synthetic datasets.10

1 Introduction11

An ordinal embedding based on triple comparisons aims to position a set of n points into Rd to satisfy12

a set C ⊂ [n]3 of ordinal constraints, where [n] denotes {1, . . . , n}. Constraints are defined in terms of13

some distance metric δi,j , and have the form δi,j < δi,k. An embedding X̂ = {x̂1, . . . , x̂n}, xi ∈ Rd14

is sought so that, using d̂a,b to denote the Euclidean norm ‖x̂a − x̂b‖,15

δi,j < δi,k ∈ C =⇒ d̂i,j ≤ d̂i,k. (1)

Such an embedding satisfying all O(n3) possible triples is said to be weakly isotonic. When an16

embedding also satisfies allO(n4) constraints of the form δi,j < δk,l it is isotonic. Ordinal embedding17

is of interest when only comparative object judgements can be made (e.g., which musicians have18

“a more similar sound?”), or when features are available but are assumed to contain no information19

beyond the ordering they impose (as in ranking with clickthrough data). The embedding X̂ can be20

considered a latent representation of the objects for various downstream tasks.21

Kleindessner and von Luxburg [2014] proved that for sufficiently large n when the points are drawn22

from a subset V ⊂ Rd meeting certain regularity conditions, any isotonic function X̂ is a similarity23

transform of the point positions in V . That is, that for any ε > 0 there is some n0 such that for any24

n > n0, there is a constant scaling factor s such that25

s‖x̂i − x̂j‖ − ε ≤ ‖xi − xj‖ ≤ s‖x̂i − x̂j‖+ ε. (2)

Ordinal constraints contain no information about specific point positions or orientation (e.g. scaling,26

rotation, reflection, and translation of all points), so this constitutes perfect recovery of the information27

in C. Loosely speaking, asX grows dense in V the position of each point becomes bounded arbitrarily28

tightly, so the individual scalings si,j = d̂i,j/δi,j of all pairwise distances converge to the same value.29

Arias-Castro [2015] proved a similar large sample convergence result for triple embedding, and also30

proved that in the large sample limit various subsets of C would suffice (for example, triples providing31

the total ordering of each point’s k-nearest neighbors for suitable k dependent on n).32
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We are interested in selecting the smallest possible subset of triples in C which can be proven to33

produce high-quality embeddings, assuming that an embedding can be found which satisfies as34

many triples as possible. We treat embedding itself as a “black box,” and rely on state-of-the-art35

procedures discussed below. Figure 1 shows perfect embeddings for two different subsets of triples36

as a motivating example. The baseline algorithm performs adequately for some Machine Learning37

tasks, but our proposed algorithm proves much stronger. Jamieson and Nowak [2011] proved that38

this particular baseline takes Ω(n3) triples to achieve comparable performance.39

Figure 1: Embedding error comparison for two sets of triples on a 3d dataset with 500 cities of the
world. The algorithms are described in Section 4 and Section 3. Circle radii show average distance
error for a given city, and green asterisks denote anchors used by the FRFT algorithm. FRFT Adaptive
Sort uses 3/5 as many comparisons as the baseline and achieves a nearly-perfect embedding.

We present our algorithm in Section 2. When all triples are known in advance, our algorithm can40

select just O(nd) triples which produce high quality embeddings. When the correct set of triples is41

not known a priori, answers to triple questions (“Is a closer to b or to c?”) must be solicited from42

some oracle (e.g. expert assessors, A/B testing, or crowdsourcing). Jamieson and Nowak [2011]43

proved that at least Ω(nd log n) triple questions must be asked adaptively from an oracle in order to44

reconstruct the entire set of O(n3) triples. By sorting all points by distance to each point, one obtains45

a trivial upper bound of O(n2 log n) adaptive triple questions to recover all triples. Empirically, our46

adaptive algorithm in Section 3 can obtain all triples in only O(n2) comparisons when d� n, and47

we present empirical results and a theoretical argument as to why. Further, we empirically show48

that just O(nd log n) triples selected by our algorithm suffice to reduce the average distance error to49

almost zero, matching the lower bound at the cost of achieving an approximate solution. We believe50

that this smaller bound is tight, in agreement with the conjecture of Jamieson and Nowak [2011], but51

have not yet been able to prove that this is the case. Our theoretical results can be found in Section 5.52

Our algorithm is easy to understand and implement. We strategically choose some anchor a ∈ [n]53

and sort all the other points by their distances to a. We then use the ordinal information learned so far54

to choose the next anchor and repeat the process. By selecting widely-spread anchors, we rapidly55

learn about the ordering in all regions and dimensions of the space. For the first O(d) anchors, we56

use O(n log n) triples per anchor to sort all points by the distance to the anchor. After O(d) anchors,57

the current embedding gives a good partially-sorted list of all points by embedded distance to the58

new anchor, thus we are able to adaptively sort using only O(n) triples per anchor. Thus, empirically,59

our algorithm needs O(nd log(n)) adaptive triple questions in order to achieve a “good” embedding60

(matching the lower bound), and linear comparisons per anchor thereafter to improve the embedding.61

2 A Near-Optimal Subset of Triples62

In this section we present our triple selection algorithm. For now, we treat sorting as a “black63

box” subroutine and consider the remainder of the algorithm. We reexamine the choice of sorting64

algorithms in Section 3. When all triples are known in advance, one could replace the sort algorithm65

with a method to retrieve the n− 2 triples needed to express the ranking of all n− 1 other objects by66

distance from the current anchor. We assume here that whatever sorting algorithm is employed, it67

returns this correct and minimal set of n− 2 triples.68

Building ε-nets. Our algorithm requires the anchors to be widely spread through X . To achieve69

this, we choose anchors which are likely to form ε-nets. These nets are widely studied, and have70
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many applications in machine learning and computational geometry. We review their definition here.71

For any set X of n points in a metric space with distance function δ, an ε-net is a subset N ⊂ [n]72

such that (1) for all a, b ∈ N, δa,b ≥ ε, and (2) for all b ∈ [n] \N,mina∈N δa,b < ε.73

Exact distances are not available in our setting, so it is not clear how to build exact ε-nets. However,74

we can build a good approximation using a farthest-rank-first traversal (FRFT) of X . We define a75

FRFT as follows. The first anchor a ∈ X is chosen arbitrarily. Each additional anchor is then chosen76

at random from the set M whose minimum rank from the prior anchors is maximized.77

Proposition 1. Any prefix of a farthest-rank-first traversal forms a good approximation of an ε-net.78

Proof. (of Proposition 1)79

It is well known that for any k ∈ [n], the first k members of a (farthest-first) traversal [Gonzalez,80

1985] by M ′ ≡ argmaxa∈[n]\N minb∈N δa,b forms an ε-net, where ε is minj<k δN [k],N [j].81

We prove here that the set M which we choose from is a superset of M ′. Let r be the max min rank82

in some iteration of the traversal, achieved by the members of M . Let O := [n] \ (N ∪M) be the set83

of points which have some smaller minimum rank. Since r is minimal for the members of M , for84

each o ∈ O and m ∈M there must exist some corresponding n ∈ N such that δn,o < δn,m. Thus,85

no member of O can be a member of M ′, and M ′ is a subset of M . In particular, in any round k86

when |M | = 1, the first k members of N forms an exact ε-net.87

Empirically, on most of the data sets we have tested on, the size of M is quite often one. Additionally,88

any embedding of a FRFT net which is consistent with the rankings of all net members must89

necessarily contain a FRFT net comprised of the same members, and whenever we know the original90

net was an exact ε-net it must be the case that the embedded net is also an exact ε-net. This already91

suggests that the embedding quality will be high when N has sufficiently many members.92

Our algorithm. We present FRFT Ranking as Algorithm 1, which is complete apart from treating93

the sort algorithm as a black box. We select anchors in FRFT order and sort points for each selected94

anchor. After each sort operation, we produce an embedding x̂i which we use to produce a guess r̂N [i]95

of the ranking for the next anchor. We terminate either when all anchors have been sorted or when our96

guess r̂N [i] is sufficiently similar to the true ranking rN [i]. We will discuss the Disorder() function97

used for this in a moment. When embedding in each round is prohibitively expensive, it is adequate98

to terminate when some comparison budget is exhausted or after some multiple of d+ 1 anchors have99

been considered. For theoretical reasons discussed in Section 5, at least d+ 1 anchors are necessary100

to obtain a good embedding. When an insufficient number of anchors has been considered, there are101

multiple solutions to the embedding objective which are widely divergent from each other.102

Algorithm 1: FRFT Ranking
Input :The number n of objects to embed, the dimensionality d, and the disorder tolerance τ .
Output :The complete rankings r for all members of N .

1 N [1]← random member of [n] ;
2 rN [1] ← SortForAnchor(RandomPerm(n− 1), N [1]) ;
3 for i← 2 : n do
4 M ← argmaxa∈[n]\N minb∈N rb(a) ;
5 N [i]← random member of M ;
6 X̂ ← Embed(r, n, d) ;
7 r̂N [i] ← ranking for N [i] in X̂ ;
8 rN [i] ← SortForAnchor(r̂N [i], N [i]) ;
9 if Disorder(rN [i], r̂N [i]) < τ then

10 return r ;
11 end
12 end
13 return r ;

Adding points to the net improves performance very rapidly; on every dataset we have attempted,103

d log(n) net members are more than enough to achieve a nearly-perfect embedding, provided that104
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the embedding algorithm can find an embedding which satisfies all triples. We discuss possible105

explanations of our algorithm’s performance in Section 5.106

There are many possible rank correlation functions which one could use for a stopping criterion. We107

concern ourselves in Section 3 with adaptive sort algorithms which can produce the correct ranking108

in O(n) comparisons when the input list is adequately sorted, so we employ the disorder measure109

Reg, discussed in Petersson and Moffat [1992] and Moffat et al. [1996]. Any sort algorithm which110

is optimal with respect to this measure is also optimal with respect to all the other commonly-used111

disorder measures (e.g. the number of inversions or of monotonic runs). Reg is a function of the true112

ordering r and an ordering s to evaluate against r, where r and s both map object indexes in [n] to113

their ranks. It is defined in terms of the rank distance di,j in r from an item i to item j which appears114

before it in s, and measures the degree to which items which are nearby in s are also nearby in r.115

Objects are penalized when their distances in r and in s differ.116

di,j = max(r(i), r(j))−min(r(i), r(j)) + 1, where s(i) > s(j) (3)

Disorder(r, s) = Reg(r, s) =

n∏
i=2

min{t+ di,i−t − 1 : 1 ≤ t < i} (4)

The value of Reg ranges from 1, for sorted and reverse-sorted lists, to O(nO(n)). Because of its large117

range, it is more practical to calculate log(Reg) instead.118

3 Efficient Sorting119

We now turn to the question of efficient sorting when no triples are known in advance. We will use120

triple question to mean the question posed to some oracle, “Is a closer to b or to c?” This concept is121

distinct from a triple, asserting that “a is closer to b than to c.” Sorting all points naively with respect122

to each possible head would require Θ(n2 log n) triple questions to obtain all Θ(n2) triples required123

to express all possible ordinal information (via transitivity). However, when the ranking inferred from124

an embedding X̂ of the triples obtained thus far is close enough to the true ranking, an adaptive sort125

algorithm will be able to obtain the correct ranking with just O(n) questions. To sort, we produce126

an embedding of the previous triples, infer the ranking of all points w.r.t. a new anchor (henceforth127

called “the ranking for an anchor”), and pass that permutation to an adaptive sort algorithm.128

Although there are many adaptive sort algorithms which take O(n log n) triple question for random129

lists and O(n) comparisons for nearly-sorted lists, the constant factors hidden in the asymptotic130

analysis can make a large practical difference in the number of anchors one can visit within a131

given comparison budget. We experimented with several algorithms, including binary insertion sort,132

quicksort, natural mergesort, Neatsort [La Rocca and Cantone, 2014], Timsort [Peters, 2002], and133

Splaysort [Moffat et al., 1996]. We found that the minimum number of comparisons was achieved134

by a hybrid algorithm which runs a basic implementation of mergesort until the minimum disorder135

for any inferred list drops below some threshold, and then uses splaysort for all future anchors. We136

occasionally had problems when no good embedding could be found, even though by construction a137

perfect embedding existed. In these cases, it is helpful to repeat the embedding process several times138

and select the embedding which satisfies the most triples.139

We show in Figure 2 that the value of log(Reg) rapidly drops after the first d+ 1 anchors. This is the140

empirical basis of our belief that the algorithm can find all triples in O(n2) comparisons.141

4 Empirical Results142

Our Algorithms. We call our algorithm “FRFT Ranking” when it emits O(n) triples per head, as143

in the case when triples are known in advance. We call it “FRFT Adaptive Sort” when triple questions144

must be answered by some oracle, using O(n log(n)) triples for early anchors and O(n) triples later.145

Evaluation. We show learning curves for several datasets in Figure 3 using the Soft Ordinal146

Embedding algorithm by Terada and von Luxburg [2014]. We embed each set of triples up to ten147

times with random initialization, and select the embedding with the smallest value achieved for the148

SOE objective. We mark with an asterisk (*) points on the plot where an embedding satisfied all the149

triples it was optimizing for.150
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Figure 2: Disorder of predicted rankings for anchors. Reg drops quickly and stays low, provided a
good embedding is found. The left plot is in 3 dimensions, and the other two are in 5. The large
spikes correspond to embeddings which did not satisfy all provided triples. The algorithm could
compensate by repeating the embedding process.

We evaluate embeddings using two measures: one based on distance scaling and one based on ranking151

prediction. Our first measure, Distance RMSE (root mean squared error), is based on the fact that in152

a perfect embedding all pairwise distances would be scaled by the same constant. That is, there is153

some s ∈ R such that for all points i, j ∈ [n], δi,j ≈ sd̂i,j . We know the exact pairwise distances for154

our datasets, so we fit an optimal ŝ to the embedding distances and report the RMSE of the residuals,155

drmse(X, X̂) ≡ min
ŝ

∑
i<j

(δi,j − ŝd̂i,j)2/n

1/2

(5)

This value measures the average “warping” of the embedding compared to the real positions. Smaller156

is better, and zero is perfect.157

Distance RMSE tends to be more affected by errors for larger distances, and we wish to also measure158

performance on the other end of the spectrum. We are also interested in the ability to predict the159

ranking of X by distance from any point in the embedding. Our second measure achieves both. τAP ,160

introduced by Yilmaz et al. [2008] and commonly used for Information Retrieval, is a top-heavy rank161

correlation coefficient similar to Kendall’s τ , but which places more weight on correctly ranking the162

beginning of the list (e.g. at shorter distances). Like Kendall’s τ , the perfect ranking has τAP = 1, a163

random permutation has τAP close to zero, and a reverse permutation has τAP = −1. We report the164

mean τAP value of the rankings of all points in an embedding.165

Datasets. We evaluate against several datasets. Due to the time it takes to embed many points in166

many dimensions, we were only able to provide comprehensive results for data of small dimension.167

However, our results suggest good performance on higher-dimensional data.168

Simulated data (n = 500, d = 3, 5). We generate 500 points from Gaussian mixture models in three169

and five dimensions, with 10 components having random means and variance but designed with some170

overlap. We also test on a uniform sample from a five dimensional cube.171

Cities (n = 500, d = 3). We select 500 cities from a large dataset by choosing the most populous172

city in each country, and then choosing additional cities in order of decreasing population. Note that173

the convex hull of this set consists of all 500 cities.174

Baselines. We compare against the following baselines.175

Random Tails iterates over all points in round-robin fashion, adding a randomly selected triple176

(a, b, c) : δa,b < δa,c for each.177

kNN also iterates over all points in round-robin fashion. In the kth iteration, it adds the triple178

δa,b < δa,c, where the ranks ra(b) = k and ra(c) = k+ 1. Thus, kn triples express the total ordering179

of each point’s k-nearest neighbors.180

Landmarks visits points (“landmarks”) in FRFT order. When each point is visited, 2n triples are181

added to insert the new point into the correct position in the rankings of all other points with respect182

to the previous landmarks.183

Crowd Kernel is the authors’ implementation of the “Crowd Kernel” algorithm [Tamuz et al., 2011].184

This algorithm, designed for use with crowdsourcing, is an approximate active learning algorithm185

which selects questions aimed to minimize the expected KL divergence between prior and posterior186
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embeddings using a particular probabilistic model of worker responses. Instead of embedding using187

the authors’ algorithm, we embed with SOE for comparable results.188
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Figure 3: Learning curves for
all datasets.
FRFT Ranking and FRFT
Adaptive Sort can be em-
bedded successfully more
consistently, and achieve
lower RMSE and higher
τ -AP.
The kNN algorithm is compet-
itive when it can be embedded
well. However, it would
require more comparisons
when triples are not known in
advance.
Landmarks can almost never
be embedded successfully. It
also suffers from an inability
to distinguish between points
when a small number of
landmarks is used.
Random Tails and Crowd
Kernel sometimes have an
early advantage over FRFT
Adaptive Sort, but after
an initial period of rapid
convergence they slow down.
Theory suggests they take
O(n3) triples to converge.

5 Theory189

In an optimal embedding of a set of points in Rd, all pairwise distances will be scaled by the same190

constant. We believe that our algorithm works well because it constrains most of the distances in191

an embedding to be scaled by almost the same amount. While much of the prior work on ordinal192

embedding focuses on locating individual points, we believe that an alternative focus on constraining193

distance scalings to converge to the same value may lead to improved results. We argue here that our194

algorithm is effectively using sets of triples to construct constraints on the ratios of distance scalings195

between points spread throughout the embedding.196
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We believe the following conjecture lies at the heart of why the algorithm performs well. We state197

the conjecture first, and then provide some intuition. A partial proof is provided in the supplemental198

material, but we have not yet been able to make it rigorous. Let si,j ≡ d̂i,j/δi,j refer to the scaling199

of the distance between points i and j in a given embedding.200

Conjecture 1 (Remote Scaling). Let N = {a1, . . . , ad+1} ⊂ [n] be an ε-net of X , and let i, j ∈201

[n] \N be two other points in X . For each k ∈ [d+ 1], choose some lk, uk ∈ [n] that are not in N202

such that for some small constant c1, (1) δi,j ≥ c1δlk,uk
, (2) i and j are ranked after lk and before203

uk in rak , (3) for at least d members ak of N , δak,uk
< ε, and (4) if there is some ak ∈ N with204

δak,uk
≥ ε, then lk is ranked after all other members of N in rak .205

Then in any embedding X̂ which preserves the rankings R(N), si,j ≤ 2
√
2

c1
maxk slk,uk

.206

In broad terms, the conjecture states that when the full rankings are known for an ε-net containing207

d + 1 members and an embedding X̂ is produced consistent with those rankings, the embedded208

distance between any pair of points which is “bracketed” between some other pairs of points in209

the rankings of each anchor cannot be embedded with a much greater distance than the distances210

between the bracketing points. The conditions stated in the lemma are used to constrain the distance211

by the distances between points which are not themselves anchors. Thus, by enforcing constraints212

on distances which involve only the anchors, we are limiting the scalings of distances which do not213

involve the anchors and which are not explicitly mentioned to the embedding algorithm.214

The conjecture does not typically hold when d or fewer anchors are used. To see why, consider the215

constraints imposed by the ranking for a single anchor. If the rank ra(i) < ra(j) for some a, i, j ∈ [n],216

then j must be embedded outside the d-dimensional sphere centered at x̂i with radius d̂a,i, and i217

must be embedded inside the corresponding sphere of radius d̂a,j . When ra(i) < ra(j) < ra(k),218

j is constrained to lie outside the sphere for i but inside the sphere for k. If this is the only219

constraint known, the distances from other points to j are not constrained very much more than if only220

ra(j) < ra(k) was known: they can vary by up to 2d̂a,k. In order for distances to j to be bounded by221

some value related to d̂a,k − d̂a,i, we must add additional constraints for other anchors. In fact, d+ 1222

anchors are needed to adequately constrain j. This is not surprising: it is well known that when exact223

distances are known to a set of d+ 1 points which are sufficiently distinct (e.g. in general position)224

the position of a point p can be directly obtained. Our lemma is based on a relaxation of this fact225

which can be applied to ordinal constraints without knowledge of exact distances.226

Importantly, the bracketing points may be anywhere in the space; this constrains remote regions of227

the space to be scaled to roughly the same degree. We believe that when the true positions X meet228

certain regularity conditions, any embedding consistent with these triples must have all points in229

roughly the correct positions. We further believe that adding more points to the net will rapidly force230

all points to be tightly constrained. When this happens, the predicted rankings used by our algorithm231

can be sorted in linear time and any embedding will have low distance error and high τAP .232

The rankings for new anchors depend only on distances which do not appear in the set of triples233

passed to the embedding algorithm in a given round. We believe that Conjecture 1 or something like234

it explains why Reg drops so quickly for these rankings.235

6 Related Work236

Ordinal Embedding, also called non-metric embedding or non-metric multidimensional scaling, has237

been studied by various communities for well over sixty years. Kleindessner and von Luxburg [2014]238

and Arias-Castro [2015] have answered long-standing questions about convergence to correctly-239

scaled distances in the large sample limit. These papers and their references should be consulted for240

more on the history of the field. Jamieson and Nowak [2011] contribute the Ω(nd log n) lower bound241

on adaptive triple selection and that non-adaptive triple selection is Ω(n3).242

Adaptive triple selection seems to be less studied. Often all triples are known in advance, in which243

case practitioners either use them all, select a subset at random, or employ the kNN or Landmarks244

algorithms we use as baselines. Large-sample convergence for these latter cases was proven in the245

above works, and the embedding algorithms of Terada and von Luxburg [2014] are well-suited to246

embedding these triples. We have found their Soft Ordinal Embedding algorithm to generally produce247
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better results at a smaller computational cost as compared to most prior embedding algorithms.248

Jamieson and Nowak [2011] suggest using an embedding before each question to determine whether249

it can be inferred from the prior answers. This is often computationally infeasible, however, and the250

present work shows that it is not necessary.251

The only algorithm we have found which was tailored for use in crowdsourcing is the Crowd Kernel252

algorithm by Tamuz et al. [2011], which we use as a baseline. This algorithm is based on a greedy253

approximation of the difficult problem of calculating the KL divergence of an objective function254

over the space of possible embeddings. While its question selection method outperforms random255

selection (by selecting tails closer than average to the head), its embedding method performs very256

poorly compared to Soft Ordinal Embedding.257

The problem of embedding has been heavily studied, particularly by the metric and kernel learning258

communities. These communities focus on learning transformations of object features to satisfy259

ordinal constraints, and their methods reduce to Ordinal Embedding when an identity matrix is260

used in place of features. Early approaches to metric and kernel learning employed semidefinite261

programming [Weinberger et al., 2006, Xing et al., 2003] and/or required eigenvalue decompositions.262

More recent approaches have focused on minimizing the Bregman divergence [Davis et al., 2007,263

Kulis et al., 2009, Jain et al., 2012], which is guaranteed to find a positive semidefinite (PSD) kernel,264

or on ignoring semidefiniteness until convergence and then calculating a final projection of the output265

matrix to the nearest PSD matrix [Chechik et al., 2010]. Ordinal embedding without object features266

has also been studied by Agarwal et al. [2007, 2010], who provide a flexible and modular algorithm267

with proven convergence guarantees. McFee and Lanckriet [2011] considers how to learn a similarity268

function which is as consistent as possible with multiple feature sets as well as ordinal constraints.269

Our algorithm reduces the problem to sorting, so when an unreliable oracle (e.g. crowdsourcing270

workers) is used it is natural to consider the deep literatureon crowdsourcing sort algorithms [Marcus271

et al., 2011, Niu et al., 2015] and on noise-tolerant sorting [Ajtai et al., 2009, Braverman and Mossel,272

2008, Hadjicostas and Lakshmanan, 2011].273

7 Discussion274

We present a simple and highly competitive algorithm for selecting triples for ordinal embedding,275

achieving excellent performance within a constant factor of the proven lower bound. We provide276

theoretical results to suggest that the reason our algorithm performs well is that it implicitly constrains277

pairs of points at similar distances in the original space to be placed at similar distances in the278

embedding. We suggest that our algorithm is essentially using sets of triples to create constraints of279

the form d̂i,j ≈ d̂k,l. We suspect that further focus on such constraints may lead to better embedding280

and triple selection algorithms in the future. We are also interested in the potential of using side281

information such as “N is an ε-net” directly by an embedding algorithm to impose further structure282

and speed convergence to a global optimum.283

There are several clear paths forward for improving our algorithm. It is essential to minimize constant284

factors when sorting for the first d + 1 anchors, and further exploration here may be fruitful. The285

algorithm can readily be adapted to handle noisy triples by employing a sort algorithm tailored for286

crowdsourcing or some reasonable model of response noise, but it is likely that a sort algorithm287

could be tailored to make use of the previous rankings and space dimensionality information to infer288

answers to some triple questions. We speculate that it is possible to apply an argument using distance289

convexity or the triangle inequality for this purpose and to use o(n) triple questions to collect rankings290

in later stages of the algorithm. This may provide a path to an algorithm matching the proven lower291

bound.292
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A Partial Proof of Conjecture 1345

We first show a trivial lemma which bounds one scaling by another based on the ratios of two points’346

true and embedded distances.347

Lemma 1 (Scaling Ratios). Let i, j, k, l ∈ [n] be embedded points so constrained that δi,j ≥ c1δk,l348

and d̂i,j ≤ c2d̂k,l. Then si,j ≤ c2
c1
sk,l.349

Proof. (Of Lemma 1) This follows because si,j ≡ d̂i,j
δi,j
≤ d̂i,j

c1δk,l
≤ c2d̂k,l

c1δk,l
= c2

c1
sk,l.350

We next explore the shape of the subspace I wherein x̂i and x̂j are constrained to lie, defined351

explicitly below. Since x̂i, x̂j ∈ I , their distance can be upper bounded by the supremum distance352

between two points in I . We therefore need to show that this supremum distance is no more than353

some constant multiple of maxk d̂lk,uk
.354

Defining I . For any two points a, b ∈ [n], define ball B(a, b) as the set of points in the embedding355

space which are at most d̂a,b from x̂a: a ball centered at x̂a with radius d̂a,b. Similarly, let shell356

S(c, l, u) ≡ B(c, u) \ B(c, l) be the set of points of distance more than d̂c,l but no more than d̂c,u357

from x̂c.358

l1

l2

l3
u1

u2

u3

i

j

a3

a2

a1

Figure 4: The intersection of three anchor shells, I , limits the embedding distance d̂i,j

We will call tk ≡ d̂c,u − d̂c,l the thickness of this shell; observe that by the triangle inequality359

tk ≤ d̂l,u. We will also be interested in the maximum shell thickness, t∗ := maxk tk. Both i and j360

are constrained to lie within the intersection of shells361

I ≡
⋂

k∈[d+1]

S(ak, lk, uk) =

 ⋂
k∈[d+1]

B(ak, uk)

 \
 ⋃
k∈[d+1]

B(ak, lk)

 . (6)

The set I must be non-empty because i and j must take positions within I in order for X̂ to satisfy362

all order constraints.363

I is located within halfspaces formed by the members of N . I is constrained by (3) and (4) to364

lie entirely within one of the two halfspaces to one side of the hyperplane containing any subset of365

d or fewer points of N , as we will show here. This implies that I excludes more than half of the366

volume of any of its component shells.367

Case 1: When condition (3) holds for all net members, and since N is an ε-net, all B(ak, uk) have368

radii less than ε while their centers are separated by more than ε. In this case, no ball includes the369

center of another ball, and I lies entirely in the convex hull of N .370

Case 2: When condition (4) holds, I is within ε of all but one net member ak. In this case, the371

intersection of the first d balls B(aj , uj) forms a symmetric shape with its bisecting hyperplane372

containing the first d net members, and containing portions both inside and outside of the convex hull373

of N . For the final member ak, all other net members are ranked before its lower bound point lk, so374

we we exclude the bisecting hyperplane and the portion in the convex hull of N .375
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Since I excludes more than half of each shell, it is easy to show that for all ak ∈ N , d̂i,j < 2d̂ak,uk
.376

This also implies that that the maximum arc I can contain from any sphere is less than π radians.377

I is connected. Although I is not convex, it is a connected subspace. That is, any two points in I378

can be connected by a curve lying entirely in I . To see why, observe that the non-convexity of the379

space is caused by subtracting the balls B(sk, lk) from I . In order for I to be disconnected, these380

balls would need to be able to intersect in such a way that different subsets of I could be separated by381

a curve leading from one ball to another. These balls must intersect from the line connecting two net382

members outward, so the “negative” regions grow from the bisecting hyperplane of the union of the383

B(ak, uk) balls toward the outer edges. Since I includes only points on one side of this bisecting384

hyperplane, it must contain only a connected region.385

Distances in I are bounded by its “corners.” The supremum distance between any two points386

in I is at most the maximum distance between any two points which lie on the “corners” of I; that387

is, on the intersection of at least d of the spheres which define the inner and outer boundaries of388

the intersecting shells. We prove this by contradiction. Suppose that x̂i and x̂j attain the maximal389

distance in I . Without loss of generality, assume that x̂i does not lie on such a corner.390

Case 1: If x̂i is not on the surface of any boundary sphere, then it can be moved away from x̂j and391

toward some sphere to increase the distance, contradicting that the distance was maximal.392

Case 2: x̂i is on the surface of fewer than d spheres, including some B(sk, lk). Then the sphere393

curves away from x̂j , and the distance could be increased by moving x̂i along the boundary for a394

contradiction.395

Case 3: x̂i is on the surface of fewer than d spheres, and all are B(sk, uk) boundaries. Because396

d̂i,j < 2d̂sa,uk
(due to the halfspace argument above), the circle with diameter d̂i,j curves more397

sharply than the boundary it rests against, and we can again increase the distance between points by398

moving x̂i along the boundary for a contradiction.399

As long as we are resting against at most d− 1 boundaries, we can always move x̂i along any one of400

the boundaries. Since the maximum arc one can travel along any sphere is less than π radians, this401

will always move x̂i further from x̂j . It only becomes trapped when it encounters the intersection of402

d boundaries, because there are no more “directions” in which it could move. Because I is connected,403

this process will lead to the supremum distance in I .404

The corners for some net member pairs define a rectangle on any plane intersecting I . Con-405

sider any plane which intersects I , and the projection of any aj , ak ∈ N onto that plane. For406

simplicity, when we refer to aj , ak, lj , lk, uj , and uk in the remainder of our argument in two di-407

mensions we mean their projections onto the plane. Define e as the distance between (the planar408

projections) of aj and ak. Let u and v be the distances from aj and ak to lj and lk, respectively, and409

similarly define the shell thicknesses tj and tk based on uj and uk. See Figure 5 for reference.410

When u+ v > e (which may not always be the case), the constraints for aj and ak will intersect at411

four points, which we label p, q, r, and s. Let p and q have distance u to aj , and let r and s have412

distance u + tj to aj . Similarly, let q and r have distance v to ak, and let p and s have distance413

v+ tk to ak. Note that all four points p, q, r and s are bounded to lie on the same side of ajak, so the414

diagram applies down to scaling and reflection.415

This property does not always hold: the distances u, v, and e are not constrained to guarantee that416

they satisfy the triangle inequality. When this does not hold, one can use the constraints from a third417

anchor (when d ≥ 2 a third anchor will exist) and consider the partial triangle formed by all six418

constraints. We leave the proper analysis of this approach for future work.419

The polygon with vertices pqrs is a rectangle. To see why, first note that the triangles420

4ajpq,4ajsr,4akqr, and 4akps are all isosceles. This implies that the line from aj which421

passes through the midpoint of pq does so at a right angle, and is thus a perpendicular bisector of422

pq. For the same reason, the perpendicular bisector of sr goes to aj , and the perpendicular bisectors423

of ps and qr go to ak. Since the perpendicular bisectors of opposite sides of the quadrilateral pqrs424

coincide, it is a rectangle. We will define the length of edges pq = sr to be xk, and the length of425

edges ps = qr to be xj . No two points in I which lie on any plane containing aj and ak are more426

distant than
√
x2i + x2j .427
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aj

ak
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q
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s

e

u

u

u+ tj

u+ tj

v
+
t
k

v

v

v
+
t k

xj

xk

Figure 5: A plane intersecting I and two net members. pqrs forms a rectangle, so the maximum
distance between any two corners is

√
x2j + x2k.

The rectangle side lengths are at most 2t∗. We will now bound the size of the larger rectangle428

size. Without loss of generality, suppose it is xk ≥ xj . By the triangle inequality on 4sakr we429

already have that xk > tk. With a little more work, we can prove an upper bound relating xk to t∗.430

See Figure 6 for reference.431

aj

ak

p

q

x∗
k

2

x∗
k

2

ε
v

u

u

h

x∗
j

2

Figure 6: Rectangle pqrs in a configuration which illustrates its edge bounds. We have replaced all
tk with t∗, causing possibly-increased edges x∗k.

Since tk ≤ t∗, we can upper bound any edge length xk by increasing the thicknesses of all shells432

to t∗ and bounding the corresponding edge length x∗k in the larger rectangle. Working in this larger433

rectangle, we have that akp = v + t∗. Although x∗k > t∗, by the triangle inequality x∗k is smaller434

than the portion of akp which lies inside rectangle pqrs. Let h be the height of the line bisecting435

isosceles triangle 4akqr. Since the length of akp is v + t∗, the length of the portion lying in the436

rectangle is less than t∗ + (v − h). By the triangle inequality, we have that v − h < x∗j/2, so we437

have that x∗k < t∗ + (v− h) < t∗ + x∗j/2. Since x∗k ≥ x∗j , we have that t∗ > x∗k − x∗j/2 > x∗k/2, so438

we conclude that 2t∗ > x∗k ≥ xk and 2t∗ > x∗k > x∗j ≥ xj . Thus, for any rectangle edge, we have439

the following bound.440

tk < xk < 2t∗,∀k ∈ [d+ 1] (7)
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i and j lie within a square with diagonal t∗
√

2. Consider any plane containing i and j. By441

definition, this plane intersects I , and by the above argument all points in I which are on this plane442

lie within a square with edge length 2t∗. Therefore, d̂i,j < 2
√

2t∗.443

Let k∗ = argmaxk d̂lk,uk
. Since δi,j > c1δl∗k,u∗

k
and d̂i,j < 2

√
2t∗, we can apply Lemma 1 to444

conclude the result.445
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