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Abstract

Ordinal Embedding places n objects into Rd

based on comparisons such as “a is closer
to b than c.” Current optimization-based
approaches suffer from scalability problems
and an abundance of low quality local op-
tima. We instead consider a computational
geometric approach based on selecting com-
parisons to discover points close to nearly-
orthogonal “axes” and embed the whole set
by their projections along each axis. We thus
also estimate the dimensionality of the data.
Our embeddings are of lower quality than
the global optima of optimization-based ap-
proaches, but are more scalable computation-
ally and more reliable than local optima of-
ten found via optimization. Our method uses
Θ(nd log n) comparisons and Θ(n2d2) total
operations, and can also be viewed as select-
ing constraints for an optimizer which, if suc-
cessful, will produce an almost-perfect em-
bedding for sufficiently dense datasets.

1 Introduction

Ordinal Geometry is a family of related problems that
deals with a collection of objects which are presumed
to lie in some metric space with an unknown metric.
Unable to directly use features/positions, distances, or
similarity scores, we instead attempt to either recover
the metric (positions or distances), or to perform tasks
such as clustering or classification, using only ordinal
comparisons of the form, “Object a is closer to object
b than to object c.”

For example, a collection of movies can be ana-
lyzed without extracting features by asking movie-
goers questions like, “Is Star Wars more similar to
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The Matrix or to Star Trek?”. Similarly, one might
analyze songs or musicians without having the musi-
cal expertise to design a feature representation for ei-
ther by soliciting user preferences like, “If you love The
Rolling Stones, you will prefer Bruce Springsteen

to Madonna.” Similarity on food dishes might depend
on factors like smell and taste, yet it’s not obvious how
to obtain consistent features per dish; still, people have
no trouble comparing foods.

These comparisons are commonly gathered from hu-
man assessors, who often find it easier to report on rel-
ative similarity than to provide explicit distances. In
other cases, ordinal information can be inferred from
known features as a regularization, dimensionality re-
duction, or representation learning technique. Ordi-
nal Embedding, which seeks to recover the metric, has
much in common with Metric/Kernel Learning but dif-
fers in that we generally have no underlying features.

In this paper we address the problem of recovering
the object pairwise distances (or simply “recovering
the metric”) using a minimum number of compar-
isons, assuming the underlying metric is Euclidean (i.e.
the objects exist in an unknown Euclidean space) and
that comparisons are always answered correctly. Note
that recovering the full matrix of pairwise distances
is mathematically equivalent to an embedding into a
space isomorphic with the original data space up to
scaling, rotation, reflection, and translation. With the
metric in hand we can run standard machine learning
tools, either by employing positions as vectors of latent
features or by using the metric as a similarity kernel.

Problem Context. Jamieson and Nowak (2011)
proved a lower bound of Ω(nd log n) adaptively se-
lected comparisons to fully recover the underlying met-
ric space. While our work only fully recovers the met-
ric for certain “ideal” datasets, it is the first published
non-trivial algorithm with an upper bound matching
the lower bound and thus establishes a performance
baseline for future algorithms.

The theoretical results of Kleindessner and von
Luxburg (2014) and Arias-Castro (2015) prove that
full metric recovery is possible given a total order-
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ing of the k-nearest neighbors (kNN) of each point,
when the dataset meets certain distributional require-
ments and for k = ω((n log n)1/2), but do not pro-
pose an algorithm to do so. Hashimoto et al. (2015)
provide an algorithm to fully recover the metric when
k = ω(n2/(d+2)(log n)d/(d+2)), and which performs well
even when k = log n. The problem of comparison se-
lection for full metric recovery is thus reduced to ef-
ficiently identifying the kNN of each point. However,
we are not aware of any kNN algorithms using only
O(nd log n) comparisons in the ordinal geometry set-
ting. Despite the vast literature on identifying the
kNN for a set, all the algorithms we have surveyed
rely on known positions or distances.

The trivial way to obtain all possible comparisons is
to sort all n points by increasing distance to each of
the n possible “heads,” for O(n2 log n) comparisons.
Alternatively, a selection algorithm can be used to ob-
tain all objects’ kNN using O(n2) comparisons. In
either case, an embedding algorithm can then be used
to (hopefully) recover the metric. When d = Ω(n),
this is the best that can be accomplished.

The present work contains the first non-trivial upper
bound on the problem when d = o(n), matching the
lower bound to (1) produce an embedding to recover
the metric down to scaling for “ideal” datasets, and
to (2) produce the input required for a high-quality
embedding for many realistic “non-ideal” datasets.
We also study the properties a dataset needs for our
method to work well, showing where future work can
generalize our approach to further classes of problems.

Most existing work on ordinal embedding, such as
Soft Ordinal Embedding, or SOE (Terada and von
Luxburg, 2014), focuses on optimizing a non-convex
Machine Learning objective within a Euclidean space
of some assumed dimensionality. We have empirically
found that even when all comparisons are consistent
with a Euclidean metric and the optimizer is given
the correct dimensionality, optimization-based meth-
ods for ordinal embedding often struggle to find a
global optimum or to deal with large datasets. We
have also found that local optima tend to produce
rankings that are nearly-random (when sorting by dis-
tance to any given object).

The present work takes on the challenges of state-of-
the-art methods, namely scalability and reliability, by
considering the underlying geometry of the problem,
and avoiding optimization at some expense of perfor-
mance. Our main contributions are:

• an algorithm to quickly produce embeddings of
moderate to high quality using computational ge-
ometry rather than optimization;
• the first published algorithm to adaptively select

a number of comparisons within a constant factor
of the lower bound which achieves nearly-perfect
embeddings for realistic datasets (d� n and “not
too sparse”); and
• the first published latent dimensionality estimator

for ordinal datasets.

We also introduce subroutines which provide convex
hull estimation, perpendicular line discovery, and a
test of affine independence.

Our approach. We build our algorithm on the fol-
lowing intuition. Suppose that for some finite dataset
X ⊂ Rd we also had access to d orthogonal “axes”,
not as actual lines or segments, but in the form of d
subsets of points A1, . . . , Ad. The points on each axis
are colinear, dense (max gap ε), and evenly-spaced.
Additionally each Ai is “long enough” so that every
point in X has a “projection” on it.

Each axis Ai contains two special “endpoints”; the Ai

points have the order-consistent property that sorting
by increasing distance from one endpoint is equivalent
to sorting by decreasing distance from the other end-
point. For each point x in X, we can approximate
its geometric projection to an axis Ai by locating the
closest point on Ai to x with a binary search (using
triplet comparisons), for a total cost of Θ(nd logm)
comparisons, where m = maxi |Ai|. The coordinate is
given by the rank of that closest axis point from an
arbitrary endpoint. Note that if the axis points are
evenly distributed, then each ordinal coordinate point
is within ε of the (rescaled) true projection on that
axis; if ε is small enough, this embedding recovers the
original metric space with arbitrary precision.

Throughout the paper, we refer to such a set of points
(Ai) as an “axis,” and to the collection of axes as a
“basis.” In general, a real dataset will not contain
evenly-spaced points along the axes of a perfect ba-
sis, but we achieve good performance with axis points
which are only approximately collinear and axes which
are only approximately orthogonal. We will show how
to find such axes as subsets of X. The axes we find, as
sets, have the order-consistent property between end-
points, so ranking is non-ambiguous. Other desirable
properties for high quality ordinal coordinates are:

(1) enough axes to account for differences between
points,

(2) axes that are closer to being orthogonal,
(3) axes that extend to the boundaries of a bounding

box for the set,
(4) points along all axes that are evenly-spaced, and
(5) gaps between points on each axis that are smaller

than gaps between off-axis points.

Note that we do not require the axes to intersect (i.e.
for d > 2 we do not need to have an origin point).



Manuscript under review by AISTATS 2017

Extreme example of 2D set with obvious basis Missed ideal basis (τ = 0.81) Located ideal basis (τ = 0.92)

Figure 1: 2D points set X (left) includes two subsets of colinear, dense, evenly-spaced, points that make obvious
long-enough axes. Middle: two axes red and blue found by our algorithm are not the best basis, but reasonable;
τ is the mean Kendall’s τ between true rankings and basis-estimated rankings. Right: ideal axis red, blue also
include few other points (criteria in Fig 2) since the gap on the colinear points is not small enough; thus τ < 1.

We address (1) through estimating affine indepen-
dence, (2) through the symmetry of sphere intersec-
tions, and (3), roughly, through finding points close
to the boundary of the convex hull of X (denoted
conv(X)), but do not directly address (4) or (5) in the
present work. For this reason, our method works best
under relatively smooth density conditions and does
not perform as well with high-dimensional datasets or
datasets with rapidly-varying densities. See Figure 1
for the impact of missing the “ideal” basis.

If ε is the radius of the largest open ball in conv(X)
which contains no members of X, we say X is ε-dense.
It is easy to show that as ε → 0 the basis our algo-
rithm finds converges to a perfect basis and thus we
fully recover the underlying metric. When our basis
is imperfect, we can still use it to efficiently perform
tasks such as finding the k-nearest neighbors of each
member of X, or producing input to the user’s favorite
embedding routine (such as SOE).

2 Finding an Approximate Basis

Algorithm 1 is our basis-finding algorithm. Each of the
d̂ axes is formed by choosing pairs of endpoints near
the boundary of X and finding points from X close
to their (linear) convex hull. The first axis is formed
using two points opposite each other on the boundary
of conv(X), using that the most-distant point from
any member of X is on this boundary. After that, we
find new axes which are likely to be orthogonal to the
previous set of axes by identifying points which are
far from the convex hull of the previous axis endpoints
(see Section 2.1). In our algorithm, rpi

[·] returned by
SortForHead(pi, oracle) is the array of the ranks of all
objects x ∈ X sorted by distance from endpoint pi.

We fully describe our algorithm in the following sub-
sections, and analyze its cost here. Line 2 uses n − 2

comparisons. Each call to SortForHead sorts all ob-
jects in Θ(n log n) comparisons. We make two calls

per axis, so we use Θ(nd̂ log n) comparisons (within

the theoretical bound as long as d̂ = O(d)).

The ĉonv function (Eq. 3) estimates the convex hull
of a set of points based on their rankings of the
other points. It uses O(n2d̂) operations (not compar-

isons), because it has to iterate over all 2d̂ rankings
for each point. The calculation on Line 12 to find
the next candidate takes O(nd̂) operations to scan the
axis endpoints’ rankings of each point in X. Thus,
ChooseBasis uses Θ(n2d̂2) total operations.

2.1 Choosing Axes

We identify axes by choosing axis endpoints which
are as far as possible from the convex hull of the
previous axis endpoints. Let P = {p1, . . . , p2d̂} be

the set of endpoints for the d̂ axes found so far.
A straightforward approach, different than ours, is
a farthest-rank-first traversal of X (FRFT) adapted
from Gonzalez (1985): choose endpoints as far as pos-
sible (in rank) from the previous axis endpoints, i.e.
by argmaxx∈X{minp∈P rp[x]}.

This forms a rank-based approximation of an ε-net,
which can be used to approximate the geometric dis-
tribution of a set of points. The axis endpoints thus
found are well-separated from each other, and tend to
lie closer to regions of higher density than the points
of an ε-net. However, our testing occasionally found
that some of the resulting axes are nearly parallel.

We present a more reliable approach. We first dis-
cuss the notions of a lens and its apex, and above-
ness. Suppose we have selected a single axis with end-
points p1 and p2, and that for all x ∈ X we find that
d(p1, x) ≤ d(p1, p2) and d(p2, x) ≤ d(p2, p1). Then the
set X lies within the lens between p1 and p2 — the
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Algorithm 1: ChooseBasis(n, oracle)

Input : n is the number of objects in the collection
oracle(a, b, c) decides whether b or c is

closer to a.
Output: A basis (A1, . . . , Ad̂), where each axis Ai

lists points near a line crossing the dataset.
1 z ← a randomly selected point ;
2 p← furthest point from z ; // first axis endpoint

3 rp[·]← SortForHead(p, oracle) ;
4 P ← {p} ;
5 for i← 1, 3, 5, . . . , n do

// Complete the (i+ 1)/2 axis

6 pi ← p ;
7 L← {x : rpj [x] ≤ rpj [pi],∀j < i} ; // Lens

8 pi+1 ← argmaxx∈L rpi [x] ; // Apex oppos. pi
9 rpi+1

[·]← SortForHead(pi+1, oracle) ;

10 d̂← (i+ 1)/2 ;
11 Ad̂ ← ĉonv({pi, pi+1}) ;

// Verify candidate for next axis

12 p← point “above” max # of points in ĉonv(P );
13 if no point is “above” any other then
14 break;
15 rp[·]← SortForHead(p, oracle) ;
16 P ← P ∪ {p} ;

17 if d̂ = 1 then
18 P ← P ∪ {pi+1} ;

// Test affine independence

19 if ĉonv(P ) = ∪z∈P ĉonv(P \ {z}) then
20 break;

21 return (A1, . . . , Ad̂) ;

intersection of the closed balls centered on p1 and p2
with radii both equal to d(p1, p2). Future ideal axis
endpoints will lie close to the apex of this lens: the set
of points A({p1, p2}), where

A(P ) ≡ {x ∈ Rd : ∀p ∈ P, d(x, p) = max
q∈P

d(p, q)} (1)

is the intersection of the (hollow) spheres centered on
vertexes P that surround P . In general on d dimen-
sions, d points will create an apex of 2 points, d − 1
points an apex of a circle, d − 2 points a sphere, etc.
A “lens” can similarly be formed by choosing a point
a ∈ X as an apex and using the distances d(p, a) for
each p ∈ P as the ball radii (“lens” is informal here,
as it is the intersection of |P | and not strictly 2 balls).

When points near the lens apex exist inX, these points
are ideal choices because they are as far as possible
from, and form orthogonal lines to, the line between
p1 and p2. FRFT will naturally choose these points,
when possible. However, these points only exist in X
when the range along all dimensions is almost equal.

We say that point p is above point q with respect to

some set P if for all a ∈ P we have d(a, p) > d(a, q).
See Figure 2 for an example. This means that q lies
in the “lens” of P with p as its apex. By Theorem 3
below, p can thus not be in conv(P ). If the set P is
fixed, above-ness is transitive: if p is above q and q is
above z, that implies p is above z.

Point p is above q, with respect to p
1
, p

2

p
1

p
2

q

p

z

Figure 2: Point p is “above” q because q is found in
the intersection of balls centered on p1 and p2 and
extending to p. This implies that p is farther from
the line than q and thus not in conv({p1, p2}).

Axis endpoints selection. The first new axis end-
point pi = p (Algorithm 1 line 12) is chosen to be above
a maximal number of points in the convex hull of prior
endpoints. If there is a point close to the apex of the
ball intersection, it will be above nearly the entire set
and will be chosen as the maximum (and our algo-
rithm will make the same choice as FRFT). If there
is no such point then we will choose a point which is
above as many points as possible, hoping for a point
above a dense region of X which also lies close to the
apex of the ball intersection. The second point pi+1

(line 8) is chosen to approximate the apex opposite the
first endpoint pi in the lens with pi as an apex.

Dimensionality estimate d̂. We stop adding axes
as soon as our next axis endpoint p does not ap-
pear to be affinely-independent of the previous axis
endpoints. Our test for affine independence relies on
Carathéodory’s Theorem, which states that any point
in the convex hull of a set of points in Rd can be ex-
pressed as a convex combination of just d+1 or fewer of
them. We define a set P containing both endpoints for
the first axis, plus the first endpoint of each additional
axis and our new candidate p. We have |P | = d̂ + 2.
Suppose we have already found d dimensions, and the
new axis endpoint is simply not in the convex hull of
the previous endpoints. Then any point in conv(P ) is
also in the convex hull of some set of all but one of
the points in P . On the other hand, if d > d̂ then
these extra hulls are the faces of a higher-dimensional
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Table 1: Dimensionality Estimates
(1,000 points, avg. of 100 runs)

True d: 1 2 3 5 8 10 20
Ball 1 2 2.11 3.66 4.22 4.54 5.53
Cube 1 2 2.37 3.74 4.44 4.58 4.78
Gaussian 1 2 2.98 3.91 4.44 4.54 4.52
Sphere 1 1 2 3.09 3.85 4.08 4.93

manifold, and we expect some of the points in that
manifold to be far enough from the convex hulls to
not be included in our ĉonv estimates.

We prove that our dimensionality estimate d̂ is always
at most the true dimensionality d and that it converges
to d as ε→ 0 in Theorem 4 in Appendix A.4. See Ta-
ble 1 for dimensionality estimates on various datasets.
Since the number of points in each dataset is the same,
as the dimensionality increases the density constant ε
grows. This causes ĉonv to be less precise and leads
us to underestimate the dimensionality.

2.2 Convex Hull Estimation

Our convex hull estimation ĉonv works because any
union of balls which all coincide in some point must
contain the convex hull of the ball centers. We prove
this as Theorem 3 in Appendex A.1.

Suppose we want to identify points from X which lie
in the convex hull of a set P = {p1, . . . , pk} ⊂ X. The
intersection of X and such a union of balls can easily
be formed by choosing some point q and taking the set

Cq(P ) ≡ {x ∈ X : ∃p ∈ P, rp[x] ≤ rp[q]}. (2)

In order to reduce false positives, we take the intersec-
tion of Cq across all possible points q as our estimate.

ĉonv(P ) = ∩q∈XCq(P ) (3)

= {x ∈ X: ∀q∈X,∃p∈P, rp[x] ≤ rp[q]} (4)

As the intersection of sets containing conv(P ) ∩ X,
we know ĉonv(P ) contains conv(P ) ∩X. Theorem 1,
proved in Appendex A.2, says that any false positives
in our estimate are close to the boundary of conv(P ).
See Figure 3 for an example of an axis we might select.

Theorem 1. Let ĉonv(A) be the estimate of conv(A)
for some A ⊆ X ⊂ Rd. If the largest empty ball in
conv(ĉonv(A)) has radius ε, and the maximum dis-
tance between any two points in A is m, then for
any c ∈ ĉonv(A) the distance to the closest point
c′ ∈ conv(A) is less than

√
ε(2m+ ε). Further, there

is no point x ∈ X such that ra[x] < ra[c] for all a ∈ A.

It is easy to show that the points in any axis are order-
consistent: increasing distance order from one axis

Convex hull estimate of two points: approximate axis

Figure 3: Red points are within ĉonv of the two
(blue) endpoints. Although some of these points are
very close together, none is “above” any other w.r.t.
the endpoints. Lenses are very thin near the line.

endpoint is decreasing distance order from the other
endpoint (matching the intuition for points along a
line). However, the points may be somewhat distant
from the line in an arbitrary direction.

2.3 Embedding Each Point

Given an approximate basis A1, . . . , Ad̂, the next step
is to embed the points within the basis. We accomplish
this without any additional comparisons.

Ideally, along each axis Ai the points would be evenly-
spaced and lie along the line between the axis end-
points. We could then embed any x ∈ X by simply
finding the index of the closest point via binary search,
since the members of Ai would be sorted as a bitonic
array: the distance to x would descend to a minimum
and then ascend. The total comparisons cost would be
O(nd̂ log n) (within the theoretical bound).

In practice, we never have such perfect axes. When
the points of X are in general position, no member
of X will be found in the convex hull of any subset
of d or fewer points and no member of Ai except the
endpoints will lie on the line. A binary search will not
find the closest point in Ai to x because the points will
be not be exactly sorted by distance to x. Further, the
closest point in Ai will often be closest simply because
it is not found on the endpoints-line, not because it is
near the projection x′ of x onto the line (Figure 4).

We really want to find the point in Ai which is closest
to x′, not closest to x. The projection x′ will be in
the center of the lens formed from the axis endpoints
with x at its apex. The lens will always contain some
member of Ai (otherwise x ∈ Ai). We select as the
ordinal coordinate of x along Ai the median index
for those axis points inside this lens.

While this may not be the point in Ai closest to x′,
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We guess that location 5 is closest to x'

x

x'1

2

3

4

5

6
7

8

9

Figure 4: The circled points are members of axis Ai.
We choose the median point within the lens beneath
x (containing 4, 5, and 6) as our guess at the closest
point to its projection, x′.

especially if the density varies greatly along Ai, it
costs no additional comparisons to select this point.
We have found that the empirical performance on our
datasets is comparable to finding the point in the lens
closest to x through a linear search.

While even in dense spaces our algorithm might not
find orthogonal axes, if the discovered axes are indeed
orthogonal we can guarantee that our embedding re-
covers the original metric with a precision depending
on the density of X and the true dimensionality.

Theorem 2. If any ball of radius ε in conv(X) con-
tains at least 1 and at most k points, and assuming
d̂ = d orthogonal axes are found which extend to the
faces of a bounding box for X, using linear search in
the lens for points’ coordinates, then there is a scaling
constant s ∈ R such that for any two points x, y ∈ X,

• the coordinate xi on any axis Ai is bounded by its
projection x′i by (s/k)xi − ε ≤ x′i ≤ sxi + ε, and

• the scaled distance estimate d̂ := s · d̂ist(x, y) is
within 2kε

√
d of the true distance, i.e.,

dist(x, y)− 2ε
√
d ≤ d̂ ≤ k(dist(x, y) + 2ε

√
d).

This is proven in the appendix. If we fix d and the di-
ameter of X in each dimension, assuming orthogonal
axes, this theorem implies that when ε → 0 the value
of |X| approaches infinity and the distances are recov-
ered, down to scaling, recovering the original metric.

3 Basis Evaluation Results

We show here that our algorithm produces good em-
beddings on real datasets, and that an optimization-
based embedding of our triples often yields an even
better result.

Datasets. We evaluate against several generated
and real datasets. In an attempt to fully exercise
our algorithm, we include some datasets which are
not well-suited to it. We answer all similarity ques-
tions based on Euclidean distances between the origi-
nal features/positions. The 3dgmm, 5dgmm, and 5dcube

datasets are random draws of 500 points from Gaus-
sian mixtures and the unit cube.

For cities, we select 500 cities by choosing the most
populous city in each country and then additional
cities from most to least populous. Cities are repre-
sented in Euclidean coordinates converted from their
latitudes and longitudes. We use continents as class
labels. All cities lie on the convex hull, so ε is the
diameter of the set. This leads to a smaller dimen-
sionality estimate and somewhat worse performance.

We use 1,000 records from MNIST Digits, treating raw
pixel values as 784 features. Digits roughly consists
of clusters of points around class labels, with gaps be-
tween them. We thus have a fairly large ε, and wildly
varying density across the dataset. We also take 1,000
records from Spambase with 57 features. Performance
on spambase is especially strong. Our basis for this
dataset outperforms all the others, although SOE was
not able to find a global optimum from our triples.

Finally, we take 2000 records from 20newsgroups, us-
ing TF-IDF scores for 34,072 terms as features. These
records are modified using the scikit-learn Python
package to remove headers, footers, and quotes, and
we only select records having at least 50 nonzero fea-
ture values. This dataset has d � n and very sparse
feature vectors. This type of distribution is ill-suited
to our algorithm, and performs the worst.

Evaluation. We evaluate by comparing all rankings
or distances between an embedding and the original
dataset. We report mean Kendall’s τ , mean kNN pre-
cision for k = dlog2 ne, and distance RMSE.

Distance RMSE (root mean squared error), is based
on the fact that in a perfect embedding all pairwise
distances would be scaled by the same constant. Recall
that d(x, y) is the distance between x and y in X, and

denote the distance in some embedding X̂ by d̂(x, y).
If X̂ recovers X, then there is some s ∈ R such that
for all points x, y ∈ X, d(x, y) ≈ sd̂(x, y). We fit an
optimal s and report the RMSE of the residuals,

rmse(X, X̂) ≡ min
s

 1

n

∑
i<j

(d(xi, xj)− sd̂(xi, xj))
2

1/2

Smaller is better and zero is perfect, but the numbers
are not comparable across different datasets.
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Table 2: Embedding Quality
∗ indicates global optimum was not found; means procedure computationally too expensive

Method Dataset d d̂# Cmp. τ knn rmse
Basis 3dgmm 3 3 38K 0.71 0.64 0.77
Basis+SOE 3dgmm 3 3 38K 0.99 0.97 0.02
Extra+SOE 3dgmm 3 3 61K 0.99 0.99 0.01
Rand+SOE 3dgmm 3 3 38K 0.95 0.81 0.11
CK 3dgmm∗ 3 3 38K -0.01 0.02 1.79
Basis 5dcube 5 3 39K 0.49 0.40 0.26
Basis+SOE 5dcube 5 6 39K 0.88 0.73 0.05
Extra+SOE 5dcube 5 6 61K 0.94 0.92 0.03
Rand+SOE 5dcube∗ 5 6 39K 0.61 0.30 0.19
CK 5dcube∗ 5 5 39K 0.01 0.02 0.34
Basis 5dgmm 5 3 39K 0.68 0.60 0.90
Basis+SOE 5dgmm 5 6 39K 0.94 0.66 0.14
Extra+SOE 5dgmm 5 6 62K 0.98 0.97 0.04
Rand+SOE 5dgmm∗ 5 6 39K 0.01 0.02 1.77
CK 5dgmm∗ 5 5 39K -0.01 0.02 1.57

Method Dataset d d̂ # Cmp. τ knn rmse
Basis 20news 34K 3 186K 0.11 0.06 0.53
Basis+SOE 20news∗ 34K 6 186K 0.01 0.01 0.34
Extra+SOE 20news∗ 34K 6 310K -0.01 0.01 0.34
Rand+SOE 20news∗ 34K 3 186K 0.01 0.01 0.44
CK 20news 34K 16 — — — —
Basis cities 3 2 28K 0.37 0.35 0.60
Basis+SOE cities 3 4 28K 0.89 0.54 0.13
Extra+SOE cities 3 4 50K 0.96 0.93 0.05
Rand+SOE cities∗ 3 4 28K 0.01 0.02 0.75
CK cities∗ 3 3 28K 0.01 0.02 0.67
Basis digits 784 6 159K 0.52 0.29 3.18
Basis+SOE digits∗ 784 12 159K 0.01 0.01 2.48
Extra+SOE digits∗ 784 12 211K 0.01 0.01 2.49
Rand+SOE digits∗ 784 12 159K 0.73 0.40 2.31
CK digits 784 10 — — — —
Basis spam 57 3 85K 0.85 0.78 471
Basis+SOE spam∗ 57 6 85K -0.01 0.01 596
Extra+SOE spam∗ 57 6 138K 0.01 0.01 596
Rand+SOE spam 57 3 85K 0.94 0.23 150
CK spam 57 10 — — — —

Experiments. Our results are in Table 2. Basis

is the embedding our geometric algorithm produces.
Basis+SOE uses the triples collected by Basis as in-
put to the Soft Ordinal Embedding (SOE) algorithm
(Terada and von Luxburg, 2014). Extra+SOE runs use
additional comparisons to improve the embedding as
described in Section 4.

SOE does very well when a global optimum is found,
but often takes many random initializations to find
one. We attempt 20 embeddings in d̂ dimensions; if
the minimal loss is above 10−3, we try again in 2d̂
dimensions and report the best of 20 embeddings in
the higher dimensionality. Even a small amount of
loss from the SOE objective can lead to a poor em-
bedding, and for several of our datasets it was simply
unable to find a global optimum or even a competitive
local optimum (at least, not in 40 attempts). Note
that zero loss is always possible for correct compar-
isons in the true dimensionality, but not necessarily in
d̂ dimensions. In general, one never knows whether
a particular loss threshold can be achieved, especially
given noisy or potentially non-Euclidean comparisons.

Baselines. We compare against two baselines. No-
tably, Basis is much faster than the baselines, com-
pleting in less than two seconds for each dataset and
often much less than one. In contrast, the SOE runs
took more than 24 hours to repeat embeddings with
new random initializations, and the CK runs took sev-

Table 3: Classification Accuracy, 5 folds

Original Embedding

Dataset d Train Test d̂ Train Test
20news 34K 0.94 0.54 3 0.21 0.08
cities 3 1 0.95 2 0.99 0.90
digits 784 1 0.84 6 0.92 0.71
spam 57 0.99 0.97 3 0.85 0.74

eral days to generate triples.

Rand+SOE picks random comparisons in round robin
style for each head until its budget is exhausted, and
then embeds them with SOE. SOE generally strug-
gled to embed these triples, but performance was good
when it worked. CK runs the CrowdKernel method
(Tamuz et al., 2011) up to the number of triples used
to build our basis, and evaluates the resulting Crowd-
Kernel embedding. We used the authors’ CrowdKernel
code, but it was not able to handle the larger datasets.
We report all datasets which completed.

As a simple test of downstream utility, we trained
Gradient Boosting classifiers on our basis embeddings
and compared the classification accuracy to classifiers
trained on the original feature space. The results can
be seen in Table 3. Performance is good even with d̂�
d, with the exception of the ill-suited 20newsgroups

(which is at least better than random).
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4 Improving the Ordinal Embedding

Once we have obtained an embedding of reasonably
high quality, it is not difficult to adaptively select new
triples to drive the quality upward. First, we pause
to consider the information that can already be in-
ferred from the triples gathered thus far. Any geomet-
ric properties implied by the triples must be true of any
embedding that satisfies them, so this helps us reason
about what we have already “told” the optimizer.

We have sorted all points from the endpoints of each
axis, and selected endpoints that are near the bound-
aries of the set. This already carries a lot of informa-
tion to an embedding algorithm. The estimates ĉonv
are fixed for any subset of axis endpoints, establish-
ing a layer of points near their hulls. We know the
set of points which are only “above” points in ĉonv,
establishing a second layer, and we similarly know the
contents of every layer up to the set boundary.

We lack information about dimensions whose extents
were too small or sparse for us to discover. We don’t
know exact distances, so we can’t immediately identify
the k-nearest neighbors of each point. With the results
of Terada and von Luxburg (2014) and Hashimoto
et al. (2015) in mind, showing good performance em-
bedding based on the kNN with k = log n, we sort
the 2k nearest points to each point within our embed-
ding, costing Θ(nk log k) additional comparisons. For
our experiments, we use k = log2 n for a total cost
of Θ(n log n log logn) additional triples. Note that if
you wish to simply identify the kNN rather than sort
them, a selection algorithm can instead be used for
Θ(n log n) new comparisons in total, staying within the
lower bound. The result is in Table 2 as the Extra+SOE
line. In all cases, the embedding quality improved.

5 Related Work

Ordinal Embedding, a.k.a. non-metric embedding or
non-metric multidimensional scaling, has been studied
for over sixty years. Optimal comparison selection,
however, is less studied. When all answers are known
in advance (i.e. from features), practitioners either use
them all, select a random subset, identify the kNN, or
sort a set of “landmark” objects. Jamieson and Nowak
(2011) suggest using embeddings to determine whether
a question can be decided from prior answers. The
only adaptive algorithm we have found which works in
practice is the CrowdKernel algorithm by Tamuz et al.
(2011). Given an intermediate embedding based on
prior answers, it greedily selects new questions for each
object to maximize the expected information gain for
the embedding objective. This method outperforms
random selection (apparently by selecting tails closer

than average to the head), but its embeddings compare
poorly to those of Soft Ordinal Embedding.

Ordinal embedding has been heavily studied, particu-
larly by the metric and kernel learning communities.
Early approaches employed semidefinite programming
(Weinberger et al., 2006; Xing et al., 2003) and/or re-
quired eigenvalue decompositions. Later approaches
focused on minimizing Bregman divergences (Davis
et al., 2007; Kulis et al., 2009; Jain et al., 2012), which
is guaranteed to find a positive semidefinite (PSD)
kernel, or on ignoring semidefiniteness until conver-
gence and projecting the output matrix to the nearest
PSD matrix (Chechik et al., 2010). Ordinal embed-
ding without features has also been studied by Agarwal
et al. (2007, 2010), who provide a flexible and modular
algorithm with proven convergence guarantees. McFee
and Lanckriet (2011) considers how to learn a simi-
larity function which is as consistent as possible with
multiple feature sets as well as ordinal constraints. Lo-
cal (and Soft) Ordinal Embedding (Terada and von
Luxburg, 2014) recovers the metric with guarantees
on accurate density recovery. Hashimoto et al. (2015)
prove metric recovery over certain directed graphs, of
including kNN adjacency graphs.

Our algorithm relies on a sort routine, so when an un-
reliable oracle is used it is natural to consider the deep
literature on crowdsourcing sort algorithms (Marcus
et al., 2011; Niu et al., 2015) and on noise-tolerant sort-
ing (Ajtai et al., 2009; Braverman and Mossel, 2008;
Hadjicostas and Lakshmanan, 2011).

6 Conclusion and Future Work

We have presented a Computational Geometric ap-
proach to Ordinal Embedding which offers new the-
oretical insights into the problem. In particular, we
have contributed approximate algorithms for dimen-
sionality estimation, tests of convex hull membership
and affine independence, and perpendicular line dis-
covery. We have combined these methods to find an
approximate basis within which points can easily be
positioned. When run on a sufficiently dense set of
relatively low dimensionality, we can reliably and effi-
ciently produce a medium-to-high quality embedding.
When an optimizer finds a global optimum for our
triples, the user obtains a high quality embedding.

While we have not “solved” the embedding or triple
selection problems and do not suggest replacing op-
timization approaches entirely, our approach provides
new insights into the geometric information contained
in a set of triples and we believe it will lead to faster
and more reliable future approaches.
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A Proofs

In the following proofs, we use B(c, r) to denote a
closed ball in Euclidean space with center c and radius
r, and conv(x1, . . . , xk) to denote the convex hull (the
set of all convex combinations) of points x1, . . . , xk.
We also use d(x, y) to denote the Euclidean distance
between points x and y.

A.1 Convex Rankings

The proofs in this section show that our approximate
convex hull contains all points from the convex hull,
and that any extra points are not too far from the
hull’s boundary. We essentially show that for any
point p outside the convex hull of a set V of points,
there is some point q inside the convex hull which is
closer to all the members of V than is q.

We first prove a useful lemma.

Lemma 1. Let V = {v1, . . . , vk} be an arbitrary set of
points in Euclidean space, and p an arbitrary point not
found inside conv(V ). There is a point q ∈ conv(V )
such that for all v ∈ V, d(v, q) < d(v, p).

Proof. Let C := conv(V ). Because C is convex, there
is some unique point q ∈ C which is closer to p than
any other point in C, so for any arbitrary vertex v ∈ V
we have d(p, v) ≥ d(p, q). Since C is convex and q is the
closest point in C to p, there is a hyperplane passing
through q perpendicular to line pq which separates C
from p. Thus, we must have either q = v or ∠pqv ≥
90◦. So edge vp is the longest in 4vpq and q is closer
to v than is p.

Next, we show that any union of balls which all have
at least one point in common will cover the convex
hull of the ball centers. For example, for an arbitrary
subset V ⊆ X ⊂ Rd, the set of all points from X
which are ranked no farther from the members of V
than some common point p will contain all the points
in conv(V ) ∩X.

We next prove Theorem 3.

Theorem 3. Let B = {B(v1, r1), . . . , B(vk, rk)} be a
set of closed balls in Rd with centers v1, . . . , vk and
radii r1, . . . , rk, respectively. If all the balls in B have
at least one point in common, then conv({v1, . . . , vk})
is a subset of their union.

Proof. Let B := ∪iB(vi, ri), let C := conv(v1, . . . , vk),
and let q be an arbitrary point in C. We will prove
that q is in at least one of the component balls in B.
By Carathéodory’s Theorem, there is some subset of
at most d + 1 centers v1, . . . , vd+1 (relabeled without

loss of generality) such that q ∈ conv(v1, . . . , vd+1).
Let C ′ = conv(v1, . . . , vd+1) ⊆ C.

By Lemma 1, there is some point p contained in each
of the d + 1 balls which is in C ′. We can partition
C ′ into d + 1 closed convex subsets by replacing each
of its vertices vi in turn with p. These subsets are
d-simplexes with d ball centers and p as their d + 1
vertices. Observe that q must fall into one of these
subsets (or more, if it falls on a boundary). Let P
be one such d-simplex containing q, and let F be the
face of the simplex formed by the d ball centers. Since
q lies in P , another simplex Q can be formed using
the same face F but with apex q instead of p. Call
the heights of simplexes P and Q the distances from
points p and q to their respective closest points in F ,
and observe that the height of Q is no greater than
the height of P . Since Q ⊆ P , they share the same
face F , and the height of Q is less than or equal to the
height of P , there must be some vertex vi of F such
that d(vi, q) ≤ d(vi, p). Thus, any q ∈ C is contained
in B.

The following corollary provides a necessary condition
for points in the convex hull of a set which we use for
convex hull estimation.

Corollary 1 (convex hull rankings). Let V =
{v1, . . . , vk} be an arbitrary set of points in Euclidean
space, and let points p and q be arbitrary points in
conv(V ). Then there is some v ∈ V such that d(v, p) ≤
d(v, q).

Proof. By Theorem 3, the union of balls centered on
the members of V whose radii extend to q contain
conv(V ). Since p is inside conv(V ), it must be within
at least one of these balls.

A.2 Convex Hull Estimation

Given an arbitrary set of points X ⊂ Rd and any sub-
set V ⊂ X, we can use Theorem 3 to identify mem-
bers of X which are close to conv(V ) in the sense that
they are either in conv(V ) or close to the boundary of
conv(V ).

For any point x ∈ X, define the set C(x) := ∪v∈V {y ∈
X : d(v, y) ≤ d(v, x)} as an estimate of the convex hull
of V . By Theorem 3, C(x) ⊆ conv(V ). However, any
individual estimate C(x) will tend to contain many
false positives. We can form a better estimate Ĉ :=
∩x∈XC(x). The following theorem shows that the false
positives of this estimate contain only points which are
close to the boundary of conv(V ).

We now prove Theorem 1.

Proof. By construction, for any points c ∈ Ĉ and x ∈
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X there is a vertex v ∈ V such that d(v, c) ≤ d(v, x).
However, by Lemma 1 we know that there are points
in conv(V ) which are closer to any v ∈ V than any
member of Ĉ which is not in conv(V ). Any point in Ĉ
which is not in conv(V ) is there because none of these
points is contained in X.

Let p ∈ Ĉ be an arbitrary false positive, not contained
in conv(V ), and let q be the closest point in conv(V )
to p. Note that since q /∈ X, we know that q is not a
member of V . This means that we tend not to make
mistakes “close to the corners” of conv(V ).

For any vertex v ∈ V let rv := d(v, p) be its distance
to p. Define the set of points closer to all members of
V than p as

Ep ≡ ∩v∈VB(v, rv). (5)

We know Ep contains no members of X because p is
a false positive. Since Ep is an intersection of balls,
when d(p, q) is greater all the radii rv are also greater
and the size of Ep is greater in all dimensions.

If d(p, q) was sufficiently large, Ep would contain a ball
of radius ε and would thus contain a member of X,
forming a contradiction. The remainder of the proof
establishes an upper bound on d(p, q) under the as-
sumption that an ε-ball centered at q is not contained
in Ep. Refer to Figure 5 for a diagram of the following
argument.

v

p

q

fh

< ε

rv

wv

Figure 5: Our construction for Theorem 1. We want
to maximize h such that d(q, f) < ε. v ∈ V is a

convex hull vertex, and p ∈ Ĉ a false positive. q is the
closest point in conv(V ) to p, and point f is collinear
with vq. We have h = d(p, q), rv = d(v, p) = d(v, f),
and z = d(v, q). By assumption, d(q, f) < ε. Note
that sometimes v and f are on the same face of

conv(V ) as q, implying that w = z.

Let v ∈ V be an arbitrary vertex, not necessarily on

the same face of conv(V ) as q. We know that rv is not
large enough that Ep can contain an ε-ball centered at
q, so a line segment passing from v to q with length rv
does not extend by ε or more past q.

Let f be the point along the line from v to q at distance
rv from v. We seek the minimum height h := d(p, q)
such that d(q, f) < ε, because at this distance an ε-ball
would (perhaps) fit in Ep.

We also define wv as the distance from v to q.

All the points are coplanar, so we proceed using
the Pythagorean theorem. q is on the boundary of
conv(V ) and p is outside of conv(V ), so we know
that ∠vqp ≥ 90◦, where we have equality when v is
on the face of conv(V ) containing q. In 4vqp, since
∠vqp ≥ 90◦ and v 6= q we have the following.

h2 ≤ r2v − w2
v (6)

< (wv + ε)2 − w2
v (7)

= ε2 + 2wvε (8)

=⇒ h <
√
ε(ε+ 2wv) (9)

In order to find h such that an ε-ball fits in Ep, we
need to choose the largest bound on h for any vertex.
For a fixed X we have a fixed ε, and the bound scales
with

√
wv. It is easy to show that the largest wv ≤ m,

wherem = diam(V ) is the maximum pairwise distance
between the members of V . This leads to the final
bound on h.

A.3 Basis Quality with high density

Proof of Theorem 2. Let x, y ∈ X be the embed-
ded (ordinal) positions of arbitrary points in X, let
xi, yi denote their ordinal coordinates along axis Ai,
and let x′i, y

′
i denote the true positions of their pro-

jections along the true (Euclidean) axis between the
endpoints of Ai.

We first consider the scaling constant s, in order to
prepare to map between positions and distances in our
ordinal space and in the underlying Euclidean space.
If the axis points’ projections onto the true axes are
evenly-spaced, then any ε-ball centered on the axis will
contain exactly k points and s = 2ε/k maps from ordi-
nal coordinates to Euclidean coordinates, i.e., for any
x on axis Ai,

x′i = sxi =
2ε

k
. (10)

When the axis points’ projections are not evenly-
spaced, we will have between one and k points in each
ε-ball centered on the axis, so we have that

2ε

k
xi ≤ x′i ≤ 2εxi. (11)
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We will choose s = 2ε and have that (sxi)/k ≤ x′i ≤
sxi for any xi on axis Ai.

For the first claim, assume that for some x ∈ X the
true position of the embedding coordinate xi is more
than ε away from the projection x′i. Since xi is the
closest point inside the lens with apex x formed with
centers in axis endpoints, it means a ball of radius ε
fits around the projection x′i. Such a ball must include
a point p ∈ X, but then p being inside this ε-ball must
be in the axis set (as it is between other axis points,
not above them) — contradiction. So we have that
the true distance between the axis point with index xi
and x′i is at most ε, and its scaled coordinate sxi is
bounded by

x′i ≤ sxi + ε, (12)

x′i ≥
s

k
xi − ε. (13)

For the second claim, using the bounds from the first
claim and assuming orthogonal axes, we have

(s/k)2 · d̂ist
2
(x, y)

=

d∑
i=1

((s/k)|xi − yi|)2

≤
d∑

i=1

(|x′i − y′i|+ 2ε)2

=

d∑
i=1

|x′i − y′i|2 + 4ε

d∑
i=1

|x′i − y′i|+ 4ε2d

≤dist2(x, y) + 4ε

√√√√d

d∑
i=1

|x′i − y′i|2 + 4ε2d (∗)

=dist2(x, y) + 2
(
dist(x, y)2ε

√
d
)

+ 4ε2d

=
(
dist(x, y) + 2ε

√
d
)2

⇒s · d̂ist(x, y) ≤ k(dist(x, y) + 2ε
√
d)

where (∗) follows because the arithmetic mean is less
than the square mean. To summarize, the distances
between two points can be considered functions of their
distances along their projections onto the axes, which
are correct to within the specified tolerance.

By the same argument starting with (1/s)dist(x, y)

we can show dist(x, y) ≤ s · d̂ist(x, y) + 2ε
√
d which

concludes the proof.

A.4 Approximate Basis Quality

In this section, we provide proofs related to the quality
of the approximate basis found by our algorithm, and
its dimensionality estimate.

We begin with the dimensionality estimate, as this
drives the upper bound for our algorithm.

Theorem 4 (dimensionality estimate). Let X =
{x1, x2, . . . } be an infinite sequence of i.i.d. draws
from some smoothly-continuous distribution over a
simply connected compact subset V ⊂ Rd. Also let
Xn = {x1, . . . , xn} be the first n draws in X , and let

d̂n be the number of axes chosen by Algorithm 1 when
the oracle answers consistently with distances between
the points in Xn. Then d̂n ≤ d for all n, and as
n→∞, d̂→ d.

Proof. Since V is bounded and simply connected and
is fully supported by the distribution, as n → ∞ the
radius ε of the largest empty ball in conv(V ) converges
to zero. By Theorem 1, this causes our convex hull
estimates ĉonv(P )→ conv(P ) for any subset P ⊂ Xn.
For the remainder of the proof, let P and Q be the sets
of axis endpoints selected by the algorithm in a given
iteration of axis selection.

In some iteration of the algorithm, let A be the set
of axis endpoints already chosen, and let p be the
next axis endpoint selected. We choose p as the point
“above” at least one point and above more points than
any other candidate. It follows from Theorem 3 that
since p is above some other point q, it does not lie in
conv(A).

If p is not affinely independent of the members of A,
the algorithm terminates. This is because ĉonv(Q)
will consist of the union of two simplexes: one with
all vertices in ĉonv(P ), and one with p as one vertex
and all members but one of P as the other vertices.
The algorithm rejects the new axis if the union of all
possible such vertices equals ĉonv(Q). Since at most
d + 1 points can be affinely independent in Rd, this
implies that d̂n ≤ d for any n.

If we have selected fewer than d axes, there will be
some point p which is affinely independent of A. For
sufficiently large n, any such p will be above points in
ĉonv(Q). The union of simplexes which we compare
to ĉonv(Q) will consist of faces of a higher-dimensional
simplex. If ε is small enough, there will be at least one
point in this simplex which is not in the union of con-
vex hull estimates, so the algorithm will not terminate
if p is selected.


