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Abstract

Practitioners of Machine Learning and related fields commonly seek out embeddings of object col-
lections into some Euclidean space. These embeddings are useful for dimensionality reduction, for data
visualization, as concrete representations of abstract notions of similarity for similarity search, or as
features for some downstream learning task such as web search or sentiment analysis. A wide array of
such techniques exist, ranging from traditional (PCA, MDS) to trendy (word2vec, deep learning).

While most existing techniques rely on preserving some type of exact numeric data (feature values,
or estimates of various statistics), I propose to develop and apply large-scale techniques for embedding
and similarity search using purely ordinal data (e.g. “object a is more similar to b than to c”). Recent
theoretical advances show that ordinal data does not inherently lose information, in the sense that, when
carefully applied to an appropriate dataset, there is an embedding satisfying ordinality which is unique
up to similarity transforms (scaling, translation, reflection, and rotation). Further, ordinality is often a
more natural way to represent the common goal of finding an embedding which preserves some notion
of similarity without taking noisy statistical estimates too literally.

The work I propose focuses on three tasks: selecting the minimal ordinal data needed to produce a
high-quality embedding, embedding large-scale datasets of high dimensionality, and developing ordinal
embeddings that depend on contextual features for, e.g., recommender systems.

1 Introduction

A broad variety of tasks in Machine Learning (ML), Natural Language Processing (NLP), and Information
Retrieval (IR) depend on some underlying notion of similarity between objects. Supervised learning attempts
to assign labels to objects based on a notion of feature similarity, while unsupervised learning attempts to
discover hidden patterns of similarity between objects. IR involves searching for documents which are topi-
cally similar to a query, and many NLP pipelines rely on similarity between words, documents, translations,
paraphrases, and so on.

These various notions of similarity are often made concrete by assigning to each object a position within
some metric space. These positions might take the form of a feature representation (which one hopes
corresponds somehow to the desired notion of similarity), or can be discovered in the course of learning by
optimizing some notion of similarity based on concrete data (e.g. positioning words within a Euclidean space
so they are near other words which appear in similar grammatical contexts).

My work develops a set of tools for positioning objects into Euclidean space, with both practical and
theoretical contributions. Specifically, I focus on Ordinal Embedding, which aims to place objects into a
configuration that preserves some set of ordinal constraints (where the order is derived from some notion of
similarity, e.g. observed user preferences). The most commonly-used type of ordinal constraint is a triple
(a, b, c) of embedded objects, meaning that object a should be placed closer to object b than to object c. To
be precise, we deal with a set of constraints of the form

‖a− b‖ < ‖a− c‖,

where ‖ · ‖ denotes the Euclidean norm within the embedding.
In practice, Ordinal Embedding methods are currently used primarily with crowdsourced comparisons

over small object collections. For example, in a typical task one might ask people to compare three facial
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expressions by identifying the pair which exhibits more similar emotions. The embedding derived from
many such comparisons can then reveal a global structure across the spectrum of emotions. There are also
applications to recommendation systems: human assessors might be asked which of two movies is a better
suggestion for a consumer who already likes a certain movie. Such an embedding of movies could be used not
only for making movie recommendations, but also to seek particular properties of those movies to explain
why they are similar. In my work, I propose to extend these methods to more general embedding tasks
over similarity functions that derive from some existing dataset rather than from human comparisons. In
particular, I aim to show that ordinal embedding is a natural tool for capturing different notions of semantic
similarity between text which can supplement existing approaches to estimating text similarity.

I propose to address four specific questions related to this embedding task.

1. (Active learning) What is the minimal set of comparisons needed to fully specify an embedding, and
how can we adaptively select such comparisons?

2. (Embedding) Given a set of such comparisons, how can we efficiently find an embedding of a (very
large, high-dimensional) dataset which satisfies as many constraints as possible?

3. (Ordinal Geometry) Can we infer some of the geometric structure of the data from a set of comparisons?
For example, can we prove whether a Euclidean embedding into a given number of dimensions is
possible, or can we identify the nearest neighbors of an arbitrary object?

4. (Text Similarity) How might we apply such an embedding method toward text understanding, similarity
search, or other tasks in IR and NLP?

I have already made substantial progress toward answering the first three questions, as I will show
in Section 2. My proposed work to complete my thesis amounts to first completing and publishing this
preliminary work, and then applying the results toward improvements in large-scale analysis of text similarity
for IR and NLP.

1.1 Mathematical Preliminaries and Notation

This section provides a brief primer on the relevant geometry, and introduces the notation we use throughout
the document. Refer to Table 1 for a quick reference.

We take as input some sequence of objects X = x1, x2, . . . . These objects could be anything: movies, text
documents, photographs of faces, etc. While we conceptually have an infinite sequence, in practice we have
only the first n objects, Xn = {x1, . . . , xn}. Furthermore, we are only provided with the object identifiers
{1, . . . , n} =: [n]. Although object features may be available, when they are we assume that they are used
to answer similarity comparisons and that all relevant feature data is thus made available through ordinal
comparisons.

We also have access to some comparison oracle, which is a function cmp(a, b, c) : [n]×[n]×[n]→ {−1,+1}
which indicates whether a is more similar to b or to c (i.e. b if cmp(a, b, c) = −1, c if cmp(a, b, c) = +1).
We will sometimes allow the oracle to provide additional answers, such as “unknown,” but only when we
explicitly say so. In practice, the comparison oracle is typically implemented as a crowdsourcing system in
which comparison results are inferred by combining answers from multiple human assessors. Alternatively,
comparison outcomes could be determined by some mathematical model run on an existing dataset (e.g.,
for word similarity, word b might be chosen as more similar to word a if the two words occur in the same
grammatical contexts more often). A hybrid model is even possible, e.g. using human assessors only to
clarify when the feature representation does not provide a clear comparison, but this possibility has not yet
been explored in the literature and we do not consider it.

We assume that comparisons are transitive, that each comparison has a correct answer cmp∗(a, b, c),
and that for some (possibly unknown) dimensionality d there is an embedding Y ∗ ∈ Rn×d of Xn which
reproduces the correct comparison outcomes in the sense that

cmp∗(a, b, c) = −1 ⇐⇒ ‖ya − yb‖ < ‖ya − yc‖ and cmp∗(a, b, c) = +1 ⇐⇒ ‖ya − yb‖ > ‖ya − yc‖, (1)

where yi denotes the position of xi in Y ∗. Indeed, it is well known that any ordering of pairwise distances can
be embedded within Rn−2 [Borg and Groenen, 2005], so this is always the case (even for noisy comparisons).
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Table 1: Notation Reference

Name/Symbol Type/Value Meaning
X {x1, x2, . . .} The (infinite) sequence of possible objects.
Xn {x1, . . . , xn} The n objects we have access to.
[n] {1, . . . , n} The set of object identifiers.

cmp(a, b, c) [n]× [n]× [n]→ {−1,+1} A (possibly noisy) comparison oracle.
cmp∗(a, b, c) [n]× [n]× [n]→ {−1,+1} A noise-free comparison oracle.

Y ∗ Rn×d An embedding consistent with all true comparisons.
d∗ 1 ≤ d∗ ≤ n− 2 The smallest dimensionality such that Y ∗ ∈ Rn×d exists.
T {(a, b, c), . . .} for a, b, c ∈ [n] A set of comparison triples.
YT ,d Subset of Rn×d The embeddings in Rd consistent with T by Eq. 1.
δa,b ‖ya − yb‖ Euclidean distance between two points in (“true”) Y ∗

d̂a,b ‖ŷa − ŷb‖ Euclidean distance between two points in embedding Ŷ
ra(b) 0, 1, . . . , n− 1 Rank of xb when Xn are sorted by distance from xa.

It is more interesting to consider whether there is an embedding into some dimensionality d � n. We will
denote by d∗ the smallest dimensionality such that an embedding Y ∗ ∈ Rn×d∗

exists which satisfies Eq. 1.
The correct embedding Y ∗ is not unique. It is not hard to see that any embedding which rotates,

reflects, translates, or scales Y ∗ is also consistent with the same comparisons. Such transformations are
called similarity transformations, isotonic transformations, or Procrustes transformations. This provides one
common way to evaluate how well a proposed embedding reproduces some gold standard embedding. Given a
gold standard embedding Y ∗ and a proposed embedding Ŷ , one can calculate the Procrustes transformation
of Ŷ which makes it match Y ∗ as closely as possible (see [Borg and Groenen, 2005] for details). The evaluation
can then measure how far the points in the transformed matrix Ŷ are from their correct positions in Y ∗.

Even disregarding similarity transformations, Y ∗ is still not unique. Each point in the embedding can
be perturbed slightly without changing its ordering relative to the other points, and so without violating
any comparisons. This is particularly true when we’re dealing with a small number of objects, or with an
incomplete set of comparisons. Let T = {(a, b, c), . . .} be a set of comparison triples (or just “triples”), with
a, b, c ∈ [n] and each triple meaning that object xa is more similar to object xb than to object xc (that is,
that cmp∗(a, b, c) = −1). For such a set of triples, let YT ,d be the set of all embeddings into Rd which are
consistent with the triples in T in the sense defined by Eq. 1. We explore at length how to select a small
subset T of all possible (correct) triples so that any embedding in YT ,d∗ is close to Y ∗.

We also introduce a few other conventions. We will often assume that some Y ∗ is the “true” embedding,
especially when comparisons are answered based on some available data rather than from crowdsourcing.
We denote by δa,b the Euclidean distance between points xa and xb in Y ∗, and by d̂a,b the points’ Euclidean

distance in some embedding Ŷ . We sometimes rank the members of Xn by increasing distance from some
“anchor” point xa, and refer to the rank of an arbitrary point xb as ra(b). We define ra(a) = 0; the nearest
neighbor of xa is b : ra(b) = 1, the k-nearest neighbors are {b : 0 < ra(b) ≤ k}, and so on.

Geometrically speaking, each triple (a, b, c) can be viewed as a constraint on any of the three points.

• xa must lie in the halfspace containing xb and defined by the hyperplane orthogonal to the vector
halfway from xc to xb.

• xb must lie within the ball centered on xa and with xc on its boundary (i.e. with radius δac).

• xc must lie outside the ball centered on xa and with xb on its boundary (i.e. with radius δab).

1.2 Related Work

The problem of finding an embedding consistent with ordinal data is classically known as Nonmetric Mul-
tidimensional Scaling (NMDS). It was first formulated and addressed by Shepard [1962a,b] and Kruskal
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[1964a,b]. For a thorough treatment of classical approaches in this field, see Borg and Groenen [2005]. It was
developed as a means for testing hypotheses in psychology and social sciences, and the original applications
dealt with very small collections of datasets (generally n < 100). Typically, similarity data about all pairs
of objects were collected from human assessors by various means, and a n × n dissimilarity matrix was
constructed whose entries pij were larger when items i and j were considered less similar by the assessors.
It is common to treat the numeric values of the entries pij as meaningless in themselves, and simply to
reconstruct their order in an embedding. This focus on ordinality rather than numeric values is what is
meant by “nonmetric.”

Distance Geometry is closely related, and is treated extensively by Liberti et al. [2012] and Dattorro
[2016]. The primary objective here can be viewed as a matrix completion task: given some of the pairwise
distances δij between objects, construct a complete distance matrix of minimal rank. Alternatively, one
might seek an embedding which recovers the known pairwise distances. It turns out that such a distance
matrix of rank r can easily be embedded into Rr, e.g. using the methods of Sippl and Scheraga [1985, 1986].
These works also prove conditions showing when an embedding of a given dimensionality which satisfies the
distance matrix exists, and address the important case of reconstructing a rank r distance matrix given exact
distances from all objects to just r+ 1 affinely-independent objects. When only noisy distance estimates are
available, producing an embedding is still straightforward using (metric) Multidimensional Scaling (MDS).

Ordinal Embedding. Ordinal embedding has been heavily studied, particularly by the metric and kernel
learning communities. Metric and kernel learning focus on finding linear transformations of known features
to produce a Mahalanobis distance (matrix) which is consistent with ordinal constraints. It differs from our
work in that it focuses on transforming existing features, rather than on positioning points entirely from
ordinal data. Early approaches employed semidefinite programming [Weinberger et al., 2006, Xing et al.,
2003] and/or required eigenvalue decompositions, which are computationally expensive for large datasets.
Later approaches focused on minimizing Bregman divergences [Davis et al., 2007, Kulis et al., 2009, Jain
et al., 2012], which is guaranteed to find a positive semidefinite (PSD) kernel, or on ignoring semidefiniteness
until convergence and projecting the output matrix to the nearest PSD matrix [Chechik et al., 2010]. The
latter work focuses on the large-scale setting of image retrieval, exploiting feature sparsity and relaxing the
need for semidefiniteness for more efficient optimization.

Ordinal embedding without features has been studied by Agarwal et al. [2007, 2010], who provide a flexible
and modular algorithm with proven convergence guarantees. McFee and Lanckriet [2011] consider how to
learn a similarity function which is as consistent as possible with multiple sets of features and of ordinal
constraints. Another approach, tailored to crowdsourcing and based on explaining disagreement between
human assessors, was developed by Tamuz et al. [2011] and extended by Van der Maaten and Weinberger
[2012]. These models assume multiple noisy observations of each triple and employ the modeling assumption
that disagreement stems entirely from comparing nearly-equal similarities. We explore alternatives to this
assumption in Section 2.1.1.

A few more recent models show promise in recovering exact point positions. Local (and Soft) Ordinal
Embedding [Terada and von Luxburg, 2014] provide embeddings with guarantees on accurate density re-
covery. Hashimoto et al. [2015] prove metric recovery results over certain directed graphs, including kNN
adjacency graphs, using an approach based on random walks.

Triple Selection. Another topic we explore in some depth is the problem of identifying a minimal subset
of ordinal comparisons which will lead embedding algorithms to the best possible solution. As we have
mentioned, the original applications of Ordinal Embedding were often studies in psychology and the social
sciences. Several of these experiments are described in Borg and Groenen [2005]. Human assessors were
sometimes asked triple comparisons (i.e. choosing which of two objects is most similar to a third), and were
sometimes given a stack of cards and asked to divide them into a “more similar” group and a “less similar”
group. This splitting process was repeated on each group until assessors could no longer meaningfully
separate the cards. A partial ordering of pairwise similarities was then inferred from the step at which a
given pair of cards was separated.

In more modern crowdsourcing applications, it is common practice to simply select triple comparisons
at random. However, Jamieson and Nowak [2011] prove that exact positions cannot be recovered using less
than Ω(n3) of the O(n3) possible triples, so this strategy is far from optimal. Indeed, the same paper proves
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that at least Ω(d∗n log n) comparisons are necessary when they are selected adaptively, and the authors
conjecture a matching upper bound. The algorithm they suggest for this is very impractical, however. They
propose to iterate through all possible triples; at each question, one would seek an embedding to satisfy
all known triples so far, plus one additional triple representing one of the answers to the new question. If
embedding exist which satisfying both possible answers, the triple would be sent for assessment. One reason
this does not work in practice is that no known embedding routine can reliably find an embedding satisfying
all triples, even when one exists.

There has been substantial recent progress in proving recovery results for different subsets of triples. The
first such result was in Terada and von Luxburg [2014], showing that the correct embedding can be recovered
from a kNN adjacency matrix, which implies that O(nk(n − k)) = O(n2) triples are sufficient. A followup
work, Kleindessner and von Luxburg [2014], proved the long-standing conjecture that, under reasonable
distributional assumptions, an embedding of a sufficiently large number of objects which preserves the total
ordering of pairwise distances between all objects must place all objects to within ε of their correct positions,
where ε → 0 as n → ∞. We will subsequently refer to this as “recovering the embedding to within small
ε,” or simply as “recovering the embedding.” The subsequent paper by Arias-Castro [2015] proved similar
recovery results for embeddings preserving smaller subsets of ordinal data. It first proves that preserving
all triples suffices to recover the embedding (note that in general the total ordering of pairwise distances is
not implied by the complete set of triples), and then it proves (among other results) that preserving a total
ordering of each point’s k-nearest neighbors, for certain values of k, recovers the embedding. This confirms
the results of Terada and von Luxburg [2014] that local comparisons suffice for full embedding recovery. This
is very important in practice, because it permits full recovery even for datasets where comparison questions
become meaningless when objects are too dissimilar. We propose to exploit this fact in Section 3.2.1.

Only a few authors have proposed approaches for selecting triple comparisons beyond random selection.
The main paper along this vein is Tamuz et al. [2011], which proposes an active learning strategy which
selects the next triple to maximize the expected information gain for their worker response model (discussed
above). We have tested this algorithm extensively and with various modifications, and found that it is indeed
significantly better than random question selection. However, the best embeddings from the triples it selects
do not come particularly close to full embedding recovery, so there is room for improvement. We propose
several alternative algorithms in Sections 2.1.2 and 3.1.

Ordinal Geometry. Our final major area of focus is studying the geometry implied by a set of triples,
noting that any geometric property implied by the triples must appear in any embedding which preserves
those triples. There are only a few results published in this area. Kleindessner and von Luxburg [2015]
provide a dimensionality estimation tool based on the k-nearest neighbors adjacency graph, which can be
obtained from triple comparisons. Kleindessner and von Luxburg [2016b] employ the lens depth function,
which can be calculated from triples, to perform standard Machine Learning tasks such as classification and
clustering. Finally, Kleindessner and von Luxburg [2016a] provide kernel functions which can be calculated
directly from triples, taking advantage of a recent proof that a valid kernel can be computed from Kendall’s
tau. The dissimilarity between two objects is calculated based on an estimate of the Kendall’s tau value for
the rankings of all objects by distance to each of the two objects being compared.

2 Preliminary Work

I have organized the discussion of my preliminary results around the four main questions I proposed to
address in the introduction. Proposed extensions of this work are discussed in Section 3.

2.1 Active Learning

The state of the art for selecting triple questions for ordinal embedding is somewhat lacking. In practice,
triple questions are often selected at random. To date, there is only one method proposed in the literature
which outperforms random triple selection — namely, the Crowd Kernel method of Tamuz et al. [2011]. We
have found that this method outperforms random triple selection, but not by a wide margin. In fact, it
is currently an open question whether it is possible to do better. Jain et al. [2016] prove an upper bound
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on expected loss for a certain class of embedding models which begins to give acceptable bounds when
O(d∗n log n) random triples are selected, and Jamieson and Nowak [2011] have already proven that at least
Ω(d∗n log n) adaptive comparisons are required in order to fully recover all point positions.

In light of this, one might suppose that there is little to be gained by further studying the triple selection
question. However, this conclusion is unsatisfying. First, the expected loss bounds proven by Jain et al. [2016]
make no guarantee that similar distances will be well-represented; the class of models they consider supposes
that the probability of an incorrect answer increases as the distances dist(a, b) and dist(a, c) approach each
other. This is based on a human response model which supposes that very similar distances are hard to
precisely compare, and this response model does not apply in all cases for Ordinal Embedding. Second,
there are times when arbitrary triple comparisons cannot be answered, as I will discuss below, and in this
case one desires a more adaptable approach to triple selection. Third, triple selection algorithms based on
an understanding of the underlying geometry are of both theoretical and practical interest: they may reveal
properties such as which regions of the embedding are already well-determined by the existing triples or how
to develop a better embedding algorithm. Indeed, these theoretical concerns motivate the Ordinal Geometry
portion of this document, in Sections 2.3 and 3.3.

2.1.1 User Response Models

This section describes the unpublished work in Anderton et al. [2014]. Our initial interest in Ordinal
Embedding was in exploring whether existing methods, particularly those of Tamuz et al. [2011], could be
applied to use crowdsourced similarity assessments to embed text fragments from web documents (“nuggets”).
We ran a lab study answering triple comparison questions, asking assessors to answer entailment questions
such as, “Does nugget b or c contain more information in common with nugget a?” Despite our efforts to
preprocess the nuggets so as to include many nuggets with similar information, the most common response
by far was that neither b nor c contained anything in common with a. Observing that the nuggets all shared
some common information, as they were all selected to be on the same topic, we concluded that the problem
was that workers could only meaningfully compare nuggets when they are similar enough to have obvious
information in common. In short, workers could answer only local questions (where all objects are sufficiently
similar), and the nuggets in most triples were too different to be answerable.

We decided to update the embedding model to account for this locality requirement. The original model
gives the probability that a worker will say that b is more similar to a than is c as

p̂abc =
λ+ δ2ac

2λ+ δ2ab + δ2ac
, (2)

recalling that δ2ab denotes the squared Euclidean distance between objects a and b in the “correct” embedding
Y ∗, and where λ ∈ R+ is a smoothing parameter. Our model introduced a latent distance threshold τ
meaning that a given triple is likely to be judged unanswerable when both b and c have distance more than
τ away from a. Our model gives the probability that the user would say neither b nor c is similar to a and
the probability that the user would prefer b over c as

p̂neither =
µ+ δ2ab

µ+ τ2 + δ2ab
· µ+ δ2ac
µ+ τ2 + δ2ac

, p̂abc = (1− p̂neither) · λ+ δ2ac
2λ+ δ2ab + δ2ac

. (3)

with µ ∈ R+ an additional smoothing parameter.
Not knowing how to explain nugget entailment to crowdsourcing workers, we instead built two simpler

collections to assess. Each collection contained 100 objects; the first contained popular movies, and the second
contained foods from various cuisines around the world. In both cases, workers were asked to recommend
either item b or c as a substitute for item a (e.g., “Your friend calls saying they wanted to see Movie a, but
the tickets were sold out, and asks whether they would enjoy Movie b or Movie c more.”). We compared
results on the original model, with users forced to make a decision, to an updated model where users could
say “neither b nor c is a good replacement for a.” We selected triples using an active learning method similar
to the Crowd Kernel method but updated to use our model, and during embedding we estimated the distance
threshold d along with the object positions using a quasi-Newton optimization algorithm.

Embedding results for these two datasets appear in Figure 1. We also evaluate the prediction accuracy
of our response model on held-out triples in Figure 2. Although we outperformed the Crowd Kernel baseline
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Figure 1: Embeddings into R2 using our updated model. Axis and cluster labels are speculative. Points are
colored based on a hierarchical clustering of the objects.
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Figure 2: Prediction accuracy of held-out triples based on embeddings. To ensure comparable results, the
Three Answers model was forced to choose either b or c, so random guessing has an accuracy of 1/2 for
either model.

for the movies dataset, the foods dataset did not fare as well. We speculate that this may be because
people are very well-versed in the detailed classification of movies; movie genres and sub-genres are widely
discussed. Foods, on the other hand, present more ambiguity: is a hamburger more similar to a steak or to
a ham sandwich? In this case, it could be that disagreement between users was more significant than the
incomparability of triples.

To better handle user disagreement, we developed another modification of our model to account for user
preferences. This model introduced a per-user scaling factor for each dimension of the embedding to reflect
users’ different sensitivities to different aspects of the objects under comparison. For example, a vegetarian
would find some foods unacceptable substitutes for others despite being otherwise similar, and movie-goers
may differ in the details they consider when comparing films. Our user model employs the same probabilities
from Eq. 3, but with a per-user distance δ2k,ab reflecting additional parameters for user k’s scaling of the
embedding dimensions. We also trained a distance threshold parameter τk individually for each user. This
model has a General Kernel, which reflects the embedding with unscaled dimensions shared by all users, and
for each user a Personalized Kernel with the dimensions scaled with the user’s parameters. Learning curves
for this updated model are shown in Figure 3. User models helped somewhat, but performance on the foods
dataset still does not particularly recommend our method.

To summarize this work, we created a response model which has a built-in capacity to allow users to say
“neither b nor c is similar to a.” This yielded improvements for our movies dataset, but no clear improvement
for the foods dataset. We also added per-user notions of how different objects must be before they seem too
dissimilar to compare, and of per-user scaling of each dimension, again yielding improvements for movies but
not for foods. We submitted this work for publication to KDD in 2014, but it was not accepted. While we
believe there is promise to per-user response models and response models which attempt to select questions
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Figure 3: Prediction accuracy of held-out triples using user model. Note that models can choose b, c, or
“neither,” so random guessing gives an accuracy of 1/3.

that users can answer, we have not pursued this work any further. Instead, we turned to explore the more
basic question of selecting a minimal set of triples in the simpler case when the questions are all answered
reliably.

2.1.2 Rank-based Traversal and Efficient Sorting

This section describes the unpublished work in Anderton et al. [2016b]. In this work, we considered the
problem of selecting a small set of triples T = {(a, b, c), . . .} adequate to achieve a high-quality embedding.
The lower bound of Jamieson and Nowak [2011] has that Ω(d∗n log n) triples are needed to precisely position
all points, but it is unknown what quality can be achieved with fewer triples. They prove in the same paper
that when triples are selected at random, Ω(n3) are needed to precisely position all points. It is not clear
how this relates to the recent work by Jain et al. [2016] showing that expected model likelihood becomes
“small” when only O(d∗n log n) random triples are collected.

We observe that all triples can be recovered (via transitivity) using O(n2 log n) comparisons, simply by
treating each point in turn as an anchor xa and sorting the others by increasing distance to xa. When
d∗ = Ω(n), this is already asymptotically the best we can do. However, we propose a better algorithm for
the case when d∗ � n which we conjecture to recover all triples with just O(n2) triples collected. One would
typically stop early, as a good embedding can be achieved with a much smaller number of triples when
collected in the order we specify.

Our algorithm is easy to understand and implement. We strategically choose some anchor xa and sort
all the other points by their distances to xa. We then use the ordinal information learned so far to choose
the next anchor and repeat the process. By selecting widely-spread anchors, we rapidly learn about the
ordering in all regions and dimensions of the space. For the first O(d∗) anchors, we use O(n log n) triples per
anchor to sort all points by the distance to the anchor. Empirically speaking, after O(d∗) anchors the current
embedding gives a good partially-sorted list of all points by embedded distance to the new anchor. We are
thus able to adaptively sort using only O(n) triples per anchor on average when d∗ � n. Our testing suggests
that the algorithm needs only O(d∗n log n) adaptive triples to achieve a “good” embedding (matching the
lower bound), and linear comparisons per anchor thereafter to improve the embedding. An embedding of
triples selected by our algorithm as compared to randomly-selected triples can be seen in Figure 4.

Our Algorithm. We now state our algorithm more precisely. We visit each object in the collection in
farthest-rank-first traversal (FRFT) order, as specified in Section 2.3.1. This traversal order requires us to
sort the collection for each item we visit. It chooses points which are “as far as possible” from the previously-
visited points; its first few points are on or near the convex hull of the collection, and subsequent points
tend to be evenly-spread throughout the interior. We improve from O(n2 log n) to O(n2) comparisons by a
careful choice of sort algorithm and initial permutation of objects for each sort operation.

We make use of the fact that a nearly-sorted list can be completely sorted using just O(n) comparisons.
In order to sort, we first embed the collection using the Soft Ordinal Embedding (SOE) algorithm [Terada
and von Luxburg, 2014] on the triples collected so far. We then sort the objects by increasing distance
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Figure 4: Embedding error comparison for two sets of triples on a 3d dataset with 500 cities of the world.
Circle radii show average distance error for a given city, and green asterisks denote anchors used by the
FRFT algorithm.

to the new anchor within the embedding, and use that order as our initial permutation for our sort algo-
rithm. After testing many sort algorithms empirically, we found that Splaysort [Moffat et al., 1996] used
the fewest comparisons. However, all such adaptive sort algorithms tend to waste comparisons when the
initial permutation is random. As a further (constant factor) enhancement, we recommend using Mergesort
for the first few rounds, and switching to Splaysort once the initial permutation and the final sorted list are
similar enough. We suggest using the Reg disorder criterion, defined in Moffat et al. [1996], for this purpose.
We show how this criterion drops from anchor to anchor in Figure 5. Splaysort uses a linear number of
comparisons once this value is low enough.
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Figure 5: Anchor number versus permutation disorder on synthetic data. The datasets from left to right are
a 3D GMM, a 5D GMM, and a 5D cube. The spikes correspond to low-quality embeddings, which can be
avoided by repeating the embedding process until a low-loss solution is found.

Evaluation Criteria. For each of our experiments, comparison questions were answered based on true
object positions in some configuration we hoped to recover. We evaluated a resulting embedding by com-
paring it to the true point positions. We used two evaluation measures: one based on recovering pairwise
distances between points, and one based on recovering the rankings of the points by distance from each of
the objects.

Our first measure, Distance RMSE (root mean squared error), is based on the fact that in a perfect
embedding all pairwise distances would be scaled by the same constant. That is, there is some scaling
constant s ∈ R such that for all points i, j ∈ [n], δi,j ≈ sd̂i,j . We know the exact pairwise distances for our
datasets, so we fit an optimal ŝ to the embedding distances and report the RMSE of the residuals,

drmse(Y ∗, Ŷ ) ≡ min
ŝ

 1

n

∑
i<j

(δi,j − ŝd̂i,j)2
1/2

(4)
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This value measures the average “warping” of the embedding compared to the real positions. Smaller is
better, and zero is perfect. However, as the value is not normalized against the “size” of the embedding
values are not comparable for different datasets.

Distance RMSE tends to be more affected by errors for larger distances, and we wish to also measure
performance on the other end of the spectrum. We are also interested in the ability to predict the ranking
of Xn by distance from any point in the embedding. Our second measure achieves both. τAP , introduced by
Yilmaz et al. [2008] and commonly used for Information Retrieval, is a top-heavy rank correlation coefficient
similar to Kendall’s τ , but which places more weight on correctly ranking the beginning of the list (e.g. at
shorter distances). Like Kendall’s τ , the perfect ranking has τAP = +1, a random permutation has τAP close
to zero, and a reverse permutation has τAP = −1. It can be thought of as the expected value of the following
random variable T : select a point j ∈ [n] uniformly at random, then select another point i uniformly from
the set of points ranked before j. Let T be an indicator variable which is 1 when i is ranked before j in
the correct ranking and 0 otherwise. We report the mean τAP value of the rankings of all points in an
embedding.

Empirical Results. We ran our algorithm on four datasets with small dimensionality: GMMs in 3D and
5D, a 5D cube, and a dataset of 500 city positions around the world, represented in 3D Euclidean space
(taking the planet’s center as the origin). Due to time constraints when preparing our paper, we were not
able to provide results on larger datasets. This speaks to the larger challenge of efficiently embedding large
collections, which we later consider in Sections 2.2 and 3.2.

We compared the following algorithms for question selection. Results are shown in Figure 6.

• Random Tails iterates over all points in round-robin fashion, adding a randomly selected triple (a, b, c) :
δa,b < δa,c for each. This simulates the random question method commonly used in practice.

• Crowd Kernel is the authors’ implementation of the “Crowd Kernel” algorithm [Tamuz et al., 2011].
However, instead of embedding using the authors’ algorithm, we embed with SOE for comparable
results.

• FRFT Ranking visits the points in FRFT order and adds the n − 2 triples expressing the correct
order of all points by distance to the anchor. This requires prior access to correct rankings, e.g. when
comparisons are based on a fixed dataset.

• FRFT Adaptive Sort is the algorithm described above. In contrast with FRFT Ranking, it is well-suited
to crowdsourcing.

• Landmarks visits points (“landmarks”) in FRFT order. When each point is visited, 2n triples are
added to insert the new point into the correct position in the rankings of all other points with respect
to the previous landmarks. This requires prior access to correct rankings.

• kNN also iterates over all points in round-robin fashion. In the kth iteration, it adds the triple
δa,b < δa,c, where the ranks ra(b) = k and ra(c) = k+ 1. Thus, kn triples express the total ordering of
each point’s k-nearest neighbors. This requires prior access to correct rankings.

We found that the FRFT Ranking algorithm outperforms the others by a wide margin, in terms of
converging to nearly-perfect embeddings with small subsets of triples. FRFT Adaptive Sort is close behind.

The performance of the Crowd Kernel algorithm is disappointing on these data. We generally found the
algorithm to be quite competitive on other datasets, outperforming Random Tails, as seen in the 3D GMM
results. It is not clear what holds the algorithm back for the other datasets.

This method shows promise, particularly with respect to the FRFT order. However, the need to embed
the set after sorting for each anchor can greatly slow the algorithm, and the need to sort the entire set for
each anchor is likely “wasting” triples when the permutation in the embedding is already nearly correct.
Surely many of these triples could be inferred from the triples already collected, if we only knew how. These
considerations motivated our subsequent work.
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Figure 6: Learning curves for all
datasets.

FRFT Ranking and FRFT
Adaptive Sort can be embedded
successfully more consistently,
and achieve lower RMSE and
higher τ -AP.

The kNN algorithm is competi-
tive when it can be embedded
well. However, it would require
more comparisons when triples
are not known in advance.

Landmarks can almost never
be embedded successfully. It
also suffers from an inability to
distinguish between points when
a small number of landmarks is
used.

Random Tails and Crowd
Kernel sometimes have an early
advantage over FRFT Adaptive
Sort, but after an initial period
of rapid convergence they slow
down. Theory suggests they
take O(n3) triples to converge.

2.2 Embedding

The work in this section continues the task of finding a small subset of comparisons to embed the set.
However, our adaptive algorithms for choosing comparisons are based on geometric insights into the correct
embeddings and often suggest better embedding methods. There seems to be a natural interaction between
comparison selection and embedding algorithms. In this section, we explore embedding methods which are
informed by the comparison selection process and thus also approach minimal sets of comparisons.
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2.2.1 Direct Embedding through Basis Estimation

This section describes the unpublished work in Anderton et al. [2016a]. We propose an algorithm to embed
a set directly from the triples, without optimizing any machine learning objective. These embeddings can
be produced very rapidly, using just O(d∗n log n) triples and Θ(n2d∗2) total operations. This compares very
well to optimization-based embedders, many of which take at least O(n2) operations per learning iteration
and which typically require thousands of iterations to converge.

However, our embeddings are of lesser quality than those achieved when an optimization algorithm such
as Soft Ordinal Embedding [Terada and von Luxburg, 2014] converges to a global optimum. Our algorithm
is of interest for its theoretical contributions, as a means of selecting O(d∗n log n) triples adaptively which
yield good embeddings in practice, and as an embedding algorithm which works even when optimizers fail
to find a good local optimum. We find that such optimization failures are typical when the number of
parameters n× d is sufficiently large. Repeated random initialization can help, but the number of attempts
required to find a good embedding seems to grow with the number of parameters, so in practice this is the
first embedding method which finds a better-than-random embedding for large sets.

General Approach. Before describing our embedding algorithm, it is helpful to explain the exact algo-
rithm which it approximates. Ideally, we would first identify a set of orthogonal line segments which each
span the full space to serve as our “axes.” These segments need not coincide at the origin; it suffices for each
to be orthogonal to all of the others. Having identified an axis for each dimension, we would then embed
each of our n objects by finding the closest point on each axis to the object. The coordinate we choose on an
axis for an object’s embedding is the distance of this closest point from one of the endpoints of the axis. If
our line segments were truly orthogonal, if they spanned all dimensions of the latent space, and if we could
identify the exact closest point to any object on any line, then this would produce an exact embedding of
the objects.

In practice, we have to discover such line segments and distances using only triple comparisons. This
data is inherently discrete and imprecise, although the precision improves as the density of Xn increases. To
be more precise, when the sequence X = {x1, x2, . . .} are i.i.d. draws from some underlying density over a
simply-connected, bounded subset of Rd∗

, then our algorithm converges to the perfect embedding algorithm
just described in the limit as n→∞.

Our approximation algorithm is described briefly here, and then in detail in the following text. Due to
the limitations of ordinal data, we use subsets of Xn in place of line segments. We aim to find a subset whose
members are as close to collinear as possible. We accomplish this using a subroutine which finds points which
are on or near the convex hull of any subset of Xn. Our embedding algorithm iteratively identifies new axes
by selecting pairs of objects near the boundary of the convex hull of the set, conv(Y ∗), and on opposite sides
of the set, such that the line passing through both objects is (nearly) orthogonal to the previous axes. We

Extreme example of 2D set with obvious basis Missed ideal basis (τ = 0.81) Located ideal basis (τ = 0.92)

Figure 7: 2D points set X (left) includes two subsets of colinear, dense, evenly-spaced, points that make
obvious good axes. We show two possible axis pairs and evaluate the implied embeddings; τ is the mean
Kendall’s τ between true rankings and basis-estimated rankings. Middle: two axes red and blue found by
our algorithm are not the best basis, but reasonable; Right: ideal axis red, blue also includes a few other
points since the gap on the collinear points is not small enough; thus τ < 1.
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then use our convex hull subroutine to find the nearly-collinear points which constitute points along the axis.
We illustrate two possible axis pairs for a 2D set in Figure 7. We assign an embedding coordinate to a point
along an axis by selecting one of the points along the axis as the “closest” to the point we are embedding,
and using the integer-valued index of this closest point when the points along the axis are sorted by distance
from one of the axis endpoints.

Choosing Axis Endpoints. We choose our first two axis endpoints so that they are far from each other
and both on the boundary of the convex hull of the set. To find points on this boundary we use the fact
that for any points x, y ∈ Xn, if y is the farthest point from x in Xn then all points in Xn are contained
in the ball centered on x and with y on its boundary; this implies that y is on the boundary of the convex
hull of Xn. We select the first endpoint of our first axis by selecting a point at random and then finding the
point furthest from it in Xn. Our second endpoint is the farthest point in Xn from the first endpoint.

We want the endpoints of our additional axes to be as far as possible from the convex hull of all previous
axis endpoints. This will help ensure that our endpoints are affinely independent of the previous axes, so
each axis will cross some new dimension of the space.

Point p is above q, with respect to p
1
, p

2

p
1

p
2

q

p

z

Figure 8: Point p is “above” q because q is
found in the intersection of balls centered
on p1 and p2 and extending to p. This
implies that p is farther from the line than
q and thus not in conv({p1, p2}).

We will explain our algorithm by analogy to the two dimen-
sional case. Suppose we already have two endpoints p1, p2 ∈ [n]
which are opposite each other on the convex hull of Y ∗, and
that all other points in Xn are “between” them, in the sense
that for any other x ∈ [n], both δp1,x < δp1,p2

and δp2,x < δp2,p1

hold. Then any such x is in the lens between p1 and p2; that
is, in the intersection of open balls centered on p1 and p2 with
radii δp1,p2

.
Now suppose that two points p and q both reside in this lens,

but that p is farther from both p1 and p2 than is q. Then we
say that p is “above” q with respect to conv({p1, p2}), because
its distance to its closest point p′ on this convex hull must be
greater than the distance from q to its closest point q′ on the
hull. Further, if q is above any point z then p must also be
above z; the property is transitive because object rankings by
distance are transitive. Also note that this property generalizes
naturally to an arbitrary number of dimensions by considering
“lenses” formed from the intersection of more than two balls,
centered on more than two axis endpoints.

Returning to axis endpoint selection, recall that we want
to identify a point which is as far as possible from the convex
hull of the previous endpoints in some orthogonal direction.
We find this point by choosing that point which is “above”
the largest number of other points with respect to the previous
endpoints. The second endpoint is the point farthest from the first in the set of points within the lens for
the existing axis endpoints.

Convex Hull Estimation. In order to find the points close to the line between our new axis endpoints,
we need a way to estimate the convex hull of the endpoints. We also rely on convex hull estimation to decide
when to stop adding axes, as we will see below. Our convex hull estimate ĉonv relies on the fact that any
union of balls which all coincide in some point must contain the convex hull of the ball centers. We state
this formally as follows and prove it in Anderton et al. [2016a].

Theorem 1. Let B = {B(v1, r1), . . . , B(vk, rk)} be a set of closed balls in Rd with centers v1, . . . , vk and
radii r1, . . . , rk, respectively. If the intersection of all the balls in B is not empty, then conv({v1, . . . , vk}) is
a subset of their union.

Suppose we want to identify points from Xn which lie in the convex hull of a set P = {p1, . . . , pk} ⊂ [n].
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We can find candidates for this set by choosing an arbitrary point q and identifying the set

Cq(P ) ≡ {x ∈ [n] : ∃p ∈ P, rp[x] ≤ rp[q]} . (5)

Theorem 1 tells us that this will contain conv(P )∩Xn as a subset, but it may also contain some additional
points. In order to filter out most of these false positives, we take the intersection of Cq(P ) across all possible
points q as our estimate.

ĉonv(P ) =
⋂

q∈Xn

Cq(P ) = {x ∈ [n] : ∀q ∈ [n],∃p ∈ P, rp[x] ≤ rp[q]} (6)

As the intersection of sets which all contain conv(P ) ∩Xn, we know ĉonv(P ) contains conv(P ) ∩Xn. We
have additionally proven the following theorem, which says that any false positives in our estimate are close
to the boundary of conv(P ).

Theorem 2. Let ĉonv(A) be the estimate of conv(A) for some A ⊆ Xn ⊂ Rd. If the largest empty ball
in conv(ĉonv(A)) has radius ε, and the maximum distance between any two points in A is m, then for any
c ∈ ĉonv(A) the distance to the closest point c′ ∈ conv(A) is less than

√
ε(2m+ ε). Further, there is no

point x ∈ X such that ra[x] < ra[c] for all a ∈ A.

A trivial corollary of this theorem states that as the density constant ε→ 0, our estimate ĉonv(P )→ conv(P ).
When we take points from ĉonv({p1, p2}) as an axis, it is easy to show that the points along the axis are

order-consistent: increasing distance order from one axis endpoint is decreasing distance order from the other
endpoint (matching the intuition for points along a line). However, the points may be somewhat distant
from the line in an arbitrary direction. Technically speaking, the points are contained in a cylinder centered
on the line whose radius is bounded by Theorem 2.

Dimensionality Estimation. Our estimate of the dimensionality of Xn is the number of axes we select,
which we denote by d̂. We stop adding axes as soon as our next axis endpoint does not appear to be affinely-
independent of the previous axis endpoints. Our test for affine independence relies on Carathéodory’s
Theorem, which states that any point in the convex hull of a set of points in Rd can be expressed as a convex
combination of just d+ 1 or fewer of them. This is discussed in more depth in Section 3.3.1.

We define a set P containing both endpoints for the first axis, plus the first endpoint of each additional
axis and our new candidate p. We have |P | = d̂+ 2. Suppose we have already found d dimensions, and the
new axis endpoint is simply not in the convex hull of the previous endpoints. Then any point in conv(P ) is

also in the convex hull of some set of all but one of the points in P . On the other hand, if d∗ > d̂ then these
extra hulls are the facets of a higher-dimensional simplex, and we expect some of the points in that simplex
to be far enough from these exterior facets to not be included in our ĉonv estimates (which may or may not
be true, depending on the density of Xn).

Table 2: Dimensionality Estimates
(1,000 points, avg. of 100 runs)

True d: 1 2 3 5 8 10 20
Ball 1 2 2.11 3.66 4.22 4.54 5.53
Cube 1 2 2.37 3.74 4.44 4.58 4.78
Gaussian 1 2 2.98 3.91 4.44 4.54 4.52
Sphere 1 1 2 3.09 3.85 4.08 4.93

We prove that d̂ < d∗ and that d̂→ d∗ as ε→ 0
with the following theorem.

Theorem 3. Let X = {x1, x2, . . .} be an infi-
nite sequence of i.i.d. draws from some smoothly-
continuous distribution over a simply connected
compact subset V ⊂ Rd. Also let Xn = {x1, . . . , xn}
be the first n draws in X , and let d̂n be the num-
ber of axes chosen by our algorithm when the ora-
cle answers consistently with the distances between
the points in Xn. Then d̂n ≤ d for all n, and as
n→∞, d̂→ d.

See Table 2 for dimensionality estimates of various datasets. Since the number of points in each dataset is
the same, as the dimensionality increases the density constant ε grows (and density decreases). This causes
ĉonv to be less precise and leads us to underestimate the dimensionality.
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Choosing Embedding Coordinates. Once we have identified all our axes, we use the rankings of Xn

for a given pair of axis endpoints to choose the coordinates of each point along that axis. Our algorithm
accomplishes this without any additional comparisons.

Ideally, the points along each axis would be evenly-spaced and lie along the line between the axis end-
points. We could then embed any x ∈ X by simply finding the index of the closest point via binary search,
since the members of Ai would be sorted as a bitonic array: the distance to x would descend to a minimum
and then ascend. The total comparison cost would be O(d̂n log n), within the theoretical lower bound.

We guess that location 5 is closest to x'
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Figure 9: The circled points are axis
members. 4 is closest to x. We choose the
median point within the lens beneath x
(containing 4, 5, and 6) as our guess at the
closest point to its projection, x′.

In practice, we never have such perfect axes. When the
points of Xn are in general position, no object will be found in
the convex hull of any subset of d∗ or fewer other objects and
no member of an axis except the endpoints will lie on the line.
A binary search will not find the closest point on the axis to x
because the points will be not be exactly sorted by distance to
x. Further, the closest point on the axis will often be closest
simply because it is not found on the line, not because it is
near the projection x′ of x onto the line (Figure 9).

We really want to find the axis point which is closest to x′,
not closest to x. The projection x′ will be in the center of the
lens formed from the axis endpoints with x at its apex. The
lens will always contain some axis point (otherwise x would be
included in the set of axis points). We select as the ordinal
coordinate of x along the axis the median index for those
axis points inside this lens.

While this may not be the axis point closest to x′, espe-
cially if the density varies greatly along the axis, it costs no
additional comparisons to select this point. We have found
that the empirical performance on our datasets is comparable
to finding the point in the lens closest to x.

While even in dense spaces our algorithm might not find
orthogonal axes, if the discovered axes are indeed orthogonal we
can guarantee that our embedding recovers the original metric
with a precision depending on the density of X and the true dimensionality. We are able to prove the
following theorem on the quality of our embeddings. If we fix d and the diameter of X in each dimension,
assuming orthogonal axes, this theorem implies that when n→∞ and thus ε→ 0, the correct distances are
recovered, up to scaling.

Theorem 4. If any ball of radius ε in conv(Xn) contains at least 1 and at most k points, and assuming

d̂ = d∗ orthogonal axes are found which extend to the faces of a bounding box for Xn, using linear search in
the lens for points’ coordinates, then there is a scaling constant s ∈ R such that for any two points x, y ∈ Xn,
• the coordinate xi on any axis Ai is bounded by its projection x′i by (s/k)xi − ε ≤ x′i ≤ sxi + ε, and

• the scaled distance estimate d̂ := s · d̂ist(x, y) is within 2kε
√
d∗ of the true distance, i.e.,

dist(x, y)− 2ε
√
d∗ ≤ d̂ ≤ k(dist(x, y) + 2ε

√
d∗).

Empirical Results. While most of the above discussion has focused on the algorithm as an embedding
algorithm, it can also be viewed as an active learning algorithm for selecting triple comparison questions. We
evaluate both aspects of our algorithm, and find that the comparisons we select far outperform random triple
selection and that our embeddings are of moderate to high quality. When an optimization-based algorithm
converges to a point near the global optimum, it finds a much better embedding than ours. However, our
method is much faster and is able to find embeddings for datasets where all current optimization methods
fail. See our embedding results on a variety of real and synthetic datasets in Table 4.

The Basis method embeds as per our discussion above, and Basis+SOE embeds with the Soft Ordinal
Embedding (SOE) algorithm [Terada and von Luxburg, 2014] using the triples collected by our algorithm.
Extra+SOE adds comparisons to sort the 2k nearest neighbors of each point in our Basis embedding, choosing
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Table 4: Embedding Quality. Datasets to the left are synthetic, and to the right are standard (2,000 records
from 20newsgroups, the positions of 500 cities, 1,000 records from MNIST digits, and 1,000 records from
spambase).
∗ indicates global optimum was not found; means procedure computationally too expensive

Method Dataset d d̂# Cmp. τ knn rmse
Basis 3dgmm 3 3 38K 0.71 0.64 0.77
Basis+SOE 3dgmm 3 3 38K 0.99 0.97 0.02
Extra+SOE 3dgmm 3 3 61K 0.99 0.99 0.01
Rand+SOE 3dgmm 3 3 38K 0.95 0.81 0.11
CK 3dgmm∗ 3 3 38K -0.01 0.02 1.79
Basis 5dcube 5 3 39K 0.49 0.40 0.26
Basis+SOE 5dcube 5 6 39K 0.88 0.73 0.05
Extra+SOE 5dcube 5 6 61K 0.94 0.92 0.03
Rand+SOE 5dcube∗ 5 6 39K 0.61 0.30 0.19
CK 5dcube∗ 5 5 39K 0.01 0.02 0.34
Basis 5dgmm 5 3 39K 0.68 0.60 0.90
Basis+SOE 5dgmm 5 6 39K 0.94 0.66 0.14
Extra+SOE 5dgmm 5 6 62K 0.98 0.97 0.04
Rand+SOE 5dgmm∗ 5 6 39K 0.01 0.02 1.77
CK 5dgmm∗ 5 5 39K -0.01 0.02 1.57

Method Dataset d d̂ # Cmp. τ knn rmse
Basis 20news 34K 3 186K 0.11 0.06 0.53
Basis+SOE 20news∗ 34K 6 186K 0.01 0.01 0.34
Extra+SOE 20news∗ 34K 6 310K -0.01 0.01 0.34
Rand+SOE 20news∗ 34K 3 186K 0.01 0.01 0.44
CK 20news 34K 16 — — — —
Basis cities 3 2 28K 0.37 0.35 0.60
Basis+SOE cities 3 4 28K 0.89 0.54 0.13
Extra+SOE cities 3 4 50K 0.96 0.93 0.05
Rand+SOE cities∗ 3 4 28K 0.01 0.02 0.75
CK cities∗ 3 3 28K 0.01 0.02 0.67
Basis digits 784 6 159K 0.52 0.29 3.18
Basis+SOE digits∗ 784 12 159K 0.01 0.01 2.48
Extra+SOE digits∗ 784 12 211K 0.01 0.01 2.49
Rand+SOE digits∗ 784 12 159K 0.73 0.40 2.31
CK digits 784 10 — — — —
Basis spam 57 3 85K 0.85 0.78 471
Basis+SOE spam∗ 57 6 85K -0.01 0.01 596
Extra+SOE spam∗ 57 6 138K 0.01 0.01 596
Rand+SOE spam 57 3 85K 0.94 0.23 150
CK spam 57 10 — — — —

k = log2 n, and embeds the combined comparison set. We compare against Rand+SOE, which embeds from
random triples, and CK, the Crowd Kernel algorithm of Tamuz et al. [2011].

Table 3: Classification Accuracy, 5 folds

Original Embedding

Dataset d Train Test d̂ Train Test
20news 34K 0.94 0.54 3 0.21 0.08
cities 3 1 0.95 2 0.99 0.90
digits 784 1 0.84 6 0.92 0.71
spam 57 0.99 0.97 3 0.85 0.74

As a simple test of downstream utility, we
trained Gradient Boosting classifiers on our basis
embeddings and compared the classification accu-
racy to classifiers trained on the original feature
space. The results can be seen in Table 3. Per-
formance is good even with d̂ � d∗, with the ex-
ception of the ill-suited 20newsgroups (which is at
least better than random).

Discussion. When viewed as an active learning
method, our algorithm is the first to achieve near-
perfect embedding performance using O(d∗n log n)
triples, matching the proven lower bound. As an embedding algorithm, the results appear less impressive.
They are promising, however, as the first algorithm to produce embeddings by geometric inference from triples
(as opposed to optimization). The geometric tools developed here (convex hull estimate, affine independence
tests, etc.) are of theoretical interest, and we propose further exploration of them in Section 3.3.

2.3 Ordinal Geometry

2.3.1 Subset Selection through ε-Nets

It is sometimes useful to identify a small subset of Xn which is well-distributed throughout the space and
which somehow captures the extent and density of the set “at low resolution.” When exact point positions
are known, this can be accomplished by building an ε-net. An ε-net is a subset N ⊂ Xn having the following
two properties:
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1. every point in Xn is within distance ε of some member of N , and

2. no two members of N are within ε of each other.

Such a subset can be identified using a so-called farthest-first traversal (FFT) of Xn [Gonzalez, 1985]. We
choose a point at random to initialize our net. We then add points one by one until the desired number of
points is reached, using the rule that each point must maximize its distance to the closest member already
added to the net. More precisely, we choose the point achieving maxx∈[n] minn∈N δx,n, with N denoting the
set of points already chosen. This max min distance is the value of ε when that point is added.

We can produce an approximate ε-net using ordinal triples by an algorithm we dub a farthest-rank-first
traversal (FRFT). We again initialize with a random point, and add points incrementally using a rule to be
described momentarily. When we add a point, we sort the remaining members of Xn by increasing distance
to the new net member. Instead of choosing a point with the max min distance to the previous members,
our rule is to choose a point with the max min rank from the previous members. That is, we choose a point
achieving maxx∈[n] minn∈N rn(x), recalling that ra(p) gives the rank of p when the members of Xn are sorted
by increasing distance (or decreasing similarity) from a. Since distance increases monotonically with rank,
this tends to produce a good approximation of an ε-net. It differs somewhat in that its choices are closer
to denser regions and farther from sparser regions. It seems worthwhile to prove results to characterize this
behavior.

It is often useful to discard the first (random) point, taking as the first member the point which is farthest
from a random point. This guarantees that the first two net members are on conv(Xn), and the next few
members are near the hull boundary (in the sense that there is no point p in Xn having the net member in
the convex hull of p and the other previous net members; such a point p would be closer to, or on, the hull
of Xn and would achieve a larger minimum rank from the previous net members).

3 Proposed Work

3.1 Active Learning

It is still considered an open question to find an adaptive algorithm which can adaptively select O(d∗n log n)
triples and position all points correctly. This is in spite of the theorem from Jain et al. [2016] showing
a convergence result when O(d∗n log n) randomly-selected triples are observed, for the following reason.
The theorem proves a convergence result for a particular class of loss functions in which uncertainty about
assessor responses increases as the two distances being compared (δab and δac) approach each other. It
essentially states that uncertainty of an embedding satisfying the observed (noisy) triples will converge to
the uncertainty of the true embedding Y ∗ when some constant multiple of d∗n log n random triples are
observed. This implies that distances which are actually similar will also be similar in the embedding, which
means that point positions will be roughly correct. However, the theorem does not say anything about the
number of random triples needed to fine-tune the embedding. In particular, the theorem of Jamieson and
Nowak [2011] shows that random triple selection cannot precisely position all points with fewer than Ω(n3)
triples.

I propose to settle this open question by identifying a theory-driven adaptive algorithm with a convergence
proof showing that all possible triples can be recovered using just O(d∗n log n) triples selected by the proposed
algorithm, either by applying theoretical considerations to infer the remaining triples or by showing that an
embedding satisfying the selected triples will respect all possible triples.

In our work in Anderton et al. [2016a,b], we have already identified several adaptive algorithms which
select O(d∗n log n) triples, meeting the proven lower bound. However, we have not proven convergence results
for our algorithms beyond Theorem 3 (Section 2.2.1), which relies on rather strong assumptions.

The simplest algorithm meeting the lower bound simply uses the FRFT algorithm of Section 2.3.1 to
select O(d∗) net members (“anchors”). This algorithm sorts all n points by distance to each anchor, so it
clearly meets the lower bound. We have often run this algorithm on points with known positions, answering
comparison questions with triples reflecting these known distances. Our testing shows that embeddings based
on these triples produce very good embeddings on a wide variety of datasets, suggesting that the algorithm is
selecting very informative triples. I propose to explore this algorithm theoretically and prove an embedding
convergence result on it or on some similar algorithm.
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Another promising approach is to adapt the kNN algorithm of Li and Malik [2015, 2017] to use ordinal
triples rather than random vector in Euclidean space. This algorithm gives high-quality approximate k-
nearest neighbor estimates for all points, using close to O(d∗n log n) total operations. Given the kNN of
all points, we could use the convergence guarantee of Local Ordinal Embedding [Terada and von Luxburg,
2014] to prove an upper bound for an approximate algorithm which converges to the correct embedding in
the large sample limit.

3.2 Embedding

Even given the complete set of noise-free triples and the minimum dimensionality d∗, the problem of identi-
fying an embedding into Rd∗

to satisfy the triples remains challenging. Many good algorithms exist for the
case when n× d∗ is not too large, but in practice these tools are typically limited to, at most, thousands of
points in fewer than 10 dimensions. I propose to address this limitation in two ways. First, I will seek out
ways to increase the scalability of the known embedding algorithms by applying them to subsets and build-
ing global embeddings from the results. Second, I will continue my work on embedding algorithms which
supplement or replace purely optimization-based approaches with computational geometry, leveraging the
geometric structure of the data whenever possible to lighten the optimization load. I describe two specific
approaches in the following sections.

3.2.1 Generalizing from a Subset Embedding

Ordinal Embedding was originally conceived as a way to produce a low-dimensional embedding which pre-
served the order of dissimilarity values in an arbitrary matrix of pairwise dissimilarities. This is almost
identical to the task undertaken by many modern representation learning approaches, such as the GloVe al-
gorithm for word embedding [Pennington et al., 2014]. GloVe seeks an embedding into some Euclidean space
which is consistent with a notion of word similarity based on their pointwise mutual information (PMI) with
random variables representing various notions of the grammatical context in which those words appear. Two
words which appear more often in similar grammatical contexts will have a higher PMI score, and should
be placed closer within the embedding. However, current ordinal embedding techniques cannot handle the
large numbers of objects and dimensions used for these representation learning tasks.

I propose to explore ordinal embedding algorithms which can handle these large-scale tasks, and to
explore their use in large-scale text similarity problems. In this section, I suggest an approach which uses
the current optimization approach to ordinal embedding on a small subset of points, and which then uses
computational geometry to embed all subsequent points. I will test this approach on various text similarity
tasks, such as word embedding and dimensionality reduction. If this approach succeeds, I will move on to
more complex semantic matching tasks as described in Section 3.4.

Generalizing from a subset. Our generalization algorithm works as follows. Suppose that Xn consists
of n i.i.d. samples drawn from some unknown density over some Euclidean space Rd. We can randomly
select a subset Xm for some m� n, obtaining an i.i.d. subset from the same density. For a simple example,
perhaps Xn are n = 10, 000 points drawn from the uniform ball in R3, and m = 500.

If we can accurately embed the subset Xm, then we can use that embedding to quickly obtain an
approximate embedding of the full set Xn as follows. Choose d + 1 affinely-independent points from Xm

(“anchors”), and for each anchor sort the points in Xm by distance. Now suppose we have some new
point x ∈ Xn to embed. We first locate its position in each sorted list using binary search, for O(d logm)
triple comparisons. We then choose a target distance to each anchor, e.g. using the midpoint between the
distances to the embedded points preceding and following x in the ordered list for an anchor. Finally, we
embed the point using d+ 1 approximate distances to d+ 1 affinely independent anchors. This can be done
very efficiently, e.g. using the sphere intersection method of Coope [2000]. The points in Xn are embedded
independently, and so can be trivially parallelized.

Early results for this method can be seen in Table 5. In each case, we set m = 500 and used the first d+1
anchors in FRFT order. The subset Xm was embedded using Soft Ordinal Embedding, which was repeated
until a small loss value (< 10−9) was achieved. The first four datasets are synthetic, while the remainder are
real datasets. We have not been able to embed any dataset in this table with any published method, so the
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baseline performance is no better than random. We evaluate as follows. For each of 10 runs, we compute
the mean Kendall’s τ score when taken across the rankings for all points in the embedding; the median of
these 10 scores is reported. Notably, each run completed in less than a minute; many datasets took much
less than a minute.

Table 5: Embedding Accuracy (median of 10 runs).
n is the # of points, m = 500, d the true dimensional-
ity/# of features, and d̂ the embedding dimensionality.

Dataset n d d̂ τ
Ball 10K 3 3 0.99
Sphere 10K 3 3 0.99
Swiss Roll 10K 3 3 0.99
GMM 10K 3 3 0.99
Spambase 4.6K 57 3 0.89
Cities 15K 3 3 0.97
20news PCA 2K 10 10 0.96
MNIST Digits PCA 1K 12 12 0.90
MNIST Digits 1K 784 12 0.57

The scores reported on the synthetic datasets are
nearly perfect, even though we only claim an ap-
proximate embedding. Performance declined for the
real datasets, though remaining quite good for all
but MNIST Digits. It is not clear yet what leads to
the decreased scores here. The dimensionality may
be inadequate for an embedding. Alternatively, the
distribution could violate our underlying smooth-
ness assumptions, so the subset may not adequately
represent the distribution of points. Further study is
needed to improve these scores. Nevertheless, these
early results look promising.

Generalizing from Multiple Subsets. The dis-
cussion so far has a key weakness: it implicitly as-
sumes that any object in Xn can be meaningfully
placed into order with the random subset Xm. This
is often not the case because many triple compar-
isons can not be meaningfully answered, whether because human assessors find the question meaningless
or because no similarity data is available in the training corpus. For example, an embedding of documents
might use cosine similarity between document TF-IDF vectors to answer triple comparisons. This will en-
counter problems as soon as documents with no meaningful vocabulary overlap are compared. In this case,
a total ordering of documents is not directly available. As global comparisons are not possible, we need to
rely on only local comparisons.

This problem may need to be addressed in a dataset-dependent way. For example, in the example of
cosine similarity above we could potentially use an inverted index (mapping vocabulary words to documents
which contain them) to identify subsets of documents with sufficient overlap to be mutually comparable.
In a general crowdsourcing context, however, we may need to split the task into a first phase, to identify
meaningful subsets, and then compare objects within subsets in a second phase.

However the subsets are obtained, our goal is to treat them individually in the manner discussed above
and then to merge the individual subset embeddings into a unified global embedding. Subsets will need to
overlap sufficiently in order to be merged; an embedding into d dimensions will presumably need at least d+1
points in common between two subsets in order to adequately orient and scale them. Several considerations
need to be addressed here.

• How can we efficiently identify our subsets for a given task?

• When we are embedding the full set, how do we efficiently find the subset to which a point belongs?
What do we do if there is no such set?

• How will we merge them? We could apply a Procrustes transformation [Borg and Groenen, 2005] to
subsets one by one, but accuracy might be better if we apply some “k-way” merge routine which finds
a transformation for all k subsets at once while distorting each subset minimally.

• If points are overlapping between subsets, how do we ensure that they are positioned as accurately as
possible within each subset? For instance, perhaps we should require our d + 1 overlapping points to
be part of the Xm subsets so they are positioned by our triple embedding routine. We can then merge
all our Xm subsets, and only then proceed to embed the full set of points.

One idea is to build our subsets incrementally. We can iterate over all Xn points in random order, and
maintain a list of subsets built so far. For each point, we find out whether there is an existing subset to
which it can be added. If not, it becomes the first point in a new subset. As soon as a subset accumulates
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m points, we apply our triple embedding routine; subsequent points are embedded into the subset using
the sphere intersection approach. When two subsets with overlapping points have both been embedded, we
immediately merge them and transform any embedded points into the merged space.

We have recently become aware of the work of Cucuringu and Woodworth [2015a,b], which addresses
many but not all of these problems. This work may serve as a partial solution upon which to build.

3.2.2 Embedding through Computational Geometry

We discussed an alternative approach to embedding in Section 2.2.1, using computational geometry rather
than optimization. If our exploration of Ordinal Geometry continues to be fruitful, we may be able to develop
geometric embedding methods which guarantee exact embedding recovery. This has long been possible for
exact distances, and there is reason to believe it also possible for a partial ordering of pairwise distances.
Indeed, in a trivial sense this is already possible. That is, a distance matrix can be created from an arbitrary
partial ordering of pairwise distances by first storing the integer-valued rank of each pairwise distance in
the matrix, and then adding a sufficiently-large constant so that the triangle inequality is preserved without
violating the order [Borg and Groenen, 2005]. This matrix will be nearly full-rank, but can be embedded
using exact distance embedding methods (such as Sippl and Scheraga [1985]). A much more interesting
question is whether the minimum dimensionality d∗ can be inferred from the triples, and then whether an
embedding into Rd∗

can be found. Such a method would presumably be much faster and more reliable than
an optimization-based approach.

Our preliminary embedding method, already discussed, relies partially on convex hull estimates between
pairs of points to approximate lines, which that method uses as locations along the axes of a Cartesian
coordinate system. In fact, it is possible to estimate how far along this line segment each point in the
estimated convex hull lies.

Consider a sequence of points p1, . . . , pk lying along a line. Each point between p1 and pk can be
expressed as a convex combination λp1 + (1 − λ)pk for some λ between zero and one. Further, there will
be some “midpoint” i in the sequence such that all the points p1, . . . , pi are closer to p1 than to pk and all
the points pi+1, . . . , pk are closer to pk than to p1. This midpoint can be located using standard ordinal
comparisons, e.g. using binary search. We then have that λ > 1/2 for p1, . . . , pi and λ < 1/2 for pi+1, . . . , pk.
The process can be repeated recursively on each side to derive tighter intervals for each point’s λ value. These
intervals will all be correct, and will be larger or smaller depending on the density of the points along the
line. When we have points which are only approximately on the line, we can employ a similar method to get
approximate intervals. We can then use the distances along these intervals in a similar manner to our subset
generalization approach (Section 3.2.1) to find approximate distances for all the points whose distance to p1
is at most pk.

Table 6: Embedding Accuracy.
n is the # of points, d the true dimensionality/# of

features, and d̂ the embedding dimensionality.

Dataset n d d̂ τ
Cube 1K 5 5 0.72
GMM 1K 3 3 0.77
Spambase 1K 57 3 0.56
Cities 15K 3 3 0.49
20news 2K 34K 10 0.44
20news PCA 2K 10 10 0.68
MNIST Digits PCA 1K 12 12 0.65
MNIST Digits 1K 784 12 0.62

We show early results for this method in Ta-
ble 6. This algorithm uses d∗ + 1 FRFT anchors,
plus the most distance point from each anchor, to
define several line segments which (almost) span the
set. We use the center of the interval as a distance
target, and employ the sphere intersection algorithm
of Coope [2000] to embed points at the desired dis-
tances. Some care is taken to embed the anchors
correctly, and some additional work is needed to
transform the various λ values for different line seg-
ments of different lengths into consistent distances
in the same space. It is not clear from these re-
sults whether this method will achieve perfect em-
beddings with further work; however, it is worth
noting that these embeddings are substantially bet-
ter than random, outperform our method of Sec-
tion 2.2.1, and also outperform some of the weaker optimization-based approaches.
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3.3 Ordinal Geometry

My work so far suggests that a wide array of geometric results can be inferred from ordinal triples. Indeed,
the work of Kleindessner and von Luxburg [2015, 2016a,b] shows many such results. In this section, I
highlight two areas which would be particularly useful in practice: estimating the latent dimensionality of a
dataset and efficiently performing k-nearest neighbor (kNN) queries.

3.3.1 Dimensionality Estimation

Recall that we denote by d∗ the smallest dimensionality into which our comparisons T can be embedded
without violating any triples. Also recall that for any set of triples, we have 1 ≤ d∗ ≤ n − 2. Can we tell

how some estimated dimensionality d̂ compares to d∗? That is, can we test whether an embedding into Rd̂

is possible without violating any triples?
Our main idea used in Anderton et al. [2016a] is to rely on convex hull estimation. Let V ⊂ Xn be some

m of our points. By Carathéodory’s Theorem, any point in the convex hull conv(V ) must be in the convex
hull of some subset of V of size d∗ + 1 or less. From this we can infer two properties.

1. If any point in conv(V ) does not reside in the convex hull of any (strict) subset of V , then we know
that d∗ ≥ m− 1.

2. If for every subset V of size m all the points in conv(V ) ∩Xn also reside in the convex hull of some
subset of V then perhaps we have d∗ < m−1 (or perhaps we have “holes” in Xn). Whether all such sets
can be embedded into m− 1 dimensions without violating any triples is an interesting open question.
However, it is always possible that by increasing n we would discover new points that invalidate this
dimensionality estimate (by filling the “holes”).

It remains to show how to find the convex hull of V using triples. I am aware of two methods: one using
balls and one using hyperplanes. Recall that a triple (a, b, c) can be viewed as a geometric constraint on any
of the three points.

• xa must lie in the halfspace containing xb and defined by the hyperplane orthogonal to the vector
halfway from xc to xb.

• xb must lie within the ball centered on xa and with xc on its boundary (i.e. with radius δac).

• xc must lie outside the ball centered on xa and with xb on its boundary (i.e. with radius δab).

Convex Hull Estimation using balls. The first method relies on balls, and in particular on the fact that
given any point p ∈ Rd∗

, the union of the balls centered on the members of V and with p on their boundary
contains conv(V ) as a subset (as stated in Theorem 1). The method works as described in Section 2.2.1. We
first sort Xn by distance to each member of V . (In practice, for any xa ∈ V it suffices to sort only the subset
of Xn closer than the most distant other point in V ). We will build our estimate from the resulting rankings
without using any additional triples. Choose some member of V as our point p, and initialize our estimate
to the set of points which are closer to any member of V than is p — this is our union of balls. Now iterate
over each point in this estimate, taking each as p in turn, and keep only the intersection of the convex hull
estimates for each point. It is not hard to show that the resulting set contains all points in conv(V ) ∩Xn,
and possibly also some additional points near the boundary of the hull (as defined in Theorem 2).

This method uses O(d∗n log n) triples and identifies all points in the true convex hull, but since it is built
on balls rather than hyperplanes it can also include many extra points near the hull. That is, it has no false
negatives (every point in the hull is identified as such) but can have false positives (some points identified
as in the hull are not). In particular, all the false positives are near the boundary of the hull.

Convex Hull Estimation using hyperplanes. A more expensive but more precise method uses hyper-
planes. It is based on the following fact.

Proposition 1. If all members of V are closer to some point b than to some point c, then all members of
conv(V ) are also closer to b than to c.
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Proof. We have the triple (a, b, c) for all members a ∈ V . In other words, all members of V are on the
same side of the hyperplane implied by this triple. Therefore, this hyperplane cannot pass through conv(V ),
so all members of conv(V ) are on the same side of the hyperplane, implying the triples (a, b, c) for all
a ∈ conv(V ).

One (naive) way to use this fact is as follows. First, sort the full set Xn by distance to each member of
V . Next, calculate an approximate convex hull using the first method. Finally, iterate over every pair (b, c)
where all members of V are closer to b than to c and remove points from our estimated hull which are closer
to c.

This second method will work much better than the first, but the approach described can surely be
refined. For example, since the false positives of our estimate for V from the first method all lie near the
boundary, they are all in the convex hull estimate for the subset of V corresponding to the nearest facet of
conv(V ). This means that any point which is not in one of these subsets will always be in conv(V ) and need
not be tested. In fact, if our aim is only to test a dimensionality estimate then the presence of such a point
means that we can answer the dimensionality question immediately and not test any point.

Additionally, there is probably some hyperplane which approximates each facet of the hull very well. It
seems worth some thought to find a way to identify the pair (b, c) which define the “best” hyperplane for
each facet, so we only need one test per facet.

3.3.2 kNN Identification

Identifying the k-nearest neighbors of each member of Xn is of interest for a few reasons. First, sometimes
an embedding is wanted only to answer similarity search queries, for which the kNN are the answer. In this
case, it isn’t necessary to produce an embedding when we can answer the query directly. It is also possible
to produce embeddings directly from the kNN, and convergence proofs guaranteeing low embedding error
exist for these methods (e.g. Local Ordinal Embedding, Terada and von Luxburg [2014]).

The simplest way to identify the kNN of each point in a set is the brute force approach: simply use a
O(n) select algorithm, such as the SELECT algorithm of Cormen et al. [2001], on each member of Xn. This
will use O(n2) triples, and when the minimum embedding dimensionality d∗ is within a constant factor of n
this may be the best we can do (asymptotically). For the remainder of this section, let us assume that d∗ is
known and that d∗ � n. Can we exploit that fact to do any better?

One promising strategy is to identify points in the “neighborhood” of each point, which will serve as
candidate nearest-neighbors. Ideally, we will have O(k) candidates for each point, at least on average. We
can then run our select algorithm on these candidates. For example, consider using the FRFT algorithm to
select d∗ + 1 vertices V from which the entire set is ranked, and try to define our neighborhood in terms of
those rankings. In most (all?) cases, the first d∗ + 1 vertices will lie on or near conv(Xn), and a substantial
portion of Xn will lie in conv(V ). This approach will use a total of O(d∗n log n+ nk) triples.

How might we define the neighborhood of a point in a way that can exploit the anchors’ rankings of the
points? It turns out to be helpful to define some notion of a point lying “between” two other points, in
arbitrary dimensionality. We can then say that two points are in each others’ neighborhoods when there is
no other point “between” them. We would like our definition to have a few useful properties.

1. If some point y is between x and z then we would like it to be closer to z than is x, and closer to x
than is z. That is, we want y to be inside the intersection of balls centered on x and z, both with
radius δxz. This makes y a better candidate nearest-neighbor for x than is z.

2. Second, intuitively speaking, we would like some kind of guarantee that we have found all the neighbors
in a given “direction,” so when we’re looking for candidates for x we don’t pick up too many extra
points in the same direction. This is especially important when some region of the ball containing the
true kNN for x has much lower density than the rest of the ball.

3. Finally, we want to find all the points between x and z using only our d + 1 rankings for our net
members V .

I propose the definition that for three points x, y, z ∈ [n], point y is “between” points x and z whenever
its rank is between the ranks of x and z for all the members of V . Geometrically, this places it in the
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intersection of spherical shells (the max-rank ball minus the min-rank ball centered on a given member of
V ) with x and z on its boundaries, and containing conv({x, z}) as a subset. This definition needs a rigorous
mathematical analysis. Some spot checking in low-dimensional spaces shows that a point’s nearest neighbor
satisfies this property except in extreme cases.

We can use this definition in a few ways. First, we can simply search the candidates in a point’s
neighborhood for its nearest-neighbor, then remove the selected point and update the neighborhood and
repeat until k neighbors are found. Early testing using this method has produced high-precision (> 0.99)
kNN estimates for all points in a few synthetic datasets. If O(k) candidates are considered, then the method
will use something like O(k log k) comparisons for each kNN query.

Another approach is to choose some maximum number of candidates to find, such as a constant multiple
of k, and then proceed as follows. We first add all points z with no points between x and z. We then add
all points z with at most one point between x and z, and then at most two points, and so on until the
desired number of candidates is found. The effect is something like a “referral system,” in which a point z
suggests points y which “it knows” are closer to x than is z. I expect this method to have the most trouble
when different “sides” of the ball containing the kNN of x have very different densities. This may add extra
candidates on the low density side while not finding enough candidates on the high density side. In any
case, once the pool of candidates is finalized we would run the SELECT algorithm on all candidates, using
just O(k) comparisons for each kNN query.

3.4 Text Similarity

Our initial interest in ordinal embedding was to explore applications to semantic matching of text fragments.
If time permits after the success of the preceding tasks, I would like to return to that task.

Similarity Search. Similarity search is an important task for many large-scale corpora used in industry.
A common pipeline will aim to speed up similarity searching of, for instance, cosine similarity between
TF-IDF document vectors, by first producing a dense, low-dimensional representation of the documents
from the sparse similarity scores (by, e.g., LSI), a searchable index of that representation. Such an index is
typically some hierarchical data structure that can be navigated to find, near the leaves, a set of points with
small mutual distances [Clarkson, 2006, Sankaranarayanan et al., 2007]. Approximation algorithms which
are sublinear in the number of points are also available [Muja and Lowe, 2009, Har-Peled et al., 2012]. These
algorithms generally guarantee that the identified neighbors are close to the query point, but make mistakes
when one of the true kNN is across the boundary of the particular subspaces considered by the algorithm.

There are two possible tasks we could perform here. First, we could seek a better dense representation
of an arbitrary similarity function. For example, we could find an ordinal embedding routine which did a
better job of preserving the cosine similarity scores than does LSI. This would improve accuracy of the final
kNN lists by better preserving the order of neighbors.

Alternatively, we could explore similarity search algorithms which work purely on triples rather than
relying on an embedding. Our hope would be to both improve the accuracy (as an embedding would) while
also providing a faster similarity search. These algorithms would be a natural extension of the geometric
work from Section 3.3.2.

Feature Generation. We could also apply ordinal embedding as producing latent features for some down-
stream machine learning task. Word embeddings, while not currently built using ordinal embeddings, have
proven useful for a variety of Natural Language Processing tasks. It would be interesting to explore embed-
ding text documents or images for Information Retrieval (e.g. as Learning to Rank features), embedding
words or text fragments for Natural Language Processing, embedding sentence translation pairs for Machine
Translation, and so on.

3.5 Recommendation Systems

A final but significant area of interest is recommendation systems, particularly for music recommendation.
After a successful internship with Spotify, I plan to complete a paper based on that work and propose to
integrate my main ordinal embedding work with it in a followup paper.

23



4 Timeline

• Fall, 2017: (1) Continue developing my research with Spotify into a paper for SIGIR on using In-
formation Retrieval methods for music recommendation. (2) Develop large-scale ordinal embedding
methods, focusing firstly on efficiently finding kNN graphs for large-scale corpora and secondly on tun-
ing active learning and embedding methods for the common case that some triple comparisons cannot
be answered from available data. Aim for a paper for AISTATS, ICML, KDD, or the like.

• Spring 2018: Unify the work from Fall semester to find large-scale ordinal embeddings based on
triples inferred from user interaction with music to improve recommendation performance.

5 Conclusion

I believe that methods in Ordinal Geometry are on the verge of a major breakthrough that will increase its
utility for large-scale, high-dimensional datasets. There is accelerating interest both in theoretical aspects
and the practical matter of recovering an embedding from a set of triples. I hope that the work described
here will help to further advance this field.
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Matthäus Kleindessner and Ulrike von Luxburg. Kernel functions based on triplet similarity comparisons.
arXiv.org, July 2016a.
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