
1

Integrating Proxy Theories and Numeric Model
Lifting for Floating-Point Arithmetic

Jaideep Ramachandran∗, Thomas Wahl
Northeastern University

Abstract—Precise reasoning for floating-point arithmetic (FPA)
is as critical for accurate software analysis as it is hard to achieve.
Several recent approaches reduce solving an FPA formula f to
reasoning over a related but easier-to-solve proxy theory. The
rationale is that a satisfying proxy assignment may directly
correspond to a model for f . But what if it doesn’t? Prior work
deals with this case somewhat crudely, or discards the proxy
assignment altogether. In this paper we present an FPA decision
framework, parameterized by the choice of proxy theory T , that
attempts to lift an encountered T model to a numerically close
FPA model. Other than assuming some “proximity” of T to FPA,
our lifting procedure is T -agnostic; it is in fact designed to work
independently of how the proxy assignment was obtained. Should
the lifting fail, our procedure gradually reduces the gap between
the FPA and the proxy interpretations of f . We have instantiated
the framework using real arithmetic and reduced-precision FPA
as proxy theories, and demonstrate that we can, in many cases,
decide f more efficiently than earlier work.

I. INTRODUCTION

Floating point arithmetic, the real-arithmetic (RA) approx-
imation used on most general-purpose computers today, con-
tinues to surprise programmers. While computer scientists
and mathematicians are aware of the loss of precision such
approximation necessarily incurs, many are oblivious to the
consequences this can have in programs beyond small inaccu-
racies in final results. To debug numeric programs effectively
before the software is deployed, counterexample-producing
analysis tools sensitive to FPA semantics are vital.

The last 5–10 years have seen increased efforts in building
floating-point decision procedures. The first such were based
on bit-precise encodings: floating-point expressions are en-
coded as propositional [5], [1] or bitvector logic [6] formulas
that formalize the prescription of the IEEE 754 floating-point
standard [10]. These approaches, while successful, tend to
suffer from the size of the encoding that “bit-blasting” entails.
Moreover, such very low-level encodings lose the intended
numeric proximity of FPA to the real numbers and thus
obscure even the simplest identities like a+ b = b+ a.

The other, and more recent, approach to encoding floating-
point formulas is to exploit said numeric proximity. The IEEE
standard stipulates that a floating-point computation “shall be
performed as if it first produced an intermediate result correct
to infinite precision . . . , and then rounded that intermediate
result . . . to the destination’s format” [10]. Experience has
shown that encoding rounding precisely as a mathematical
(floating point-free) operation is feasible but expensive [11].

∗Email: jaideep@ccs.neu.edu. Supported by NSF grant CCF-1218075.

An alternative philosophy is to ignore the rounding altogether,
solve the formula interpreted over the proxy theory of real
arithmetic using off-the-shelf RA solvers, and check any
obtained models for satisfaction of the formula under FPA
semantics. This idea has been used successfully to detect
floating-point exceptions in C programs [2].

In line with recent work on floating-point model construc-
tion [12], we present in this paper a method that extends the
paradigm of reasoning about FPA via some proxy theory T to
a (complete, in principle) decision method. Our method begins
by abstracting the given floating-point formula f into the proxy
theory T to obtain a formula fT of the same propositional
structure but with T constraints that are assumed to be easier to
decide. It then tries to find a T -model σT of fT . If successful,
we cast σT to a “nearby” FPA assignment σ (how exactly this
is done depends on T). We now determine whether σ |= f
according to FPA semantics; if yes, a model for f has been
found. If σ 6|= f , previous methods disagree widely on how to
proceed. In [2], where T = RA, this case is treated as a failure.
In [12], where T is reduced-precision FPA, the authors attempt
to reconstruct full-precision FPA models simply by initializing
the unused bit positions with zeros.

In this paper we propose a numeric model lifting procedure
that exerts much more fine-grained control over how a poten-
tial model for f is obtained. We aim to find this model in
the close vicinity of (the non-satisfying) σ. To this end, our
procedure heuristically determines a subset O of f ’s variables
such that modifying the assignment to these variables slightly
has a chance to make σ satisfying. We now partially instantiate
f , namely by the assignment σ restricted to the variables
outside of O, to obtain a formula f ′. This reduces the original
decision problem for f to a decision problem for f ′ over only
|O| variables.

Our method now goes a significant step further: instead of
solving f ′ from scratch, we use a strategy reminiscent of lazy
SMT solving: assignment σT , satisfying the T abstraction fT
of f , gives rise to a Boolean model for the propositional
skeleton of fT . Since fT is designed to have the same
propositional structure as f (and hence as f ′), we can reuse
this skeleton assignment, and simply solve a conjunction ∆
of FPA constraints: for each constraint in f ′, we require its
truth value to be the same as that σT has assigned to the
corresponding T constraint in fT .

We summarize the point of constructing ∆. First, if ∆ is
satisfiable, via some assignment ε, then so is f ; a satisfying
assignment is given by updating σ’s assignment to O-variables
using ε. Second, ∆ is a conjunction of FPA constraints (no

2

propositional structure), and contains only |O| variables. In
our experiments, we found that choosing a single variable in
O often suffices. In that case we have reduced f drastically, to
a univariate conjunction of constraints. This reduced problem
can now be given to an FPA solver such as MATHSAT [6],
with largely increased prospects for a speedy decision.

If the lifting step does not succeed, or fT is unsatisfiable
to begin with, our procedure refines fT , in a manner that
depends on the choice of T . The step-wise refinement of-
ten turns unsatisfiable abstractions fT into satisfiable ones.
A classical example are formulas debunking “false identities”,
like (x + y) + z > x + (y + z), which is unsatisfiable
in RA, but becomes satisfiable after a one-step refinement;
Sect. II illustrates this in detail. If, for each intermediate
abstraction fT , a T model cannot be found or the subsequent
lifting fails, the iterative process eventually refines fT to f ; the
search for models in the proxy theory was in vain. In the spirit
of [12], our method is intended for fast model construction.

We have experimented with two proxy theories in this paper:
real arithmetic and reduced-precision floating-point (Sect. V).
Both are often easier to solve than FPA [2], [12].

We finally note that special floating-point values like in-
finities and NaNs will occur in the assignment σT only if
the proxy theory T is “aware” of such values (e.g. RA is
not). Since the model lifting process presented in this paper is
designed to be T -agnostic, we mostly avoid discussing special
values. Our implementation currently enforces their absence
in σT for proxy theories that have them. Incorporating special
values fully into our framework is left for future work.

II. A MOTIVATING EXAMPLE

Our approach deals with floating-point formulas of propo-
sitional structure in a way that is reminiscent of lazy SMT
solving; we present the details of this in Sect. IV. In the present
section we focus on the theory-specific (numeric) aspects.
Consider therefore the atomic floating-point formula

f :: (a1 � a2) � a3 > a1 � (a2 � a3) , (1)

where � denotes floating-point addition. To keep the presen-
tation succinct in this section, we assume single-precision and
round-to-negative as rounding mode.1 We will demonstrate
how our proposed framework processes this formula using real
arithmetic as proxy theory (T = RA).

Motivated by the success of earlier work in finding floating-
point models by searching in the reals instead [2], we ex-
press this formula in the logic of real arithmetic to obtain
fT :: (a1 + a2) + a3 > a1 + (a2 + a3), and give it to an SMT
solver. The solver responds that fT is unsatisfiable.

With the determination to construct a model in mind,
our technique mistrusts the UNSAT result and proceeds by
increasing the precision of the abstraction. Fortunately, we can
perform this refinement in a lazy manner, by interpreting parts
of f in floating-point, others in real arithmetic. Suppose we
decide that the top-level + of the right-hand side expression

1Using the more common mode round-to-nearest-even (RNE), the example
works as well but requires more refinement steps. Our experiments use RNE.

in fT is to be interpreted in (refined to) FPA. This turns fT
into the formula

f ′T :: (a1 + a2) + a3 > a1�(a2 + a3) . (2)

The domain of all variables remains the real numbers. This is a
formula in Mixed Real-FPA (MRFPA); details of its semantics
are given in Sect. V.

Why is this refinement useful? The answer is that chances
of finding a model for f by examining f ′T are higher than
doing so by examining fT , since the semantics of MRFPA
will ensure that the � in f ′T implements floating-point addition
(although its operands are reals; details in Sect. V). In addition,
the cost of examining f ′T is only moderately higher than that of
examining fT , and hopefully lower than that for f . To analyze
f ′T we need solver support for MRFPA, which is given by (an
extension of) the tool REALIZER [11, details in Sect. V].

Giving f ′T to the extension of REALIZER, we obtain—for
the first time—a satisfying assignment σT , namely

σT :: a1 = a2 ≈ 1.1755 · 10−38 , a3 ≈ 1.9722 · 10−31 .

The left hand side term of f ′T evaluates slightly larger than the
right hand side. We now project these real numbers to single-
precision floating-point, which is done simply by rounding. We
then apply the resulting assignment, call it σ, to the floating-
point formula f . Unfortunately, σ does not satisfy f : the left-
hand and right-hand side sums turn out to be the same.

Instead of immediately refining f ′T further, our method does
not give up the hope that a model for f can be found in
a neighborhood of σ. We therefore now try to “nudge” this
assignment so that it satisfies f . The plan is simple: we pick
one of the ai variables to modify—say our choice is a3—while
leaving all others constant. We then build a new, univariate
formula ∆ as follows:

∆ :: (a1 � a2) � a3 > a1 � (a2 � a3) ,

where, for i = 1, 2, ai := σ(ai). By design of our method,
if ∆ is satisfiable, say via ε, then so is f , and we obtain
a satisfying assignment for f from σ by changing the value
assigned to a3 using ε. The key is that ∆ is simpler than f :
it contains only one free variable (a3). We have reduced the
original floating-point decision problem to a much simpler one
such that any model for the simpler problem gives rise to a
satisfying assignment for f .

Finishing up our example: applying the solver MATHSAT [6]
to ∆ we learn that increasing a3 by 1.1755 · 10−38 leads to a
satisfying assignment for f : the left sum is now larger.

Recent work uses reduced-precision FPA as proxy the-
ory [12] and attempts to “patch” a proxy assignment (like σT)
to a satisfying floating-point one using syntactic means: by
padding the lower-precision bitvector assignment with 0s or 1s.
This initially fails and requires more refinement iterations,
ultimately entailing higher cost, as our experiments will show.
In contrast, our method takes the numeric circumstances into
account, as reflected in formula ∆. As a result, a satisfying
assignment for ∆ guarantees the existence of a model for f .

3

III. DECIDING FPA USING A PROXY THEORY
AND MODEL LIFTING

We describe in this section our procedure for deciding
a floating-point formula f ; see Fig. 1. In addition to f ,
the (implicit) input to the procedure includes floating-point
specifics like the format parameters for range and precision,
as well as settings like the rounding mode, which we assume
to apply across the entire formula. If f is determined to be
satisfiable, the algorithm returns a satisfying assignment σ.

fT := f mapped to T

∃σT . σT |=T fT ?

σ := toFloat(σT)

fT := Refine(fT)

σ |= f?

σ := Lift(σ, σT , fT)

success

f

yes

no

σ yes

no

σ

failure

success

failure

UNSAT

Fig. 1: Deciding FPA formula f via proxy theory T

The procedure begins by mapping f to a formula over
the proxy theory T ; we can view the resulting fT as an
abstraction of f . (In general, though, it is neither an over- nor
an underapproximation of f ; this happens to be immaterial for
our procedure.) How this map is defined is clearly T -specific.
However, we require that it maintains the propositional struc-
ture (skeleton) of f and applies only to its (atomic) theory
constraints. For example, in the case of reduced-precision FPA
as the proxy theory, the mapping simply changes the floating-
point format parameters that come with f . In the case T = RA
(real arithmetic), the mapping causes all arithmetic function
symbols and constants to be interpreted over the reals. We
give more details on these specific proxy theories in Sect. V.

Given formula fT in theory T , the procedure now repeatedly
tries to find a model for fT and to “lift” that to a model for f . If
no model for fT can be found, or the lifting fails, it refines fT
so as to narrow the semantic gap to the input formula f . This
is reflected in Fig. 1 as follows. The procedure first performs
the satisfiability check ∃σT . σT |=T fT (where |=T is the
satisfaction relation in T). If the check fails, fT is refined;
more on that below. If a satisfying assignment σT is found,
we call a procedure toFloat that casts the T -assignment σT

to a “nearby” floating-point assignment σ. This step is T -
dependent and may for instance involve rounding (when T is
“more precise” than standard FPA) or fresh bit initialization
(when T is “less precise” than standard FPA).

We now ask whether σ is indeed a satisfying floating-point
assignment for f . This amounts to plugging in the values
given by σ, and evaluating the grounded formula f . Unless
the satisfiability of f depends on floating-point peculiarities
such as the lack of associativity (example in Sect. II), the
query σ |= f may well succeed (|= is the satisfaction relation
in FPA); this was observed in [2] for a large fraction of
their (floating-point exception) benchmarks. In that case the
procedure terminates, returning σ.

A negative result to the query σ |= f is interpreted by the
procedure to mean that the floating-point solution to f that
we are suspecting in the vicinity of σT cannot be obtained
simply by rounding or syntactic initialization. We therefore
launch a more aggressive subroutine Lift that tries to modify
the values assigned by σ to certain variables of f to force σ
to be satisfying. This routine is described in Sect. IV. Note
that, while toFloat casts a T -assignment to floating point, Lift
maps one floating-point assignment to another.

The Lift procedure is designed such that, if there exists a
satisfying floating-point assignment in the vicinity of σ, Lift
will eventually find it, given enough time. In this case, Lift in
Fig. 1 returns the new σ; the procedure terminates. Lifting can
fail because f is unsatisfiable, or because the lifting timed out.
The latter indicates that assignment σ is not a good starting
point for finding a model for f . We increase the precision of
the abstraction, by refining fT .

The Refine step fails when, upon invocation, fT is “equiva-
lent” to f in a sense that depends on the abstraction map. For
the case of reduced-precision FPA as proxy theory, this simply
means the floating-point format of fT equals that of f . In that
case, the satisfiability check ∃σT . σT |=T fT in the previous
iteration was actually a satisfiability check for f . Since that
did not succeed, f is unsatisfiable.

Correctness. Termination of the framework can be enforced
with some “cooperation” from T : we assume T to be chosen
such that mapping f to T , and the calls toFloat(σT) and
Refine(fT) are straightforward and “fast”. The test σ |= f?
is trivial. The decision problem ∃σT . σT |=T fT ? may
not terminate, e.g. due to undecidability of T . We solve
this problem by enforcing a timeout for this step. The call
Lift(σ, σT , fT) is discussed in detail in Sect. IV. As we shall
see, it introduces no potential for nontermination.

Finally, the framework itself (Fig. 1) contains a loop. We
require of the proxy theory that it permits gradual refinement
of T formulas to floating-point formulas. How this is done
exactly depends on T and is discussed, for two instances, in
Sect. V. With these provisions, instances of the framework in
Fig. 1 are terminating. The framework is also easily seen to
be sound for SAT and UNSAT outcomes; we omit the details.

4

IV. MODEL REFINEMENT:
FROM PROXY MODELS TO FPA MODELS

We revisit Fig. 1. Suppose formula fT (the current ab-
straction of floating-point formula f) is satisfiable and gives
rise to a model σT . Suppose further that the cast operation
toFloat(σT) yields a non-satisfying assignment σ for f . This
means that σ assigns to at least one FPA constraint in f a
different Boolean value than σT does to the corresponding
T theory constraint in fT . The goal of the model refinement
procedure Lift is to reconcile this difference, thereby lifting
assignment σ to a proper model for f .

The basic idea is as follows. Given that σT |=T fT , there
exists an assignment to the variables in the Boolean skeleton of
fT that makes this propositional skeleton formula true. Since,
by construction, f and fT have the same Boolean skeleton
(this is required of the abstraction; see Sect. III), the goal is to
modify the assignment to the floating-point variables in f such
that the corresponding Boolean skeleton assignment coincides
with that induced by σT . If we succeed, f is satisfied. This
turns the original FPA formula f into a structurally simple
conjunction of FPA theory constraints, since the “target”
Boolean value for these constraints is determined via σT .

We point out parallels of this reduction of formula structure
to lazy SMT solving: there, a formula f over a background
theory T is solved by first applying a T -oblivious proposi-
tional SAT solver to f ’s Boolean skeleton. A solution gives
rise to a conjunction of T constraints a model for which is
a model for f . In our work we do not use a SAT solver —
it is too weak for our purposes: we seek a (proxy) theory
assignment that makes the skeleton true and gives hope that
a satisfying FPA assignment can be found nearby.

Notation. Let V be the set of arithmetic variables in f , and let
P be the set of propositional variables in the Boolean skeleton
of f . We can think of variables p ∈ P as pointers to the
FPA theory constraints of f . Recall that the abstractions fT
produced during the main procedure in Fig. 1 all maintain the
skeleton of f . Hence, there exists a function γ that takes p ∈ P
and f or fT as input and returns the theory constraint of f
or fT pointed to by p. Consider this example for T = RA:

f = x� y > 10 ∨ x� y < 7

fT = x+ y > 10 ∨ x− y < 7 .

Choosing p1 ∨ p2 as the skeleton, we then have V = {x, y},
P = {p1, p2}, and

γ(p1, f) = (x� y > 10), γ(p2, f) = (x� y < 7)
γ(p1, fT) = (x+ y > 10), γ(p2, fT) = (x− y < 7) .

We finally use Eval to denote a function that takes a formula
ϕ and an assignment A to all variables in ϕ and returns the
Boolean value of ϕ under A, respecting the semantics of ϕ.

Our lifting procedure is shown in Alg. 1. The algorithm
scheme receives the FPA assignment σ that fails to satisfy f ,
the T assignment σT that does satisfy fT , and formula fT .
(The algorithm also has access to the [unchanged] formula f .)
We begin by selecting all invertible constraints Inv in f (via

pointers p): those for which assignments σT and σ disagree
in the Boolean value assigned in fT and f , resp.

In Line 2 we select a set O of offset variables: floating-
point variables whose assignment we plan to modify to make
σ satisfying. An upper bound on O is that each v ∈ O must be
contained in at least one invertible constraint. More details on
the selection are given in Implementation below. In Line 3
we build the set PO of (pointers to) constraints that contain
at least one O-variable: these are the constraints whose truth
value may be affected when assignments to O-variables are
modified.

Line 4 modifies f to f ′ by instantiating every non-offset
variable v ∈ V \O by its literal floating-point assignment σ(v).
Finally, in Line 5 we construct a constraint ∆ that realizes the
above basic idea: for each theory constraint γ(p, f ′) in f ′ with
at least one O-variable, enumerated via pointers p ∈ PO, we
require that it be assigned the truth value Eval(γ(p, fT), σT)
(a constant) given by σT to the corresponding theory constraint
γ(p, fT) in fT . The right conjunct of formula ∆ restricts the
assignment to O-variables v to some interval around σ(v);
terms v.l and v.r are floating-point literals (see Interval
constraints below).

Intuitively, constraint ∆ is satisfiable whenever there is a
satisfying assignment to f in some small neighborhood of
σ = toFloat(σT). We are hopeful this is the case, since σT
satisfies fT . Hence, if there exists a satisfying assignment ε
to ∆, we modify σ by updating, using ε, the values assigned
to O-variables. If ε does not exist, the lifting fails.

Implementation. Our lifting procedure has reduced the
floating-point decision problem for f to that for ∆. Is the
reduced problem simple enough that we can solve it using
an off-the-shelf FPA decision procedure? Formula ∆ is a
conjunction of constraints — no propositional reasoning is
required to decide it. The free variables in ∆ are precisely the
offset variables. The choice of set O thus critically influences
the variable complexity of ∆; we use heuristics to keep it
small. If v occurs in expensive constraints in f , such as
in high-degree polynomials or other non-linear terms, the
variable ranks low in our selection heuristics. For example,
if f contains the quadratic form x�x � x� y, our heuristic
chooses O = {y} ; Line 4 in Alg. 1 turns the entire term into
the univariate, linear floating-point term

σ(x) � σ(x) � σ(x) � y .

Interval constraints. Gradient analysis of f in a neighborhood
of assignment σ may reveal that a variable v needs to be
increased, say. In this case, we use a lower bound v.l = σ(v)
in the range constraint v.l ≤ v ≤ v.r in Line 5. For example,
for f = x�y > 4.0∧x�y < 2.0 with σ = {x = 3.0, y = 1.0},
gradient analysis reveals that y needs to be increased; we set
y.l = 1.0. In the absence of such information, we choose
interval [v.l, v.r] to be symmetric around σ(v), of a width
that is a small fraction of |σ(v)|.

5

Algorithm 1 (Scheme) Lifting σ to FPA model

Input: σ: FPA assignment (falsifying f), σT : T assignment (satisfying fT), fT : abstract formula
1: Inv := {p ∈ P |Eval(γ(p, fT), σT) 6= Eval(γ(p, f), σ)} . invertible constraints
2: select subset O of

⋃
i∈Inv Vars(γ(i, f)) . offset variables

3: PO := {p ∈ P |Vars(γ(p, f)) ∩O 6= ∅} . O-affected constraints
4: f ′ := f

∣∣
v→σ(v) | v∈V \O . partially instantiated formula

5: ∆ :=
∧
p∈PO

γ(p, f ′) = Eval(γ(p, fT), σT) ∧
∧
v∈O v.l ≤ v ≤ v.r

6: if ∃ε. ε |= ∆ then
7: for each v ∈ O
8: σ(v) := ε(v)
9: return σ

10: else
11: return failure

V. PROXY THEORIES FOR FLOATING-POINT ARITHMETIC

We have instantiated our framework with two proxy theories
at opposite ends of the precision spectrum: reduced-precision
FPA and real arithmetic (which can, somewhat awkwardly,
be viewed as an infinite-precision “approximation” of FPA).
The former is a fairly obvious candidate: an FPA formula
is abstracted by interpreting it over a floating-point format
with smaller precision and/or range. Reduced-precision FPA
is almost invariably easier to solve. Models can be cast to
original-precision FPA by initializing the fresh bits to 0. Step-
wise refinement consists of gradually increasing the precision
(in our work: across the entire formula; more sophisticated
schemes are possible). T is therefore actually the family of
FPA theories parameterized by precision/range. Such proxy
theories have been used before [12, without numeric lifting].
We discuss instead a less obvious choice for T in this section.

Real Arithmetic as Proxy Theory

As suggested in Sect. II and reported earlier [2], real
arithmetic (RA) is suitable for an approximate interpretation
of a floating-point formula f : many formulas are easier to
decide over the reals, since the complexity of rounding is
avoided. A satisfying real assignment can easily be cast to
a floating-point assignment via rounding. To enable step-wise
refinement of the RA-interpretation of f back to FPA, however,
we need a proxy theory that can express combinations of real
and floating-point terms, such as a1 � (a2 + a3) (Sect. II).

Our proxy theory therefore is actually not real arithmetic,
but an extension that we call Mixed Real-Floating-Point Arith-
metic (MRFPA) and define as follows. Let R be the set of real
numbers, and F be the numbers in R representable in floating-
point over some fixed precision and range (these parameters
are constant in this section). Let rd : R → F be the function
that implements the given rounding mode, and let VarR and
VarF be a set of real and floating-point variables, resp.

The syntax of MRFPA formulas f is as follows.

f :: tR θR tR | tF θF tF | ¬f | f ∨ f
θR :: < |=
θF :: <F |=F

αR :: + | × | /
αF :: � | � | �
αM :: +M | ×M | /M
tR :: c ∈ R | v ∈ VarR | (tR αR tR) | tF
tF :: c ∈ F | v ∈ VarF | (tF αF tF) | (tR αM tR)

(3)

Intuitively, MRFPA formulas are built over F terms tF, which
evaluate to elements of F, and R terms tR, which more
generally evaluate to elements of the superset R. R terms
are formed using real operators αR. F terms are formed using
floating-point operators αF or mixed operators αM. Operators
αM can take operands that are floating-point representable, and
those that are not. There are no mixed comparison operators
<M | =M , as they are identical to the real operators < | = .

The semantics of MRFPA formulas is defined recursively
via an overloaded evaluation function [[·]] that maps R terms
to elements of R, F terms to elements of F, and formulas to
a Boolean value, as follows. Let AR : VarR → R be an R
assignment to variables in VarR, and AF : VarF → F be an
F assignment to variables in VarF. The semantics of terms is
as follows: [[c]] = c for constants c ∈ R∪F, [[v]] = AR(v) for
v ∈ VarR and [[v]] = AF(v) for v ∈ VarF, and

[[t1R αR t2R]] = [[t1R]]αR [[t2R]]
[[t1F αF t2F]] = [[t1F]]αF [[t2F]]
[[t1R αM t2R]] = rd([[t1R]] [[αM]] [[t2R]])

where [[+M]] = � , [[×M]] = � , etc. Operators αM differ
from the corresponding real operators αR in that they round
the result. They also differ from the corresponding floating-
point operators αF: the latter take only F terms as inputs.

The semantics of an MRFPA formula f is then as follows:

[[t1R θR t2R]] = [[t1R]] θR [[t2R]] [[¬f]] = ¬[[f]]
[[t1F θF t2F]] = [[t1F]] θF [[t2F]] [[f1 ∨ f2]] = [[f1]] ∨ [[f2]]

Our definition of MRFPA ignores numeric anomalies such as
infinities and NaNs; see discussion in Sect. I.

The use of MRFPA as proxy theory requires specific
solver support, such as obtained by extending the tool RE-
ALIZER [11]. The tool translates floating-point formulas into

6

numerically equivalent formulas over mixed real-integer arith-
metic (RIA): it replaces x�y by rd(x+y), where rd encodes
rounding as a RIA operation involving floor and ceiling
functions. Our (straightforward) extension permits MRFPA as
input, not just floating-point formulas.

In practice, deciding real-integer arithmetic is costly and
in fact undecidable in the non-linear case. We have therefore
experimented with MRFPA as proxy theory only for linear
formulas; the prospects for extending this to richer classes are
discussed in Sect. VIII.

VI. EXPERIMENTAL EVALUATION

The techniques described in this paper have been imple-
mented in our tool MOLLY (roughly, “Model Lifter”), both
with reduced-precision FPA as proxy theory (called “RPFPA”
in the sequel), and with real arithmetic as proxy.

Tool set-up. For our RPFPA experiments, we used MATHSAT
[6, v5.3.8] to obtain proxy models and also to solve the
constraint during the lifting of proxy models to FPA models.
For lifting, MOLLY picks one variable at a time; currently in
an arbitrary way. The formula refinement process increases the
number of bits in the exponent by 1, and in the mantissa by 3.

We compare against MATHSAT and against the technique
presented in [12, called “Approx” there and in Table I]. We
used MATHSAT with the options input=smt2 , -model ,
-theory.eq_propagation=false and -theory.fp
.bit_blast_mode=1 both when used inside our tool
and also when used stand-alone for the comparison. For
comparison with “Approx”, we used our own tool MOLLY
but with model lifting turned off : our routine toFloat then
exactly implements the “padding” used in [12]. Not using their
implementation allows us to exactly assess the contribution of
the lifting.

All evaluations were performed on a machine with Intel(R)
Core (TM) i7-4770 3.40GHz CPU, having 8 GB RAM and
running x86 64 Ubuntu 14.04 LTS. An overall timeout (TO)
of 20 min was used for each benchmark for every tool.

Benchmarks. We evaluated our technique primarily on two
benchmark sets. The first benchmark set, named “I. Non-
linear benchmarks from [4]” in Table I, contains a mix of 213
formulas from prior published work [4]. Since we currently
do not support casts, we ignored them and interpreted all
operations as being for the same (single) precision. We also
disallowed special floating-point values in the solution by
adding the SMT-LIB assertion fp.isNormal for every variable.

The second set of benchmarks, named “II. False Identity
benchmarks” in Table I, were created by us and are available
for download here. These are formulas of the form E− Ê > ε
along with range constraints on the input variables; the expres-
sion Ê is obtained from E using a real-arithmetic rewrite rule,
i.e. Ê is mathematically equivalent to E. Some of the simpler
polynomials, for instance, involve factors, e.g. comparing
deviation of x3−y3 from the product of its factors (x−y) and
(x2−xy+ y2), for a specific ordering of operations. We have
formulas for such comparisons for a variety of polynomials,

ranging from Horner scheme evaluations to power series
expansions for the sine function. Such decision problems are
relevant for optimizing compilers since a rewrite based on an
equivalence in real arithmetic is often unsafe in FPA. These
benchmarks are all satisfiable and values of ε were chosen
such that MATHSAT solves each of these in less than 5 min.

Results. Running MOLLY on the first set of non-linear bench-
marks confirmed the results reported in [12]: solving a simpler
reduced precision approximation, often with the initial reduced
precision of 3 bits for each of mantissa and exponent, suffices
to solve a significant number of the satisfiable constraints.
There were only some opportunities for numeric model lifting;
the results on all those 22 benchmarks are reported in the
set “I. Non-linear benchmarks from [4]” in Table I (1–22).
A majority of these benchmarks turned out to be satisfiable
and for the rest the satsifiability status is still unknown. To
evaluate effectiveness of model lifting, a liberal timeout of 12
min was set for the numeric model lifting step. From Table II,
MATHSAT solves one benchmark more than MOLLY, which in
turn solves one more than “Approx”. The average solving time
per solved benchmark for MOLLY (219s) is greater than that
for “Approx” (127s) but lesser than that for MATHSAT (443s).
For the set of “False Identity benchmarks” in Table I (23–
37), we used a timeout of 3 min per iteration for the reduced
precision solving and a timeout of 1 min for the model lifting
stage. MATHSAT and MOLLY solve all the 15 benchmarks,
with MOLLY taking the least average time per benchmark
(86s), closely followed by “Approx” (89s), which timed out
on two.

Real arithmetic as proxy theory
We also evaluated MOLLY on a set of constraints consisting

of linear formulas that involve checking non-associativity
of FPA operations. We assumed single-precision FPA, with
round-to-nearest-even rounding mode for FPA operations.
MOLLY uses our real arithmetic abstraction detailed in Sect. V.
For solving MRFPA formulas, we extended the tool REAL-
IZER [11], which previously accepted pure FPA formulas as
input, to also accept MRFPA formulas that are generated in
the first formula refinement. In this case, the refinement step
marks real arithmetic operators in some parts of the formula
as FPA operators.

In Table III, #Vars indicates the size of the formula, e.g. for
#Vars=5, the decision problem is

(((a1+a2)+(a3+a4))+a5) > ((((a1+a2)+a3)+a4)+a5).

MOLLY outperforms MATHSAT and is also seen to scale well.
In each case, after a few iterations, our model lifting technique
succeeded in transforming a real arithmetic assignment into a
satisfying floating-point assignment. Based on a simple analy-
sis of the behavior of the expressions constituting the formula
in the neighborhood of the approximate assignment, a single
variable was chosen to invert the result of the comparison. As
before, we used our tool with model lifting disabled to mimic
the tool “Approx” from [12]. Here we also ran the actual tool
from [12]: it performed many more iterations and eventually
timed out on each instance.

http://www.ccs.neu.edu/home/jaideep/benchmarks16.tar.gz

7

MOLLY APPROX [12] MATHSAT

Problem It Lifted? Time (s) It Time (s) Time (s)
I. Non-linear benchmarks from [4]

1 1 X 7.8 2 5.0 344.0
2 1 X 15.8 2 12.3 986.5
3 2 × 60.1 2 45.6 995.9
4 - - TO - TO 977.6
5 - - TO - TO 983.6
6 - - TO - TO 977.1
7 - - TO - TO 983.5
8 - - TO - TO TO
9 8 × 337.1 8 330.8 TO
10 - - TO - TO TO
11 1 X 3.2 2 0.3 61.8
12 × 680.5 2 0.3 TO
13 7 X 863.3 - TO TO
14 - - TO - TO TO
15 - - TO - TO TO
16 8 × 484.7 8 116.6 46.7
17 8 × 350.3 8 322.2 47.0
18 2 X 4.9 6 29.4 46.8
19 2 X 22.1 3 32.5 47.2
20 1 X 3.3 2 6.3 46.5
21 2 X 263.4 3 599.9 46.8
22 3 X 39.1 4 118.8 65.7

II. False Identity benchmarks
23 3 X 148.6 8 163.7 60.5
24 2 X 64.6 8 137.9 108.4
25 8 × 162.7 8 137.2 108.4
26 1 X 0.9 8 137.2 108.2
27 8 × 278.2 8 162.8 47.7
28 1 X 12.4 8 123.1 51.8
29 4 × 70.2 4 9.8 112.4
30 2 X 62.6 8 108.5 108.7
31 3 X 144.5 8 172.4 122.5
32 3 X 157.2 - TO 133.6
33 1 X 1.1 4 0.6 133.6
34 4 X 181.4 - TO 605.4
35 1 X 2.1 8 7.7 596.5
36 1 × 0.1 1 0.1 0.3
37 3 × 0.5 3 0.5 0.3

TABLE I: Numeric model lifting on non-linear problems.
“It.” = # of iterations; Lifted? = X if final satisfying assignment obtained via model lifting, otherwise (via toFloat) = ×

Table I, Table II and Table III indicate MOLLY is efficient on
benchmarks that require staying close to the original precision
to find satisfying assignments. Numeric model lifting then
closes the gap between the abstract but imprecise (with respect
to FPA) solutions and genuine floating-point arithmetic.

VII. RELATED WORK

The idea of using real arithmetic to solve floating-point
constraints approximately has been implemented before [2].
The earlier approach uses this real arithmetic approximation
only once for a formula and is hence incomplete, for instance,
a formula that is unsatisfiable in the reals but satisfiable in
floating-point can not be handled. In contrast, as shown in
Sect. VI, we can handle such an input formula by refining the
formula iteratively when the answer obtained in an iteration
is not a correct answer to the original formula.

The above mentioned earlier work aims to detect exceptions
in floating-point programs, by encoding, in real arithmetic,
path conditions of programs as well as exceptional conditions
like underflow, overflow, division by zero and certain in-
valid operations involving NaN. This approximation, ignoring

rounding entirely, was sufficient to detect several exceptions,
primarily of the underflow and overflow types, in a publicly
available library. However, we eventually encode rounding for
every operation as per the IEEE 754 standard, as we intend
our procedure to be used to uncover bugs due to rounding,
for instance, in floating-point comparisons in control flow
conditions.

A framework for using abstractions that are neither under
approximations nor over approximations of the original for-
mulas was proposed recently [12]. These approximations are
refined iteratively as necessary. The authors instantiated this
framework for floating-point arithmetic using lower precision
floating-point numbers. We extend this idea using numeric
model lifting techniques.

In the above work, the authors mention very simple heuris-
tics, like padding the solutions with 0s, for lifting a satisfying
assignment from a lower (s, e) to one for the actual problem,
but these are unlikely to succeed for many cases, especially
in the context of detecting anomalies due to floating-point
peculiarities or when the approximate assignment contains

8

MOLLY “APPROX” [12] MATHSAT

I

Solved 14 13 15
Total Time(s) 3067 1650 6656
Avg. Time(s) 219 127 443

TO 8 9 7

II

Solved 15 13 15
Total Time(s) 1287 1161 2237
Avg. Time(s) 86 89 149

TO 0 2 0

TABLE II: Statistics for data from Table I. Total Time
is the sum of solving times for the solved instances

MOLLY APPROX [12] MATHSAT

#Vars It Lifted? Time (s) It Time (s) Time (s)
35 6 X 30.5 15 153 81.6
40 3 X 11.9 7 34 278.2
45 8 X 448.6 33 TO 457.1
50 5 X 25.1 20 344 164.5
55 5 X 28.3 16 210 754.8
60 3 X 17.2 34 TO TO
65 7 X 42.0 11 88 TO

TABLE III: Demonstrating numeric model lifting with
Real arithmetic proxy theory on FPA-specific problems

non-integral values.
In the decision procedure world, the tools Z3 and MATHSAT

have support for floating-point arithmetic, primarily based on
bit vector reasoning and bit-blasting. With increasing size
and complexity of FPA constraints, the resulting propositional
encoding becomes very large, which is problematic especially
if the input formula itself is large, or when the formula has
non-linear arithmetic operations. An attempt was made to
alleviate this problem by applying a combination of under-
and over-approximations to the same formula [5].

Goubault and Putot [8] present abstract domains and meth-
ods to bound the difference between floating-point and real-
arithmetic interpretations of the program, and these have been
incorporated into FLUCTUAT [7], and can be used for test-
case generation. Abstract interpretation and interval arithmetic
techniques provide clear efficiency benefits over model explo-
ration approaches such as ours, and feature a high level of
automation. They have been successfully applied in industrial
contexts. On the other hand, they are approximate and may not
suffice when accurate analysis is paramount. This is reflected
especially in the potential for spurious assignments.

Various formalizations and libraries for FPA have been de-
veloped in the domain of theorem proving [9]. More recently,
these provers have been used to certify programs [3]. The
use of such tools requires expert skills to provide hints to
steer the theorem prover towards the goal. In contrast, model
exploration approaches such as ours aim at principally push-
button techniques.

VIII. CONCLUSIONS

We have presented a framework for building solvers for
floating-point decision problems, by reducing them to deci-
sions in some proxy theory T . The assumptions are that (i)
T models are often close to FPA models, and (ii) T formulas
are on average easier to decide than FPA formulas. Examples
of suitable proxy theories include reduced-precision FPA and
real arithmetic. Previous work embeds such reductions into a
CEGAR loop [12]. Our framework extends it by a numeric
model refinement procedure, which tries to lift T models to
FPA models. The procedure determines, using a floating-point
solver, how much certain variables need to be adjusted away
from the T model, to compensate for the difference between
T and FPA. We derive a new formula with a simpler structure
and fewer free variables, and whose satisfiability immediately
gives rise to an FPA model. Experimental results indicate our
technique can find satisfying assignments efficiently.

Future work. We plan to extend our work in two main
directions. One is the use of approximate numeric techniques,
rather than (exact) decision procedures, to solve formulas
in the proxy theory T : thanks to model lifting, a precise
solution in T is not required for the first green box in Fig. 1.
This relaxation opens up a host of other and potentially
very scalable techniques especially for complex non-linear
input constraints, including for the case of real arithmetic as
proxy theory, for which we currently have limited support for
non-linear formulas. The other direction is to improve our
strategy for dealing with unsatisfiable formulas, rather than
just “waiting” for the refinement to revert fT back to f ; the
latter causes all model finding efforts to be wasted.

REFERENCES

[1] CBMC. http://www.cprover.org/cbmc/, accessed: 2015-03-23
[2] Barr, E.T., Vo, T., Le, V., Su, Z.: Automatic detection of floating-

point exceptions. In: Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. pp.
549–560. POPL ’13, ACM, New York, NY, USA (2013)

[3] Boldo, S., Melquiond, G.: Flocq: A unified library for proving floating-
point algorithms in coq. In: 20th IEEE Symposium on Computer
Arithmetic, ARITH 2011, Tübingen, Germany, 25-27 July 2011. pp.
243–252 (2011)

[4] Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding
floating-point logic with abstract conflict driven clause learning. Formal
Methods in System Design 45(2), 213–245 (2014)

[5] Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-
point arithmetic. In: FMCAD. pp. 69–76 (2009)

[6] Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5
SMT Solver. In: Piterman, N., Smolka, S. (eds.) Proceedings of TACAS.
LNCS, vol. 7795. Springer (2013)

[7] Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine,
F.: Towards an industrial use of FLUCTUAT on safety-critical avionics
software. In: Formal Methods for Industrial Critical Systems, 14th
International Workshop, FMICS 2009, Eindhoven, The Netherlands,
November 2-3, 2009. Proceedings. pp. 53–69 (2009)

[8] Goubault, E., Putot, S.: Static analysis of finite precision computations.
In: Verification, Model Checking, and Abstract Interpretation - 12th
International Conference, VMCAI 2011, Austin, TX, USA, January 23-
25, 2011. Proceedings. pp. 232–247 (2011)

[9] Harrison, J.: A machine-checked theory of floating point arithmetic. In:
Theorem Proving in Higher Order Logics, 12th International Conference,
TPHOLs’99, Nice, France, September, 1999, Proceedings. pp. 113–130
(1999)

[10] Institute of Electrical and Electronics Engineers (IEEE): 754-2008 —
IEEE standard for floating-point arithmetic. IEEE pp. 1–58 (2008)

[11] Leeser, M., Mukherjee, S., Ramachandran, J., Wahl, T.: Make it real:
Effective floating-point reasoning via exact arithmetic. In: DATE. pp.
1–4 (2014)

[12] Zeljic, A., Wintersteiger, C.M., Rümmer, P.: Approximations for model
construction. In: IJCAR. pp. 344–359 (2014)

http://www.cprover.org/cbmc/

	Introduction
	A Motivating Example
	Deciding FPA using a Proxy Theory and Model Lifting
	Model Refinement: From Proxy Models to FPA Models
	Proxy Theories for Floating-Point Arithmetic
	Experimental Evaluation
	Related Work
	Conclusions
	References

