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ABSTRACT
In the field of information retrieval, one is often faced with
the problem of computing the correlation between two ranked
lists. The most commonly used statistic that quantifies this
correlation is Kendall’s τ . Often times, in the information
retrieval community, discrepancies among those items hav-
ing high rankings are more important than those among
items having low rankings. The Kendall’s τ statistic, how-
ever, does not make such distinctions and equally penalizes
errors both at high and low rankings.

In this paper, we propose a new rank correlation coeffi-
cient, AP correlation (τap), that is based on average pre-
cision and has a probabilistic interpretation. We show that
the proposed statistic gives more weight to the errors at high
rankings and has nice mathematical properties which make
it easy to interpret. We further validate the applicability of
the statistic using experimental data.

Categories and Subject Descriptors: H.3 Information
Storage and Retrieval; H.3.4 Systems and Software: Perfor-
mance Evaluation

General Terms: Experimentation, Measurement, Algo-
rithms

Keywords: Evaluation, Kendall’s tau, Average Precision,
Rank Correlation

1. INTRODUCTION
Most of the research in the field of information retrieval

depends on ranked lists of items. The output of search en-
gines are ranked list of documents, the search engines them-
selves are also ranked based on their performance accord-
ing to different evaluation criteria, the queries submitted to
search engines are again ranked based on their difficulty, and
so on.

Since most of the research in IR is based on ranked lists
of items, it is often the case that we need to compare two
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ranked lists and report the correlation between them. Two
of the most commonly used rank correlation statistics are
Kendall’s τ [7] and Spearman rank correlation coefficient [15].

The Spearman correlation coefficient is equivalent to the
traditional linear correlation coefficient computed on ranks
of items [15]. The Kendall’s τ distance between two ranked
lists is proportional to the number of pairwise adjacent swaps
needed to convert one ranking into the other.

Kendall’s τ has become a standard statistic to compare
the correlation among two ranked lists. When various meth-
ods are proposed to rank items, Kendall’s τ is often used to
compare which method is better relative to a “gold stan-
dard”. The higher the correlation between the output rank-
ing of a method and the “gold standard”, the better the
method is concluded to be. Pairs of rankings whose Kendall’s
τ values are at or above 0.9 are often considered “effectively
equivalent” [13], at least empirically.

For example, Soboroff et al. [12] propose a new method
for system evaluation in the absence of relevance judgments
and use Kendall’s τ to measure the quality of their method.
Buckley and Voorhees [2] propose a new evaluation measure,
bpref, to evaluate retrieval systems and use Kendall’s τ to
show that this measure ranks systems similar to average pre-
cision. Similarly, Aslam et al. [1] propose a new method for
evaluating retrieval systems with fewer relevance judgments.
They compare their method with the depth pooling method
by comparing the Kendall’s τ correlation of the rankings of
systems obtained using both methods with the actual rank-
ings systems to show that their method is better than the
depth pooling method. The Kendall’s τ statistic is also used
to compare the rankings of queries based on their estimated
difficulty with the actual ranking of queries [14]. Melucci
et al. [8] provides an analysis of places where Kendall’s τ is
used in information retrieval.

In most of the places where Kendall’s τ is used, authors
aim for a Kendall’s τ value of 0.9 and conclude that their
method produces “good” rankings if they obtain a τ value
greater than this threshold [17, 3, 9].

Although Kendall’s τ seems to be a reasonable choice
for comparing two rankings, there is an important problem
with this statistic, at least in the context of IR. Kendall’s τ
equally penalizes errors that occur at any part of the list. In
other words, it does not distinguish between the errors that
occur towards the top of the list from the errors towards
the bottom of the list [8]. However, in almost all cases in
information retrieval we care more about the items that are



ranked towards one end of the list (either top or bottom).
For example, in TREC, given the rankings of systems, the
goal is to identify the best systems. When the goal is to
predict query difficulty, it is more important to identify the
most difficult queries. Similarly, when comparing outputs
of two search engines, the differences towards the top of the
two rankings matter more than the differences towards the
bottom of the rankings.

As an example of the aforementioned problem, consider
8 different retrieval systems. Let’s assume that their actual
ranking is <1 2 3 4 5 6 7 8>. Suppose there are two differ-
ent methods to evaluate these systems with fewer judgments
and one would like to compare the quality of the two meth-
ods. Let’s assume that when the first method is used, the
systems are ranked as <4 3 1 2 5 6 7 8> and when the second
method is used, they are ranked as <1 2 3 4 8 7 5 6>. The
former ranking has the first four systems in inverse order
compared with the actual ranking, while the latter the last
four system in inverse order. The Kendall’s τ correlation
of each rankings with the actual ranking of the systems is
the same (in both cases equal to 0.6429). Hence, based on
the Kendall’s τ values, the two methods are equivalent in
terms of how they rank the systems. Note, however, that
in many IR contexts it is much more important to get the
“top half” of the list “right” than the “bottom half”. Thus,
we might well much prefer the latter ranking as compared
to the former.

In the real world, we are often times faced with ranked
lists in which there are many mistakes in terms of the rank-
ings of the top (best) items. Figure 1 and Figure 2 show
two such cases for TREC 8. In the figures, the leftmost
plots show the mean average precision (MAP) values of sys-
tems using depth-1 and depth-6 pooling versus the actual
MAP values. It can be seen in Figure 1 that the Kendall’s
τ correlation between the rankings of systems induced by
depth-1 MAP values and the actual rankings of systems is
0.733. Hence, based on the Kendall’s τ value, there is a pos-
itive correlation between the two rankings. However, if we
only consider the top (best) 10 systems in TREC 8 (middle
plot), it can be seen that these systems are ranked almost
in reverse order among themselves. On the other hand, if
we only focus on the worst 10 systems (right plot), it can be
seen that these systems are ranked almost perfectly with re-
spect to each other. Hence, even though the depth-1 pooling
method is quite poor at identifying the best systems, since
Kendall’s τ does not make any distinction between errors
towards the top versus the errors towards the bottom, the
overall Kendall’s τ value is still 0.733. The same behavior
can be seen in Figure 2.

Many researchers are aware of this flaw in using Kendall’s
τ [8] and have tried to use some alternatives to Kendall’s
τ . Voorhees [14] makes use of a new measure for estimating
query difficulty by gradually removing the items of inter-
est and comparing how the average values of items change
with respect to average values of actual items. However,
this method cannot be used to measure correlation between
ranked lists. To compare rankings of retrieval systems, Wu
et al. [16] use an accuracy measure which is the total number
of items that are common in the top-n of both lists, divided
by n, where n is the number of items one is interested in.
This approach has the problem that the best possible accu-
racy measure is obtained as long as the top-n of both lists
contain the same items, even if the top items are ranked in

reverse order in two lists.
Shieh [11] recently devised an extension of Kendall’s τ

where the errors in different ranks are penalized by different
weights. However, this requires assigning arbitrary weights
to these errors beforehand and defining such weights is not
easy. Similarly, Fagin et al. [5] proposed an extension to
Kendall’s τ for comparing top-k lists. Their extension is
also based on defining arbitrary penalties when there are
errors in rankings. Furthermore, their approach still gives
equal weights to errors within the top-k lists and is not very
applicable for comparing the entire ranked lists while giving
more weight to the errors at the top. Haveliwala et al. [6]
used the Kruskal-Goodman τ statistic (a statistic very sim-
ilar to Kendall’s τ) to compute correlations in the regions
they are interested in (e.g. the top). However, this approach
also suffers from the same problems as the former method in
that it is not very applicable for comparing all the items in
ranked lists at once while giving more weight to the errors
at the top.

In this paper, we first show that the problem of evalu-
ating the correlation between two ranked lists is analogous
to the problem of evaluating the quality of a search engine,
concluding that similar ideas can be used in both cases. We
propose a new rank correlation coefficient, AP correlation
(τap), that is based on average precision and has a prob-
abilistic interpretation similar to Kendall’s τ , while giving
more weight to the errors nearer the top of the list, as in AP.
The proposed statistic has two nice properties: (1) When
ranking errors are randomly distributed across the list, the
AP correlation value is equal to Kendall’s τ , in expecta-
tion. (2) If there are less (more) errors towards the top of
the list, the AP correlation value is higher (lower) than the
Kendall’s τ value, as desired. These two properties make
the AP correlation coefficient easy to interpret (by compar-
ing with Kendall’s τ) and use. We further demonstrate the
applicability of the statistic through experimental data, and
we demonstrate with a real example how AP correlation can
point out errors that might otherwise be incorrectly ignored
when using Kendall’s τ .

2. KENDALL’S TAU
The Kendall’s τ measure is one of the most commonly

used measures employed to compute the amount of corre-
lation between two rankings. Given two lists of length N ,
let C be the total number of concordant pairs (pairs that
are ranked in the same order in both rankings) and D the
total number of discordant pairs (pairs that are ranked in
opposite order in the two rankings). Then, the Kendall’s τ
value between the two lists is defined as

τ =
C − D

N(N − 1)/2

Note that given a ranked list with N objects, there are`
N
2

´
= N(N − 1)/2 pairs of items among them (the denom-

inator in the formula). Hence, the Kendall’s τ value has
the following nice probabilistic interpretation: Consider the
following experiment,

1. Pick a pair of items at random.

2. Return 1 if the pair is ranked in the same order in both
list; otherwise, return 0.

Let p be the expected outcome of this random experiment,
i.e., the probability that a randomly chosen pair of items
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Figure 1: (Left) TREC 8 depth-1 pooling MAP vs. actual MAP. (Middle) TREC 8 depth-1 pooling MAP
vs. actual MAP for best 10 systems. (Right) TREC 8 depth-1 pooling MAP vs. actual MAP for worst 10
systems.
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Figure 2: (Left) TREC 8 depth-6 pooling MAP vs. actual MAP. (Middle) TREC 8 depth-6 pooling MAP
vs. actual MAP for best 10 systems. (Right) TREC 8 depth-6 pooling MAP vs. actual MAP for worst 10
systems

is ranked in the same order in both lists. Note that p =
C/[N(N − 1)/2], and thus Kendall’s τ is

τ = p − (1 − p) = 2p − 1.

As such, Kendall’s τ is a monotonic function of the proba-
bility that a randomly chosen pair is ordered identically in
both rankings.

Note that if the two rankings are identical (p = 1), then
the Kendall’s τ value is 1, while if the two rankings perfectly
disagree (p = 0), then the Kendall’s τ value is −1, and if the
two rankings are statistically independent (p = 1/2), then
the Kendall’s τ value is 0.

In information retrieval, many different evaluation mea-
sures developed to assess the quality of the output of a search
engine, (ranked list of documents). Since the documents re-
trieved towards the top of the list are more important than
the others, evaluation measures that give more importance
to the documents retrieved towards the top of the ranking
have been proposed. Note that the problem of evaluating
the correlation between two ranked lists (when the top items
are more important than the others) is a similar problem to
the problem of evaluating the quality of a search engine. As
such, one can use similar ideas to the ones used in evaluating
the quality of a search engine in order to compare rankings.

Average precision is perhaps the most commonly used
evaluation measure. It has a nice probabilistic interpreta-
tion that assigns a meaning to the measure. In the following
section, we show that average precision can be defined based
on preferences. Based on this preference based version of
average precision and the probabilistic interpretation of the

measure, we then propose a new rank correlation coefficient
(AP correlation) that also has a nice probabilistic interpreta-
tion and that distinguishes between the errors made towards
the top of a ranked list.

3. AVERAGE PRECISION
Average precision can be defined as the average of the pre-

cisions at relevant documents, where the precisions at unre-
trieved documents are assumed to be zero. It is also known
to be an approximation of the area under the precision-recall
curve.

Since documents that are retrieved at the top of a list are
more important than the documents towards the bottom,
average precision assigns more weight to the errors made
towards the top of a ranking than the errors towards the
bottom.

An intriguing property of average precision is that these
weights are assigned such that the value of the measure has
a nice probabilistic interpretation.

Recently, Yilmaz and Aslam [17] proposed a new proba-
bilistic interpretation of average precision and used this in-
terpretation to estimate the value of average precision when
the relevance judgments are incomplete. The average pre-
cision according to this interpretation can be computed as
the expected outcome of a random experiment,

1. Pick a relevant document at random. Let r be the
rank of this document.

2. Pick a second document at or above rank r, at random.

3. Return the binary relevance of this second document.
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Figure 3: (left) AP correlation coefficient vs.
Kendall’s τ for all possible permutations of a list
of length 8 (right) Symmetrized AP correlation co-
efficient vs. Kendall’s τ for all possible permutations
of a list of length 8.

Average precision is the expected outcome of this random
experiment: the expected outcome of Steps 2 and 3 is the
precision at rank r (containing a relevant document), and
in expectation, Step 1 corresponds to the average of these
precisions.

Note that the aforementioned probabilistic interpretation
of average precision holds in the case of binary relevance
judgments (i.e., a document can be either relevant or non-
relevant). It can be altered to hold in the case of preferences
as well (i.e., one document is more relevant than the other
and so on) as follows:

1. Pick a relevant document at random. Let r be the
rank of this document.

2. Pick a second document at or above rank r, at random.

3. Return 1 if the second document is at least as relevant
as the first; return 0 otherwise. In other words, return
1 if the documents are in the correct relative order ;
otherwise, return 0.

Average precision is the expected outcome of this random
experiment. Note that the above definition of average preci-
sion gives us a way to compute average precision of a ranked
list of documents given the actual ranked list of documents.

As mentioned before, in information retrieval, we often
face the problem of comparing two ranked lists of items
where we care more about the top items than the items
towards the bottom and Kendall’s τ does not distinguish be-
tween such cases. Average precision itself is such a top-heavy
measure. Hence, one could use a rank correlation statistic
based on average precision. In the following section, we pro-
pose a new rank correlation statistic based on the probabilis-
tic interpretation of average precision, and we show how this
new rank statistic compares with the Kendall’s τ statistic.

4. AP CORRELATION COEFFICIENT
One can alter the probabilistic interpretation of average

precision [17] slightly to obtain a new rank correlation statis-
tic that gives more importance to the items towards the top
of the list. The main idea behind the AP correlation coeffi-
cient (τap) is that since the rankings at the top part of the list
are more important, given an item, one mainly cares if this
item is ranked correctly with respect to the items above this
current item. Hence, the correlation is based on comput-
ing the probability that each item is ranked correctly with
respect to the items above this current item and averaging
over all items.

Let list1 and list2 be two lists of items of length N and
suppose list2 is the actual ranking of items and list1 is a
ranking of items whose correlation with the actual ranking
(list2 ) we would like to compute. Consider the following
random experiment:

1. Pick any item from list1, other than the top ordered
item, at random.

2. Pick another item from this list that is ranked above
the current item, at random.

3. Return 1 if this pair of documents are in the same
relative order as in list2 ; otherwise, return 0.

In mathematical terms, the expected outcome of this ran-
dom experiment can be written as follows:

p′ =
1

N − 1
·

NX
i=2

C(i)

(i − 1)

where C(i) is the number of items above rank i and correctly
ranked with respect to the item at rank i in list1.

Note that this random experiment is very similar to the
random experiment upon which Kendall’s τ is based; the
only difference is that instead of comparing an item with
any other randomly chosen item, it is only compared with
items above.

It is easy to see that the value of p′ falls between 0 and 1,
where 1 means that all items ranked by list1 are ranked in
the same order as the items ranked by list2 and 0 means that
all items ranked above another item are ranked incorrectly
according to list2 (complete negative correlation). Note that
if there are items that are not shared by both lists then p′

is computed based only on the common items.
We define the AP correlation coefficient as a function of

the expected outcome of the above random experiment, in
much same way that Kendall’s τ is defined as a function of
the outcome of an analogous random experiment, so that its
value will fall between −1 and +1, the range of values com-
monly used by correlation coefficients. The AP correlation
τap is defined as

τap = p′ − (1 − p′) = 2p′ − 1 =
2

N − 1
·

NX
i=2

„
C(i)

i − 1

«
− 1.

4.1 AP Correlation Coefficient vs. Kendall’s
tau

Given the two rank correlation statistics, Kendall’s τ and
AP correlation coefficient, one might wonder how the value
of the two statistics compare with each other for different
types of lists. In this section, we show how these two statis-
tics compare with each other when the distribution of error
changes in lists.

Theorem 1. When the errors are uniformly distributed
over the list, Kendall’s τ and AP rank correlation coefficient
are equivalent.

Proof. Suppose you are given an ordered list of items,
list1 and a second list with the actual ranking of items.
Suppose that the probability of obtaining a correct pair in
list1 is p and all errors are uniformly distributed over the
list.

First consider the traditional Kendall’s τ value. Based on
the given setup, the probability that any randomly picked



pair is concordant or discordant is p or 1 − p respectively.
Hence, when the errors are uniformly distributed over the
list with probability 1−p, the value of Kendall’s τ is 2p−1.

Now consider the AP rank correlation coefficient value for
this setup. Since the errors are uniformly distributed over
the entire list with probability 1−p, at rank i, the expected
number of concordant items above rank i with respect to
the item at rank i is p(i − 1). Hence, the value of AP rank
correlation coefficient can be computed as:

τap =
2

N − 1
·

NX
i=2

C(i)

i − 1
− 1

=
2

N − 1

NX
i=2

p(i − 1)

i − 1
− 1

= 2p − 1

= τ

Therefore, when the error is uniformly distributed with
probability 1− p over the entire list, the values of Kendall’s
τ and AP rank correlation coefficient are the same and are
both equal to 2p − 1. As mentioned before, when the two
rankings of items are completely independent of each other,
the Kendall’s τ value is 0. This corresponds to the case
where p = 0.5 and empirically verifies the theorem above,
since in this case both the Kendall’s τ and the AP rank
correlation coefficient are 0.

Theorem 2. If the probability of error is increasing with
rank (more errors towards the bottom of the list when com-
pared to the top of the list), then the Kendall’s τ is always
less than the AP rank correlation coefficient. Similarly, if
the probability of error is decreasing with the rank, then the
Kendall’s τ is always less than the AP rank correlation co-
efficient.

Proof. Suppose you are given an ordered list of items,
list1 and a second list with the actual ranking of items.
Suppose that the probability of obtaining a correct pair in
list1 is varying with the rank and for an item at rank i, the
probability that the items ranked above item i are ranked
correctly with respect to item i is pi.

First, consider the value of the traditional Kendall’s τ in
this setup. The expected number of items that are ranked
above item i and are ranked correctly with respect to item
i is pi ∗ (i − 1). For each rank i, we can compute the total
number of concordant items above this rank with respect
to the item at rank i and sum these values to obtain the
total number of concordant items in the list. Therefore the
expected Kendall’s τ value is:

E[τ ] =
2 ·
PN

i=2 pi(i − 1)

N(N − 1)/2
− 1

Now consider the AP rank correlation coefficient value in
the same setup. Using the same idea for Kendall’s τ , the
AP rank correlation coefficient value can be written as:

E[τap] =
2

N − 1
·

NX
i=2

pi(i − 1)

i − 1
− 1

=
2

N − 1
·

NX
i=2

pi − 1

To demonstrate how the Kendall’s τ and AP rank correla-
tion coefficient change with respect to each other with the
probabilities pi, the difference between the AP rank corre-
lation coefficient and the Kendall’s τ is computed:

E[τap − τ ] =
2

N − 1
·

NX
i=2

pi −
2 ·
PN

i=2 pi(i − 1)

N(N − 1)/2

=
2

N − 1

 
NX

i=2

pi −
2
PN

i=2 pi(i − 1)

N

!

=
2

N(N − 1)

 
NX

i=2

(N − 2i + 2) pi

!

The constant factor 2/(N(N − 1)) can be ignored. We can
expand the remaining formula and rewrite it in a simpler
form as, ((N − 2)p2 +(N − 4)p3 +(N − 6)p4 + . . .+2pN/2 +
0pN/2+1 − 2pN/2+2 . . . − (N − 4)pN−1 − (N − 2)pN .

This summation can be written as

E[τap − τ ] ∝
N/2X
i=2

(N − 2i + 2)(pi − pN−i+2)

Note that this summation is always greater than zero when
the probabilities are decreasing and is always smaller than
zero when the probabilities are increasing. Hence, when the
probability of error in the list increases (or decreases) as we
go lower in the ranking, the AP rank correlation coefficient
is always larger (or smaller) than Kendall’s τ .

Note that the above proof shows that if the probability
of error is decreasing by rank (more errors at the top), then
E[τ − τap] < 0 (or vice versa). However, this does not
imply that if E[τ − τap] < 0 then it is always the case that
the probability of error is decreasing by rank. In fact, one
can identify some particular distributions of error where this
statement does not hold. However, in the next sections, we
show using real data that it is often the case that the lists
for which τap ≈ τ , the errors are quite random over the
entire list and for the ones τap > τ , there are fewer mistakes
towards the top of the list.

Left plot in Figure 3 shows the value of AP correlation
coefficient vs. Kendall’s τ for all possible permutations of
a list of length 8. It can be seen that for a given value of
Kendall’s τ , there are many lists that have a different τap

and vice versa. Later on, we will show that the lists for
which τap ≈ τ , the errors are quite random among the list
and for the ones τap > τ , there are fewer mistakes towards
the top of the list as proved. Furthermore, we show that
the proposed statistic can produce more desirable rankings
of correlations among items (have higher value when the top
ranked items are correctly identified and decrease as we start
getting errors.)

4.2 Symmetric AP Correlation Coefficient
Note that the AP correlation coefficient is not a symmetric

statistic. It assumes that there is an actual ranked list (list2 )
of items and an estimated ranked list (list1 ) of items and
one would like to compute the correlation among these two
lists (τap(list1|list2) : AP correlation of list1 given list2).
However, if we were to compute the AP correlation of list2
given list1, we obtain a different value for the statistic. In
information retrieval, it is often the case that we would like
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to compare the correlation between an estimated ranked list
given an actual ranked list (e.g. actual rankings of systems).
Hence, in such situations, AP correlation can be used.

However, in some cases one would simply like to compute
the correlation among two ranked lists where we do not have
the notion of the “actual” rankings. In such cases, a sym-
metrized version of the statistic (symmetrized AP correlation
coefficient) could be used. The symmetrized AP correlation
coefficient can be computed based on the same idea used in
defining the symmetrized version of the KL distance mea-
sure [4]:

symmτap(list1, list2) = (τap(list1|list2)+τap(list2|list1))/2

Hence, the symmetrized AP correlation coefficient is the av-
erage of the AP correlation coefficients when each list is
treated as the actual list.

Right plot in Figure 3 shows the value of AP correlation
coefficient vs. Kendall’s τ for all possible permutations of
a list of length 8. It can be seen that the shape of the
curve is similar to the shape for AP correlation coefficient
(Figure 3).

5. EXPERIMENTAL RESULTS
We have shown theoretically that when the errors are ran-

domly distributed the entire list, τap = τ , when there are
more errors towards the top of the list, τap < τ , and when
there are fewer errors towards the top of the list, τap > τ .
What this means is that this new measure can correctly or-
der correlations among items (lists with fewer errors towards
the top have higher AP correlations and so on.)

Figure 4 demonstrates this behavior in practice. The fig-
ure shows three different rankings with identical Kendall’s
τ values. The leftmost plot illustrates the ranking of sys-
tems according to depth1 pooling versus the actual ranks of
systems in TREC 8 (the top right corner of the plots refer
to the top ranked systems). The rightmost plot shows the
rank of the systems in TREC 8 based on depth-1 pooling
when the rankings are reversed (worst systems become the
best and best systems become the worst). Note that the
rightmost plot corresponds to rotating the leftmost plot by
180◦. The middle plot corresponds to a random ranked list
that has random errors along the entire list such that the
Kendall’s τ of the list is equal to the Kendall’s τ of depth-1
pooling on that TREC. It can be seen that when the errors
are randomly distributed over the list (middle plot), the AP

correlation coefficient is approximately equal to Kendall’s
τ as expected in expectation. In the leftmost plot, where
there are more errors towards the top of the list than the
bottom, it can be seen that the AP correlation is less than
Kendall’s τ . Similarly, when the top systems are ranked
mostly correctly (rightmost plot), the value of the AP cor-
relation coefficient increases and is higher then the Kendall’s
τ value. Hence, even though all three plots are equivalent
in terms of their Kendall’s τ value, the proposed correlation
coefficient correctly identifies the distinction among all these
three cases, as desired.

The fact that Kendall’s τ gives equal weight to all errors in
the rankings also has practical implications for IR research.
For example, as mentioned before, in information retrieval,
pairs of rankings whose Kendall’s τ values are at or above 0.9
are often considered effectively equivalent [13]. As also men-
tioned by Sanderson et al. [10], this threshold has implicitly
or explicitly been used in many places to reach conclusions
regarding the quality of rankings. Work by Carterette et
al. [3], Sanderson et al. [9], and Yilmaz et al. [17] are just a
few examples of the many such research papers.

In Sanderson et al. [9], for example, the authors claim
that since manual runs identify most of the relevant docu-
ments, instead of judging the entire depth pool, one could
only judge the outputs of manual runs and use these judg-
ments to evaluate the quality of retrieval systems. In order
to test their claim, they take a manual run out, form a qrel
by using only judgments for documents that are retrieved by
this run and are also contained in the actual TREC qrels.
Then, using these qrels, they evaluate the quality of retrieval
systems by mean average precision and compare the induced
rankings of systems with the actual rankings using Kendall’s
τ . They report that for most of the manual runs, the τ cor-
relations are at or above 0.9 and therefore conclude that
qrels formed from the output of a single manual run can be
effectively used to evaluate the quality of retrieval systems.

Figure 5 shows an example of these experiments. The
upper and lower plots show how qrels formed from manual
runs Brkly26 from TREC 7 and CL99SDopt2 from TREC 8
evaluate retrieval systems in these TRECs, respectively. The
x axis in these plots is the actual MAP value for the systems
and the y axis shows the MAP value of the systems as using
these qrels.

The leftmost plots show the rankings of systems for only
the automatic runs submitted to these TRECs whereas the
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Figure 5: Rankings of systems induced by qrels formed from manual runs (top) Brkly26 in TREC 7 and
(bottom) CL99SDopt2 in TREC 8, compared to actual rankings.

middle plot contains rankings for all systems (manual and
automatic). The rightmost plots focus only on the top 12
systems (sorted by the actual mean average precision value)
in these TRECs and show how the manual qrels rank these
top systems as compared to their actual rankings.

First consider the plots for TREC 7. By looking just
at the Kendall’s τ values, one would conclude that qrels
formed from this manual run are very effective at evaluating
systems (both when only automatic runs are included — τ
value of 0.9555 — and when all runs are included — τ value
of 0.9543). Although this may be a reasonable conclusion
when only automatic runs are considered, the conclusion
is much less valid when all runs are considered, since the
topmost systems are not ranked correctly (middle plot). As
shown by the rightmost plot, when all runs are included
the best system according to these qrels is actually the 11th
best system, the 2nd best system is actually the 3rd best
system, and so on. Furthermore, although the correlations
in the middle plot looks worse than the correlations in the
left plot, the τ values are very similar. However, the AP
correlation (or symmetrized AP correlation) correctly takes
these changes into account and correctly distinguishes these
two cases, correctly pointing out that the correlation in the
middle plot is worse than in the left plot.

Similar behavior can be seen for qrels formed from
CL99SDOpt2 in TREC 8. In this case, even when only
automatic runs are considered (left plot), the rankings of
the top-most systems are not perfect. Therefore, the AP
correlation is not so high even for this case where Kendall’s
τ is 0.9396. When all runs are included (middle plot), the
Kendall’s τ value is 0.9454 although the correlations among
the top systems become even worse (top system according
to the actual qrels are identified as the 4th best system us-
ing these qrels, and the best system according to these qrels
is actually the 7th best system if actual qrels were used as

seen by the the rightmost plot). Surprisingly, the Kendall’s
τ value in this case is higher than the Kendall’s τ value
when only automatic runs are included. Once again, the
AP correlation correctly distinguishes these cases.

Both of these examples show that even though the
Kendall’s τ statistic shows very good correlations, the qrels
formed from a single manual system cannot be reliably used
to evaluate the quality of all other systems (including other
manual systems); the AP correlation statistic points out this
issue more reliably than Kendall’s τ . This problem with the
Kendall’s τ statistic was also discussed by Sanderson and
Soboroff in a similar context [10].

To further demonstrate the applicability of the AP corre-
lation statistic against Kendall’s τ , we generated 100 random
lists of length 50 that have a Kendall’s τ value of 0.9 (using
dynamic programming), and we scatter all such lists versus
the actual ranking (1 2 . . . 50), in a manner similar to the
middle plot of Figure 4 superimposing all 100 scatter plots
on top of each other. In this way, we can see the trend of
error, i.e. which part of the ranking is the error likely to
occur at. The left plot in Figure 6 shows the result of this
experiment. It can be seen that for a list with Kendall’s
τ value of 0.9, the errors are likely to occur at any part of
the list, hence the top items may not be identified correctly.
Similarly, to see the trend of error in the lists that have an
AP correlation value of 0.9, we generated 100 random lists
of length 50 that have an AP correlation value of 0.9. The
right plot in Figure 6 shows the result of this experiment. It
can be seen that the lists that have an AP correlation of 0.9
are very unlikely to have errors towards the top of the list,
and most of the errors tend to be towards the bottom, rein-
forcing our conclusion that AP correlation coefficient can be
effectively used in the cases where we are mostly interested
in identifying these top ranked items.



05101520253035404550

0

5

10

15

20

25

30

35

40

45

50

100 random list 50 items with Kendall τ = 0.900

Actual rank

R
an

do
m

ly
 g

en
er

at
ed

 r
an

k

05101520253035404550

0

5

10

15

20

25

30

35

40

45

50

100 random list 50 items with AP corr = 0.900

Actual rank

R
an

do
m

ly
 g

en
er

at
ed

 r
an

k

Figure 6: (Left) 100 randomly generated lists of
length 50 that have a Kendall’s τ value of 0.9.
(Right) 100 randomly generated lists of length 50
that have a AP correlation value of 0.9.

6. CONCLUSIONS
We propose a new rank correlation coefficient that has a

nice probabilistic interpretation and more heavily weights
the errors towards the top of the ranking. The statistic
has the nice property that (1) if errors are uniformly dis-
tributed over the entire ranking, the statistic is equal to
Kendall’s τ in expectation and (2) if there is more error
towards the top/bottom of the list, the value of the statis-
tic is lower/higher than Kendall’s τ . We theoretically and
experimentally show through TREC data the applicability
of this measure and conclude that in the context of infor-
mation retrieval, where the goal is often to identify the best
systems while still having a good overall ranking, this statis-
tic can be better used to compute the correlation between
two rankings.

The statistic as defined in this paper is not symmetric,
hence it is not a metric. Although we show how this statis-
tic can be extended to be symmetric, throughout the paper
we mainly focus on the behavior of the nonsymmetric ver-
sion as it is simpler to analyze. The overall behavior of the
symmetric version of the statistic will be analyzed in the
future. Furthermore, the Kendall’s τ statistic has an associ-
ated probability distribution, enabling one to do hypothesis
testing. In the future, we are planning to investigate the dis-
tribution of the proposed statistics to enable making better
inferences about the values of these statistics.
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