
A Practical Sampling Strategy
for Efficient Retrieval Evaluation

Javed A. Aslam Virgil Pavlu
College of Computer and Information Science

Northeastern University

{jaa,vip}@ccs.neu.edu

ABSTRACT
We consider the problem of large-scale retrieval evaluation,
with a focus on the considerable effort required to judge tens
of thousands of documents using traditional test collection
construction methodologies. Recently, two methods based
on random sampling were proposed to help alleviate this
burden: While the first method proposed by Aslam et al.
is very accurate and efficient, it is also very complex, and
while the second method proposed by Yilmaz et al. is rel-
atively simple, its accuracy and efficiency are significantly
lower than the former.

In this work, we propose a new method for large-scale
retrieval evaluation based on random sampling which com-
bines the strengths of each of the above methods: it main-
tains the simplicity of the Yilmaz et al. method while achiev-
ing the performance of the Aslam et al. method. Further-
more, we demonstrate that this new sampling method can
be adapted to incorporate both randomly sampled and fixed
relevance judgments, as were available in the most recent
TREC Terabyte track, for example.

General Terms
Theory, Measurement, Experiment, Information Retrieval

Keywords
Performance Evaluation, Sampling, Average Precision

1. INTRODUCTION
The problem of building test collections for evaluating the

performance of retrieval systems has been widely studied in
the information retrieval community, perhaps most promi-
nently in the annual Text REtrieval Conference (TREC) [19].
TREC-style evaluation is largely based on the Cranfield
paradigm [10], wherein collections of retrieval systems are
evaluated by (1) constructing a collection of documents, (2)
constructing a collection of information needs (variously re-
ferred to as topics or queries), (3) judging the relevance of
each document to each query, and (4) assessing the quality
of the ranked lists of documents returned by each retrieval
system for each topic using standard measures of perfor-
mance such as average precision, R-precision, and precisions
at various rank cutoffs.

For meaningfully large collections of documents and/or
queries, Step (3) is for all practical purposes impossible: In
a typical TREC, for example, one might be faced with the
prospect of assessing the relevance of 1 to 25 million docu-
ments to each of 50 or more queries. To overcome this dif-

ficulty while obtaining substantially identical performance
assessments, a relatively small subset of the documents is
chosen with respect to each query, and the relevance of these
documents to the query is judged. Documents outside this
“pool” are assumed to be non-relevant. The pool of docu-
ments to be judged is typically constructed by taking the
union of the top k documents returned by each system in
response to a given query. This depth-k pooling is appealing
for at least two reasons: (1) It is “fair” in the sense that every
system has (at least) its top-k retrieved documents judged,
and (2) for sufficiently large k and for sufficiently many input
systems, the depth-k pools can be “effectively complete,” in
the sense that it is unlikely that a relevant document would
be retrieved deeper than rank k by every system, and thus
the assumption that documents outside the depth-k pool
are non-relevant is reasonable. Depth-100 pools have been
shown to be effective in evaluating the relative performance
of retrieval systems for many TREC collections [13, 22].

Unfortunately, TREC-style retrieval evaluation can be very
expensive, often requiring that tens of thousands of docu-
ments be judged in order to obtain accurate, robust, and
reusable assessments. In TREC 8, for example, 86,830 rel-
evance assessments were collected using depth-100 pooling
in order to evaluate 129 system runs submitted in response
to 50 queries.

A number of methods have been proposed to potentially
alleviate this assessment burden, including shallower depth
pools [22], greedily chosen dynamic pools [11, 2, 7], and
pools with randomly assigned relevance judgments [15]. How-
ever, these methods all tend to produce biased or incompara-
ble estimates of commonly used measures of retrieval perfor-
mance (such as average precision), especially when relatively
few relevance assessments are made.

Recently, Aslam et al. [4] and Yilmaz et al. [21] each pro-
posed new methods for efficient system evaluation based on
pools chosen via random sampling. In the former method,
a carefully chosen, non-uniform distribution over the doc-
uments in the depth-100 pool is formed, and documents
are sampled with replacement according to this distribution.
In order to assess a search engine run, the entire sampling
distribution over the depth-100 pool must be available, to-
gether with the relevance judgments and sampling counts
associated with the sampled documents. While this eval-
uation method is very accurate and efficient, achieving as-
sessment results essentially equivalent to TREC depth-100
pooling results using sample sizes as low as 4% of the size
of the traditional depth-100 pool, it is very complex both
in its conception and its implementation. Conversely, the

1

method proposed by Yilmaz et al. is quite simple: Docu-
ments are chosen uniformly at random from the depth-100
pool, and only those judged documents (and knowledge of
the depth-100 pool) are required to assess any given search
engine run. The method is quite simple in its conception and
implementation. Unfortunately, while more efficient than
traditional depth-pooling, the method is far less accurate
and efficient than the (far more complex) method proposed
by Aslam et al.—in order to achieve similarly accurate re-
sults, samples sizes roughly five times as large are required.

In this work, we propose a new method for large-scale,
TREC-style retrieval evaluation based on random sampling
which combines the strengths of each of the above two meth-
ods: it matches the simplicity of the Yilmaz et al. method
while equaling or exceeding the performance of the Aslam et al.
method. Furthermore, unlike the previous two methods, we
demonstrate that this new sampling method can be adapted
to incorporate additional judgments obtained via determin-
istic methods (such as traditional depth pooling), and thus
our proposed method effectively generalizes and combines
both random and fixed pooling techniques.

In the sections that follow, we describe our sampling and
evaluation methodology, then we discuss the results obtained
from extensive experiments conducted with TREC data. We
conclude with a summary and discussion of future work.

2. METHODOLOGY
In this section, we describe our sampling methodology in

detail. We begin with a simple example in order to provide
intuition for the non-uniform sampling strategy ultimately
employed, and we then proceed to describe the specific ap-
plication of this intuition to the general problem of retrieval
evaluation.

2.1 Sampling Theory and Intuition
As a simple example, suppose that we are given a ranked

list of documents (d1, d2, . . .), and we are interested in de-
termining the precision-at-cutoff 1000, i.e., the fraction of
the top 1000 documents that are relevant. Let PC (1000)
denote this value. One obvious solution is to examine each
of the top 1000 documents and return the number of rele-
vant documents seen divided by 1000. Such a solution re-
quires 1000 relevance judgments and returns the exact value
of PC (1000) with perfect certainty. This is analogous to
forecasting an election by polling each and every registered
voter and asking how they intend to vote: In principle, one
would determine, with certainty, the exact fraction of vot-
ers who would vote for a given candidate on that day. In
practice, the cost associated with such “complete surveys”
is prohibitively expensive. In election forecasting, market
analysis, quality control, and a host of other problem do-
mains, random sampling techniques are used instead [17].

In random sampling, one trades-off exactitude and cer-
tainty for efficiency. Returning to our PC (1000) example,
we could instead estimate PC (1000) with some confidence
by sampling in the obvious manner: Draw m documents
uniformly at random from among the top 1000, judge those
documents, and return the number of relevant documents
seen divided by m — this is analogous to a random poll
of registered voters in election forecasting. In statistical
parlance, we have a sample space of documents indexed
by k ∈ {1, . . . , 1000}, we have a sampling distribution over
those documents pk = 1/1000 for all 1 ≤ k ≤ 1000, and we

have a random variable X corresponding to the relevance of
documents,

xk = rel(k) =

0 if dk is non-relevant
1 if dk is relevant.

One can easily verify that the expected value of a single ran-
dom draw is PC (1000)

E[X] =

1000X
k=1

pk · xk =
1

1000

1000X
k=1

rel(k) = PC (1000),

and the Law of Large Numbers and the Central Limit The-
orem dictate that the average of a set S of m such random
draws dPC (1000) =

1

m

X
k∈S

Xk =
1

m

X
k∈S

rel(k)

will converge to its expectation, PC (1000), quickly [14] —
this is the essence of random sampling.

Random sampling gives rise to a number of natural ques-
tions: (1) How should the random sample be drawn? In
sampling with replacement, each item is drawn independently
and at random according to the distribution given (uniform
in our example), and repetitions may occur; in sampling
without replacement, a random subset of the items is drawn,
and repetitions will not occur. While the former is much
easier to analyze mathematically, the latter is often used in
practice since one would not call the same registered voter
twice (or ask an assessor to judge the same document twice)
in a given survey. (2) How should the sampling distribu-
tion be formed? While PC (1000) seems to dictate a uni-
form sampling distribution, we shall see that non-uniform
sampling gives rise to much more efficient and accurate es-
timates. (3) How can one quantify the accuracy and confi-
dence in a statistical estimate? As more samples are drawn,
one expects the accuracy of the estimate to increase, but
by how much and with what confidence? In the paragraphs
that follow, we address each of these questions, in reverse
order.

While statistical estimates are generally designed to be
correct in expectation, they may be high or low in prac-
tice (especially for small sample sizes) due to the nature of
random sampling. The variability of an estimate is mea-
sured by its variance, and by the Central Limit Theorem,
one can ascribe 95% confidence intervals to a sampling esti-
mate given its variance. Returning to our PC (1000) exam-
ple, suppose that (unknown to us) the actual PC (1000) was
0.25; then one can show that the variance in our random
variable X is 0.1875 and that the variance in our sampling
estimate is 0.1875/m, where m is the sample size. Note
that the variance decreases as the sample size increases, as
expected. Given this variance, one can derive 95% confi-
dence intervals [14], i.e., an error range within which we
are 95% confident that our estimate will lie.1 For exam-
ple, given a sample of size 50, our 95% confidence interval is
+/−0.12, while for a sample of size 500, our 95% confidence
interval is +/ − 0.038. This latter result states that with a
sample of size 500, our estimate is likely to lie in the range

1For estimates obtained by averaging a random sample, the
95% confidence interval is roughly +/ − 1.965 standard de-
viations, where the standard deviation is the square root of
the variance, i.e.,

p
0.1875/m in our example.

2

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

documents

di
st

rib
ut

io
n

va
lu

e
(x

 1
03)

Figure 1: Non-uniform sampling distribution.

[0.212, 0.288]. In order to increase the accuracy of our esti-
mates, we must decrease the size of the confidence interval.
In order to decrease the size of the confidence interval, we
must decrease the variance in our estimate, 0.1875/m. This
can be accomplished by either (1) decreasing the variance of
the underlying random variable X (the 0.1875 factor) or (2)
increasing the sample size m. Since increasing m increases
our judgment effort, we shall focus on decreasing the vari-
ance of our random variable instead.

While our PC (1000) example seems to inherently dictate
a uniform sampling distribution, one can reduce the vari-
ance of the underlying random variable X, and hence the
sampling estimate, by employing non-uniform sampling. A
maxim of sampling theory is that accurate estimates are
obtained when one samples with probability proportional to
size (PPS) [17]. Consider our election forecasting analogy:
Suppose that our hypothetical candidate is know to have
strong support in rural areas, weaker support in the sub-
urbs, and almost no support in major cities. Then to obtain
an accurate estimate of the vote total (or fraction of to-
tal votes) this candidate is likely to obtain, it makes sense
to spend your (sampling) effort “where the votes are.” In
other words, one should spend the greatest effort in rural ar-
eas to get very accurate counts there, somewhat less effort
in the suburbs, and little effort in major cites where very
few people are likely to vote for the candidate in question.
However, one must now compensate for the fact that the
sampling distribution is non-uniform — if one were to sim-
ply return the fraction of polled voters who intend to vote
for our hypothetical candidate when the sample is highly
skewed toward the candidates areas of strength, then one
would erroneously conclude that the candidate would win in
a landslide. To compensate for non-uniform sampling, one
must under-count where one over-samples and over-count
where one under-samples.

Returning to our PC (1000) example, employing a PPS
strategy would dictate sampling “where the relevant docu-
ments are.” Analogous to the election forecasting problem,
we do have a prior belief about where the relevant documents
are likely to reside — in the context of ranked retrieval, rel-
evant documents are generally more likely to appear toward
the top of the list. We can make use of this fact to reduce
our sampling estimate’s variance, so long as our assump-
tion holds. Consider the non-uniform sampling distribution
shown in Figure 1 where

pk =

1.5/1000 1 ≤ k ≤ 500
0.5/1000 501 ≤ k ≤ 1000.

where we have increased our probability of sampling the top
half (where more relevant documents are likely to reside)
and decreased our probability of sampling the bottom half
(where fewer relevant documents are likely to reside). In

0 200 400 600 800 1000
0

0.5

1

1.5

documents

di
st

rib
ut

io
n

va
lu

e
(x

 1
03)

Figure 2: Non-uniform distrib. with three strata.

order to obtain the correct estimate, we must now “under-
count” where we “over-sample” and “over-count” where we
“under-sample.” This is accomplished by modifying our ran-
dom variable X as follows:

xk =

rel(k)/1.5 1 ≤ k ≤ 500
rel(k)/0.5 501 ≤ k ≤ 1000.

Note that we over/under-count by precisely the factor that
we under/over-sample; this ensures that the expectation is
correct:

E[X] =

1000X
k=1

pk · xk =

500X
k=1

1.5

1000
· rel(k)

1.5
+

500X
k=1

0.5

1000
· rel(k)

0.5

=
1

1000

1000X
k=1

rel(k) = PC (1000).

For a given sample S of size m, our estimator is then a
weighted average

dPC (1000) =
1

m

X
k∈S

Xk

=
1

m

0@ X
k∈S : k≤500

rel(k)

1.5
+

X
k∈S : k>500

rel(k)

0.5

1A
where we over/under-count appropriately.

Note that our expectation and estimator are correct, inde-
pendent of whether our assumption about the location of the
relevant documents actually holds! However, if our assump-
tion holds, then the variance of our random variable (and
sampling estimate) will be reduced (and vice versa). Sup-
pose that all of the relevant documents were located where
we over-sample. Our expectation would be correct, and one
can show that the variance of our random variable is re-
duced from 0.1875 to 0.1042 — we have sampled where the
relevant documents are and obtained a more accurate count
as a result. This reduction in variance yields a reduction in
the 95% confidence interval for a sample of size 500 from
+/− 0.038 to +/− 0.028, a 26% improvement. Conversely,
if the relevant documents were located in the bottom half,
the confidence interval would increase.

One could extend this idea to three (or more) strata, as
in Figure 2. For each document k, let αk be the factor by
which it is over/under-sampled with respect to the uniform
distribution; for example, in Figure 1, αk is 1.5 or 0.5 for
the appropriate ranges of k, while in Figure 2, αk is 1.5,
1, or 0.5 for appropriate ranges of k. For a sample S of
size m drawn according to the distribution in question, the
sampling estimator would be

dPC (1000) =
1

m

X
k∈S

rel(k)

αk
.

3

In summary, one can sample with respect to any distribu-
tion, and so long as one over/under-counts appropriately,
the estimator will be correct. Furthermore, if the sampling
distribution places higher weight on the items of interest
(e.g., relevant documents), then the variance of the estima-
tor will be reduced, yielding higher accuracy.

Finally, we note that sampling is often performed with-
out replacement [17]. In this setting, the estimator changes
somewhat, though the principles remain the same: sample
where you think the relevant documents are in order to re-
duce variance and increase accuracy. The αk factors are re-
placed by inclusion probabilities πk, and the estimator must
be normalized by the size of the sample space:

dPC (1000) =
1

1000

X
k∈S

rel(k)

πk
.

The inclusion probability πk is simply the probability
that the document k would be included in any sample of
size m. In without-replacement sampling, πk = pk when
m = 1 and πk approaches 1 as the sample size grows. Note
that documents with large inclusion probabilities (i.e., those
likely to be sampled) are under-counted as compared to
those with small inclusion probabilities, which are appro-
priately over-counted, as desired. Furthermore, if the size
of the sample space itself is unknown (suppose that we did
not know the number of registered voters in our election
forecasting analogy), then one can estimate this quantity as
well. This yields the Horwitz-Thompson generalized ratio
estimator [17]

bX =

P
k∈S vk/πkP
k∈S 1/πk

where vk is the value associated with item k (e.g., the rel-
evance of a document, a vote for a candidate, the size of
a potential donation, etc.). PPS-without-replacement sam-
pling is known to be much more robust and efficient than
with-replacement sampling [17, 5]. However, for most sam-
pling strategies, inclusion probabilities are notorious difficult
to compute when sample size is reasonably large[5].

The generalized ratio estimator is most useful for estimat-
ing average precision (AP), which is the average of the pre-
cisions at relevant documents. In sampling to estimate the
average precision(s) of one or more given document lists, one
typically does not know the total number of relevant docu-
ments R; thus, the generalized ration estimator is applicable
since it effectively estimates R as well. The “values” we wish
to average are the precisions at relevant documents, and the
ratio estimator for AP is thus

dAP =

P
k∈S : rel(k)=1

PC (k)/πkP
k∈S : rel(k)=1

1/πk

We proceed by breaking the discussion in three parts: the
sample, which is the set of documents sampled together
with relevance judgments and other information we need;
the evaluation module, which given the sample produces
estimates for AP and other quantities of interest; and the
sampling module which of course produces the sample. For
analogy with TREC, the sampling strategy is the equiva-
lent of depth-pooling, the evaluation the equivalent of trec-
eval program and the sample the equivalent of traditional
qrel files[18], the only addition being that every sampled

document is also accompanied by an inclusion probability.
This methodology works very well for small sizes (Kendall’s
τ=.85 for less than %2 of the pool judged) and it also can be
smoothly adapted towards traditional setup (depth-pooling,
trec-eval, qrel) by adding depth-pooling style judged docu-
ments; at the very extreme when all documents are judged,
our estimated values are identical with trec-eval outputs.

Modularity. The evaluation and sampling modules are
completely independent: the sampling module produces the
sample in a specific format but does not imposes or assumes
a particular evaluation being used; the evaluation module
uses the sample only (no knowledge/assumption of the sam-
pling strategy used to obtain the sample, a strong improve-
ment over method presented in [4]). In fact, the sampling
technique proposed is known to work with many other esti-
mators (evaluations) while the estimator used is known to
work with other sampling strategies [5]. This flexibility is
particularly important if one has reason to believe that a
different sampling strategy might work better for a given
instance.

2.2 The sample
The sample is the set of documents selected for judging

together with all information required for evaluation: in our
case that means (1) the documents ids, (2) the relevance
assessments and (3) the inclusion probability for each docu-
ment. Sampling is done without replacement so there are no
counts (sampling with-replacement requires also the count
for each document; that is, how many times each document
has been sampled).

Figure 3: Sampling and evaluation design

Additional judged documents, obtained determinis-
tically (usually with a greedy strategy like depth-pooling),
can be added to the existing sample with associated inclu-
sion probability of 1. This is a useful design feature as often
in practice separate judgments are available; it makes the
method especially attractive for tasks like Terabyte tracks[9,
8] or the new proposed TREC million query track. In TREC
setup it can be used in two ways: first when massive central
judging is done by assessors, it might be desirable to judge
deterministically a given depth-pool (say top 10 documents
of every participant list) and then invoke the sampling strat-
egy to judge additional documents. Second, when a partici-
pant receives the relevance assessments from TREC (“qrel”
file [18]), if more judgments are needed, one can judge ei-
ther hand-picked documents and/or sampled documents and
combine them with the provided qrel.

The collisions (where a document is sampled and sepa-
rately deterministically judged) are handled by setting in-
clusion probability to 1; this is because the actual proba-

4

bility to have the document in the sample is 1, once it has
been judged. Science evaluation module (next section) does
not make any assumption of the sampling strategy used (it
uses as input only the sample), at the sample level we can
mix different pools of judged documents as long as we can
properly update the inclusion probabilities.

2.3 Evaluation
Given a sample S of judged documents along with inclu-

sion probabilities, we discuss here how to estimate quantities
of interest (AP , R-precision, Precision at cutoff). In next
section we show how to obtain such a sample S. For AP
estimate, which we view as mean of a population of pre-
cision values, we adapt the generalized ratio estimator for
unequal probability designs (very popular on polls, election
strategies, market research etc.), as described in [17]:

dAP =

P
d∈S:rel(d)=1

dPC(rank(d))/πdP
d∈S:rel(d)=1

1/πd
(1)

where dPC(r) estimates precision at rank r:

dPC(r) =
1

r

X
d∈S,rank(d)≤r

rel(d)

πd
(2)

See the appendix for a discussion about inclusion probabil-
ities, variance and confidence intervals.
Other estimates. Combining the estimates for R (number
of relevant documents for the query) and for precision at cut-
off (or rank), PC(r), we obtain an estimate for R-precision
(precision at rank R):

bR =
X

d∈S:rel(d)=1

1

πd
(3)

dRP = dPC(bR) =
1bR X

d∈S,rank(d)≤ bR
rel(d)

πd
(4)

2.4 Sampling strategy
There are many ways one can imagine sampling from a

given distribution [5]. Essentially, we have to make two in-
dependent decisions. First, decide on a sampling distribu-
tion over documents; it should be dictated by the ranks of
documents in the ranked lists and therefore naturally biased
towards relevant documents. Second we have to design an
actual sampling strategy that given the prior distribution
produces the sample.

Sampling distribution. It has been shown that average
precision induces a good relevance prior over the ranked doc-
uments of a list. The AP -prior has been used with sampling
techniques[4]; in metasearch (data fusion) [3]; in automatic
assessment of query difficulty [1]; and in on-line application
to pooling[2]. It has also been shown that this prior can
be averaged over multiple lists to obtain a global prior over
documents[4]. An accurate description together with moti-
vation and intuition can be found in [4].

For a given ranked list of documents, let Z be the size of
the list. Then the prior distribution weight associated with
any rank r, 1 ≤ r ≤ Z, is given by

W (r) =
1

2Z

„
1 +

1

r
+

1

r + 1
+ · · ·+ 1

Z

«
≈ 1

2Z
log

Z

r
. (5)

We used for experimentation the above described prior,
averaged per document over all run lists; Note that the our
sampling strategy (next section) works with any prior over
documents.

Stratified sampling strategy. The most important
considerations are: handle non-uniform sampling distribu-
tion; without replacement so we can easily add other judged
documents; probabilities proportional with size (pps) mini-
mizes variance by obtaining inclusion probabilities πd roughly
proportional with precision values PCrank(d); and computabil-
ity of inclusion probabilities for documents (πd) and for pairs
of documents (πdf). We adopt a method developed by Stevens
[5, 16], sometimes referred to as stratified sampling, that has
all of the features enumerated above and it is very straight
forward for our application.

Let W be the sampling distribution over N documents
m be the sample of size desired (Figure 4,top). Stevens
stratified sampling works as follows:

7 4 2 0 1 0

Figure 4: Average Precision induced prior W , aver-
aged over many system lists (top). Bucketed prior
(second row): Each bucket contains m = 14 items (in
this example) and it is associated with sum of distri-
bution weights of its items. Third: Buckets are sam-
pled with replacement, obtaining counts 7,4,2,0,1,0
(summing to m=14). Bottom: Inside each bucket
documents are sampled uniformly, without replace-
ment: from first bucket 7 items, from second bucket
4 items, and so on.

1. Order documents by sampling weight and partition
them in buckets of size m each(Figure 4, second row).
First bucket will contain biggest (by W) m documents,
second bucket the next m documents and so on. Last
bucket might have fewer than m but that fact is neg-
ligible.

5

2. Pick with replacement the buckets m times, where each
bucket has probability to be chosen (each time) the
sum of W weights associated with documents in the
bucket(Figure 4,third).

3. For each bucket, if it got picked k times, sample uni-
formly, without replacement k documents from the bucket
(Figure 4,bottom, black bars indicate documents sam-
pled).

Obviously, this strategy is fast and simple. Although
buckets are sampled with replacement, the overall sample of
documents is without replacement. Also inclusion probabili-
ties for each document πd are easy to compute (appendix).

3. EXPERIMENTAL RESULTS
We tested the proposed method as a mechanism for esti-

mating the performance of retrieval systems using data from
TRECs 7, 8 and 10. Using mean average precision (MAP),
mean R-precision (MRP), and mean precision at cutoff 30
(MPC(30)) as evaluation measures, we compared the esti-
mates obtained by the sampling method with the “actual”
evaluations, i.e., evaluations obtained by depth 100 TREC-
style pooling. The estimates are found to be consistently
good even when the total number of documents judged is
far less than the number of judgments used to calculate the
actual evaluations.

To evaluate the quality of our estimates, we calculated
three different statistics, root mean squared (RMS) error
(how different the estimated values are from the actual val-

ues, i.e., RMS =
q

1
N

PN
i=1 (ai − ei)

2, where ai are the ac-

tual and ei are the estimates values), linear correlation co-
efficient ρ (how well the actual and estimated values fit to
a straight line), and Kendall’s τ (how well the estimated
measures rank the systems compared to the actual rank-
ings). Both ρ and Kendall’s τ values range from −1 (per-
fectly negatively correlated values) to +1 (perfectly cor-
related values). Note that in contrast to the RMS error,
Kendall’s τ and ρ do not measure how much the estimated
values differ from the actual values. Therefore, even if they
indicate perfectly correlated estimated and actual values,
the estimates may still not be accurate. Hence, it is much
harder to achieve small RMS errors than to achieve high τ

or ρ values. In fact one can show that for an estimator bθ,
RMS(bθ) =

q
var[bθ] + bias2(bθ), which directly implies that

small RMS means both small bias and small variance and
also that bias and variance are equally important in error
measurement.

We compare the sampling estimates (various sample sizes)
with actual ”true” values (obtained by TREC with fully
judged depth-100 pool). The size of samples are based on
depth pooling equivalence; depths 1 (top document for every
run) and 10(top 10 documents for every run) are displayed.
TREC-style depth pooling for depths 1 and 10 correspond
to 40 and 260 relevance judgments on average per query, re-
spectively (including the pool non-participating runs). We
also compare the estimated values of the measures obtained
using the sampling method with the depth pooling esti-
mates.

Since the performance of the sampling method varies de-
pending on the actual sample, we repeated each experiment
100 times. For lineplots (Figures 10,12) we present the aver-
aged the measurements RMS, ρ, τ over 100 trials; for scat-

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

trainingRMS=0.067717
 testingRMS=0.071323
!=0.935188
"=0.735349

Depth pooling MAP estimates, TREC8 K=29

MAP

de
pt

h
po

ol
ed

 M
AP

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

trainingRMS=0.057039
 testingRMS=0.057814
!=0.990995
"=0.912055

Depth pooling MAP estimates, TREC8 K=200

MAP

de
pt

h
po

ol
ed

 M
AP

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

trainingRMS=0.033
 testingRMS=0.039
!=0.982
"=0.851

Sampling MAP, TREC8 K=29

MAP

es
tim

at
ed

 M
AP

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

trainingRMS=0.011
 testingRMS=0.011
!=0.998
"=0.957

Sampling MAP, TREC8 K=200

MAP

es
tim

at
ed

 M
AP

Figure 5: Sampling vs. depth pooling mean av-
erage precision estimates at depths 1 and 10 in
TREC8. Each dot (·) corresponds to a distribution-
contributor run and each plus (+) to a distribution-
non-contributor run (there are 129 runs in TREC8.)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

MRP

de
pt

h
po

ol
ed

 M
RP

Depth Pooling MRP, TREC8 K=29

trainingRMS=0.037644
 testingRMS=0.042598
!=0.928773
"=0.710209

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

MRP

de
pt

h
po

ol
ed

 M
RP

Depth Pooling MRP, TREC8 K=200

trainingRMS=0.039552
 testingRMS=0.040186
!=0.989282
"=0.909278

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

MRP

es
tim

at
ed

 M
RP

Sampling MRP estimates, TREC8 K=29

trainingRMS=0.023595
 testingRMS=0.024883
!=0.974842
"=0.820842

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

MRP

es
tim

at
ed

 M
RP

Sampling MRP estimates, TREC8 K=200

trainingRMS=0.010255
 testingRMS=0.010438
!=0.997462
"=0.939352

Figure 6: Sampling vs. depth pooling mean R-
precision estimates at depths 1 and 10 in TREC8.

terplots we picked a representative experiment that exhibits
typical performance in terms of RMS, ρ, τ .

We report the results of the experiments for MAP, MRP,
and MPC(30) on TREC8 in Figure 5, Figure 6, and Figure 7,
respectively. As can be seen, on TREC8, for both depth
1 (on avg 29 judgments/query) and depth 10 (on avg 200
judgments/query), there is a significant improvement in all
three statistics when sampling is used versus the TREC-
style pooling for all the measures: the sampling estimates
have reduced variance and little bias compared to depth
pooling estimates; furthermore, the bottom-right plots of
the figures show that 200 relevance judgments on average
per query are enough to get “almost perfect” evaluations
(τ ≈ .95); actual TREC8 evaluations use 1,737 relevance
judgments on average per query.

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MPC30

de
pt

h
po

ol
ed

 M
PC

10
0

Depth Pooling MPC(30) estimates, TREC8 K=29

trainingRMS=0.195698
 testingRMS=0.198517
!=0.898530
"=0.715099

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MPC30

de
pt

h
po

ol
ed

 M
PC

10
0

Depth Pooling MPC(30) estimates, TREC8 K=200

trainingRMS=0.037021
 testingRMS=0.038486
!=0.982917
"=0.935041

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MPC

es
tim

at
ed

 M
PC

Sampling MPC(30) estimates, TREC8 K=29

trainingRMS=0.033857
 testingRMS=0.039132
!=0.965231
"=0.823815

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MPC

es
tim

at
ed

 M
PC

Sampling MPC(30) estimates, TREC8 K=200

trainingRMS=0.008047
 testingRMS=0.007749
!=0.997865
"=0.949615

Figure 7: Sampling vs. depth pooling mean prec at
cutoff 100 estimates at depths 1 and 10 in TREC8.

Figure 10 illustrates how MAP estimates using TREC-
style depth pooling compare in terms of ρ and Kendall’s τ
with those obtained using sampling as the depth of the pool
changes. For depths 1 to 10, we calculated the number of
documents required to be judged using TREC-style depth
pooling to determine the equivalent sample size. For each
sample size (equivalent depth pool size) we repeated the ex-
periment 100 times and then calculated the average ρ (left
column), RMS (middle) and τ (right column). Along with
the average displayed in the Figure 10, for ρ and τ we plot
the standard deviation bar estimated unbiased from 100 val-
ues (sampling line on the plots, bar shows ±1 std). Gener-
ally speaking the results obtained are comparable or better
with a previous (much more complicated) sampling method
[4]. As the figure displays, the sampling method significantly
outperforms the TREC-style depth pooling evaluations. For
comparison purposes, we also include the average Kendall’s
τ value of bpref [6] and infAP [21] obtained using random
samples of the given size to the plots in the second column.
The Kendall τ values for bpref and infAP are the average
values computed over 10 different random samples (infAP
numbers were not calculated in this setup, instead they were
obtained from infAP authors [21]).

Per query and per run results. There are certain sit-
uations when one needs the results of a single query, hence
not taking advantage of the variance reduction achieved by
averaging over 50 queries. It is certainly not expected to see
the same kind of performance on query by query basis; how-
ever our results show definite usable query estimates (Figure
8). The method described in this paper is self-contained for
a query, i.e., estimates for a query are not dependent on any
data from other queries. On a different setup, one may want
to analyze only one run over all queries (Figure 9).

3.1 Generalization on new runs
For each experiment we split the runs into “training” and

“testing” (sometimes called distribution-contributors and dis-
tribution noncontributors respectively). The training runs
are the ones pooled by TREC when the relevance assessment
took place; the rest are testing runs. This distinction seems
fair for comparison with TREC published run performance

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

AP

es
tim

at
ed

 A
P

Sampling AP, TREC8, Q46, K=29

trainingRMS=0.210601
 testingRMS=0.200872
!=0.928608
"=0.864141

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

AP

es
tim

at
ed

 A
P

Sampling AP, TREC8, Q46, K=200

trainingRMS=0.044819
 testingRMS=0.032437
!=0.973354
"=0.898278

Figure 8: Sampling estimates for a query with mixed
system performance. Dots (·) represent training
runs; pluses (+) represent testing runs.
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AP

es
tim

at
ed

 A
P

Sampling AP, TREC8 , all Q, run=Sab8A1 K=29

RMS=0.196883
!=0.661096
"=0.617959

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AP

es
tim

at
ed

 A
P

Sampling AP, TREC8 , all Q, run=Sab8A1 K=200

RMS=0.073870
!=0.933765
"=0.800816

Figure 9: Sampling estimates for a fixed typical run
(Sab8A1) with MAP = 0.25, all queries. Each dot
(·) is an AP for a query estimate (total 50); MAP
estimate is plotted as “×”.

numbers. On all scatterplots, training runs are denoted by
blue dots while testing ones are denoted by red crosses.

It is important that the performance of sampling over the
testing runs is virtually as good as the performance over the
training runs (good generalization). The trend of RMS er-
ror, as sample size increases from depth 1 to depth 10 equiv-
alent for training and testing systems is shown in Figure 12.
On x-axis the units are the depth-pool equivalent number
of judgments converted into percentages of depth-100 pool.

3.2 Significance tests
Is search engine A better than search engine B? Each en-

gine is evaluated at TREC over 50 queries, hence 50 Average
Precision numbers; we can compute an overall measurement,
“Mean Average Precision” (MAP) by averaging those 50
numbers for each engine. But is the difference in MAP be-
tween A and B significant? The Wilcoxon Significance Test
[20] takes as input the array of 50 differences AP values and
produces a left-p-value that can be interpreted as the prob-
ability that A is better than B; if p-value> 0.95 we conclude
that the MAP-based ordering of engines is significant. Ide-
ally, for each run-pair (A,B) with significant TREC MAP
difference (and only for those pairs), sampling AP estimates
would also lead to significant MAP difference.

SAMPLING(K=29) SAMPLING(K=200)
insignif signif insignif signif

T
R

E
C insignif 9970 143 9902 211

signif 1105 5423 318 6210

Table 1: Trec8: Number of run-pairs (A,B) for each
significance category. Sampling estimates are ob-
tained with 29 judgments per query (left), and with
200 judgments per query (right).

7

0 2 4 6 8 10 12
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

percentage of pool judged

co
rr.

 c
oe

ff.

Corr. coeff. for AP estimates TREC7

depth pooling
sampling (100 runs avg)

0 2 4 6 8 10 12
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

percentage of pool judged

RM
S

er
ro

r

RMS error for AP estimates, TREC7

depth pooling train err
sampling (100 runs avg) train err
sampling (100 runs avg) test err

0 5 10 15
0.7

0.75

0.8

0.85

0.9

0.95

1

percentage of pool judged

Ke
nd

al
l’s

 ta
u

Kendall’s tau for AP estimates TREC7

depth pooling
sampling (100 runs avg)
b!pref with random judgments
infAP with random judgments

0 2 4 6 8 10 12
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

percentage of pool judged

co
rr.

 c
oe

ff.

Corr. coeff. for AP estimates TREC8

depth pooling
sampling (100 runs avg)

0 2 4 6 8 10 12
0.01

0.02

0.03

0.04

0.05

0.06

0.07

percentage of pool judged

RM
S

er
ro

r

RMS error for AP estimates, TREC8

depth pooling train err
sampling (100 runs avg) train err
sampling (100 runs avg) test err

0 5 10 15
0.7

0.75

0.8

0.85

0.9

0.95

1

percentage of pool judged

Ke
nd

al
l’s

 ta
u

Kendall’s tau for AP estimates TREC8

depth pooling
sampling (100 runs avg)
b!pref with random judgments
infAP with random judgments

0 2 4 6 8 10 12 14
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

percentage of pool judged

co
rr.

 c
oe

ff.

Corr. coeff. for AP estimates TREC10

depth pooling
sampling (100 runs avg)

0 2 4 6 8 10 12 14
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

percentage of pool judged

RM
S

er
ro

r

RMS error for AP estimates, TREC10

depth pooling train err
sampling (100 runs avg) train err
sampling (100 runs avg) test err

0 5 10 15
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

percentage of pool judged

Ke
nd

al
l’s

 ta
u

Kendall’s tau for AP estimates TREC10

depth pooling
sampling (100 runs avg)
b!pref with random judgments
infAP with random judgments

Figure 10: Linear correlation coefficient, Kendall’s τ and RMS error comparisons for mean average precision,
in TRECs 7, 8 and 10.

Each pair of runs (A,B) is thus classified “significant by
TREC” (p-value >.95) or “insignificant by TREC” (p-value
<.95); if we use as input for Wilcoxon test our AP estimates
instead of TREC APvalues, we classify each pair as “signif-
icant by SAMPLING” and “insignificant by SAMPLING”
(Table 1); in Trec8 there are 129 participant runs hence
1292 ordered pairs). We note that sampling estimates are
concluding “significant” on most of the run pairs that are ac-
tually significantly different; as the sample grows in size, the
numbers of run pairs incorrectly considered “insignificant”
decreases (Table 1, right).

3.3 Using additional judged documents
In many cases, additional judgments are available from

various sources. Most important, those judgments are inde-
pendent of the sampling picked judgments and some may be
common (collisions). We next demonstrate that the evalua-
tion stage of our method can use the additional judgments.
In a very simple fashion, the additional judgments are added
to the sample with inclusion probability 1 (each).

Figure 11 presents evaluation results when additional judg-
ments are used. The 3 plots on the left (top to bottom:
sampling, sampling + depth pooling, depth pooling) show
results for a particular query on TREC8. A comparison
between top plot and middle plot shows a significant im-
provement when additional documents are added; this cor-
responds to a scenario where sampling is done first and addi-
tional judgments provided later. The combined result shows
significant improvement over the depth pool strategy (bot-

tom plot), as expected and demonstrated above; this corre-
sponds to a scenario where depth pool judgments are avail-
able to start with and sampling is used to obtain additional
judgments. The right 3 plots are showing corresponding re-
sults for all queries on TREC8.

4. CONCLUSIONS AND FUTURE WORK
We propose a statistical technique for efficiently and effec-

tively estimating standard measures of retrieval performance
from random samples, and we demonstrate that highly ac-
curate estimates of standard retrieval measures can be ob-
tained from judged subsamples as small as 4% of the stan-
dard TREC-style depth 100 pool.

The method presented has the advantages of other meth-
ods proposed [21, 4], but not their disadvantages (hard to
put in practice, good but not best estimates). It also brings
several novice features: independence between sampling and
evaluation, ability to use existing judgments, and computabil-
ity of variance of the estimators.

This work leaves open a number of question for further
research. In standard TREC settings, all documents in the
depth 100 pool are judged and no documents outside the
pool are judged. Our work indicates that more judging ef-
fort should be placed on documents near the top of ranked
lists (they have high sampling probabilities) and less judg-
ing effort should be placed on documents near the bottom of
ranked lists (they have low sampling probabilities). What is
the optimal sampling distribution, and how does it change
as a function of the collection or systems to be evaluated?

8

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

AP

es
tim

at
ed

 A
P

Sampling AP, TREC8, Q40, K=71

trainingRMS=0.041393
 testingRMS=0.042606
!=0.952746
"=0.854441

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

trainingRMS=0.029
 testingRMS=0.030
!=0.995
"=0.933

Sampling MAP, TREC8, K=71

MAP

es
tim

at
ed

 M
AP

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

AP

es
tim

at
ed

 A
P

Sampling AP, TREC8, Q40, K=117 (sampled=71 given=71 collis=25)

trainingRMS=0.056034
 testingRMS=0.048835
!=0.971098
"=0.919515

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

trainingRMS=0.016
 testingRMS=0.016
!=0.998
"=0.952

Sampling AP, TREC8, K=120.7 (sampled=71 given=71 collis=21.3)

MAP

es
tim

at
ed

 M
AP

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5
trainingRMS=0.118704
 testingRMS=0.133814
!=0.946775
"=0.838545

Depth pooling AP estimates, TREC8, Q40, K=71

AP

de
pt

h
po

ol
ed

 A
P

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

trainingRMS=0.064322
 testingRMS=0.066433
!=0.974591
"=0.855636

Depth pooling MAP estimates, TREC8, K=71

MAP

de
pt

h
po

ol
ed

 M
AP

Figure 11: Sampling combined with depth pool-
ing judgments (middle row) compared with Sam-
pling (top) and depth pooling(bottom) evaluations
on TREC8. Left plots are for a fixed query while
right plots are averages for all queries.

Starting from the variance computation, one could in prin-
ciple derive high probability confidence intervals for the es-
timates obtained, and such confidence intervals would be
quite useful in practice (see apendix).

5. REFERENCES
[1] J. A. Aslam and V. Pavlu. Query hardness estimation

using Jensen-Shannon divergence among multiple
scoring functions. In G. Amati, C. Carpineto, and
G. Romano, editors, Advances in Information
Retrieval: 28th European Conference on IR Research,
volume 4425 of Lecture Notes in Computer Science,
pages 198–209. Springer-Verlag, 2007.

[2] J. A. Aslam, V. Pavlu, and R. Savell. A unified model
for metasearch, pooling, and system evaluation. In
O. Frieder, J. Hammer, S. Quershi, and L. Seligman,
editors, Proceedings of the Twelfth International
Conference on Information and Knowledge
Management, pages 484–491. ACM Press, November
2003.

[3] J. A. Aslam, V. Pavlu, and E. Yilmaz. Measure-based
metasearch. In G. Marchionini, A. Moffat, J. Tait,
R. Baeza-Yates, and N. Ziviani, editors, Proceedings of
the 28th Annual International ACM SIGIR

0 2 4 6 8 10 12
0.01

0.02

0.03

0.04

0.05

0.06

0.07

percentage of pool judged

RM
S

er
ro

r

RMS error for AP estimates, TREC8

depth pooling train err
sampling (100 runs avg) train err
sampling (100 runs avg) test err

0 2 4 6 8 10 12 14
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

percentage of pool judged

RM
S

er
ro

r

RMS error for AP estimates, TREC10

depth pooling train err
sampling (100 runs avg) train err
sampling (100 runs avg) test err

0 2 4 6 8 10 12
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

percentage of pool judged

RM
S

er
ro

r

RMS error for RP estimates, TREC8

depth pooling train err
sampling (100 runs avg) train err
sampling (100 runs avg) test err

0 2 4 6 8 10 12 14
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

percentage of pool judged

RM
S

er
ro

r

RMS error for RP estimates, TREC10

depth pooling train err
sampling (100 runs avg) train err
sampling (100 runs avg) test err

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

percentage of pool judged

RM
S

er
ro

r

RMS error for PC(30) estimates, TREC8

depth pooling train err
sampling (100 runs avg) train err
sampling (100 runs avg) test err

0 2 4 6 8 10 12 14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

percentage of pool judged

RM
S

er
ro

r

RMS error for PC(30) estimates, TREC10

depth pooling train err
sampling (100 runs avg) train err
sampling (100 runs avg) test err

Figure 12: RMS error train/test comparisons for
MAP, RP, PC(30), in TRECs 8 and 10. Equivalent
depths are indicated on the plot.

Conference on Research and Development in
Information Retrieval, pages 571–572. ACM Press,
August 2005.

[4] J. A. Aslam, V. Pavlu, and E. Yilmaz. A statistical
method for system evaluation using incomplete
judgments. In S. Dumais, E. N. Efthimiadis,
D. Hawking, and K. Jarvelin, editors, Proceedings of
the 29th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 541–548. ACM Press,
August 2006.

[5] K. R. W. Brewer and M. Hanif. Sampling With
Unequal Probabilities. Springer, New York, 1983.

[6] C. Buckley and E. M. Voorhees. Retrieval evaluation
with incomplete information. In Proceedings of the
27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 25–32, 2004.

[7] B. Carterette, J. Allan, and R. Sitaraman. Minimal
test collections for retrieval evaluation. In Proceedings
of the 29th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 268–275, 2006.

[8] C. Clarke, N. Craswell, and I. Soboroff. The TREC
terabyte retrieval track. 2004.

[9] C. L. A. Clarke, F. Scholer, and I. Soboroff. The
TREC 2005 terabyte track. In Proceedings of the
Fourteenth Text REtrieval Conference (TREC 2005),
2005.

[10] C. Cleverdon. The cranfield tests on index language
devices. In Readings in Information Retrieval, pages
47–59. Morgan Kaufmann, 1997.

[11] G. V. Cormack, C. R. Palmer, and C. L. A. Clarke.
Efficient construction of large test collections. In Croft

9

et al. [12], pages 282–289.

[12] W. B. Croft, A. Moffat, C. J. van Rijsbergen,
R. Wilkinson, and J. Zobel, editors. Proceedings of the
21th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
Aug. 1998.

[13] D. Harman. Overview of the third text REtreival
conference (TREC-3). In D. Harman, editor, Overview
of the Third Text REtrieval Conference (TREC-3),
pages 1–19. U.S. Government Printing Office, Apr.
1995.

[14] J. A. Rice. Mathematical Statistics and Data Analysis.
Duxbury Press, second edition, 1995.

[15] I. Soboroff, C. Nicholas, and P. Cahan. Ranking
retrieval systems without relevance judgments. In
Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 66–73, Sept. 2001.

[16] W. L. Stevens. Sampling without replacement with
probability proportional to size. Journal of the Royal
Statistical Society. Series B (Methodological), Vol. 20,
No. 2. (1958), pp. 393-397.

[17] S. K. Thompson. Sampling. Wiley-Interscience, second
edition, 2002.

[18] E. M. Voorhees and D. Harman. Overview of the
Eighth Text REtrieval Conference (TREC-8). In
Proceedings of the Eighth Text REtrieval Conference
(TREC-8), pages 1–24, 2000.

[19] E. M. Voorhees and D. K. Harman, editors. TREC:
Experiment and Evaluation in Information Retrieval.
MIT Press, 2005.

[20] D. D. Wackerly, W. Mendenhall, and R. L. Scheaffer.
Mathematical Statistics with Applications. Duxbury
Advanced Series, 2002.

[21] E. Yilmaz and J. A. Aslam. Estimating average
precision with incomplete and imperfect judgments. In
P. S. Yu, V. Tsotras, E. Fox, and B. Liu, editors,
Proceedings of the Fifteenth ACM International
Conference on Information and Knowledge
Management, pages 102–111. ACM Press, August
2006.

[22] J. Zobel. How reliable are the results of large-scale
retrieval experiments? In Croft et al. [12], pages
307–314.

APPENDIX
Inclusion Probabilities. Say document d belongs to a
bucket (of size m) with cumulative probability g and lets de-
note T the random variable indicating how many times the
this bucket is picked (in the with-replacemnt bucket sam-
pling, out of m times). Then

πd =

mX
k=1

Prob[T = k]
k

m
=

1

m
E[T] =

1

m
mg = g (6)

This shows that the sampling strategy is probability pro-
portional to size or “pps”, meaning inclusion probabilities
are approximative proportional with sampling probabilities.
While g is the inclusion probability for all documents in the
bucket (which originally don’t have identical sampling prob-
abilities, but close due to bucketing after ordering), for small
m it is safe to say the method is pps. For large sample sizes,

there would be small number of buckets, each with a uniform
distribution over its documents. As an extreme example,
when sample size is half of the number of total documents
considered for sampling, we would have 2 buckets (first one
having most of the cumulative weight) and sampling be-
comes close to uniform; but then due to a large sample,
most relevant documents would be sampled and therefore
estimates are accurate.

W compute inclusion probability for each pair of docu-
ments (d,f) (the probability that both documents are in-
cluded in the sample) by distinguishing two cases. If d and
f belong to the same bucket with total probability g then:

πdf =
X

1≤k≤m

k(k − 1)

m(m− 1)
Prob[T = k]

=
X

1≤k≤m

k(k − 1)

m(m− 1)
gk(1− g)m−k

m

k

!
= g2 = πdπf

If documents d and f belong to different buckets with to-
tal probability g and h respectively and T , U are random
variables indicating how many times each bucket got picked,
then

πdf =
X

1≤k+l≤m

kl

m2
Prob[T = k; U = l]

=
X

1≤k+l≤m

kh

m2
gkhl(1− g − h)m−k−l

m

k, l, m− l − k

!

=
m− 1

m
gh =

m− 1

m
πdπf

Variance. We show next how compute the variance of the

AP estimator. If we denote yd = dPC(rank(d)) −dAP , we
obtain the following formula for estimated variance, adapted
from[17]:

dvar(dAP) =
1bR2

0@ X
d∈S,rel

1− πd

π2
d

y2
d −

1

|S| − 1

X
d,f∈S,rel

yd · yf

πd · πf

1A
While P̂CRc and bR are unbiased estimators, the ratio es-

timator dAP it is not guaranteed to be unbiased. Some of
our results have a small positive bias but it is negligible for
any practical situation and definitely a large improvement
compared to depth-pooling evaluation bias.
Confidence intervals. Under the assumption that the
sample is large enough so that we can approximate the es-
timator distribution with a Gaussian, we compute a 95%
confidence interval as the interval of possible values of the
estimator, around the mean of the Gaussian and of length
about two standard deviations each side. So the length of
the confidence interval is about 4σ :

CIlength = 4σ = 4

qdvar(dAP)

An important question (to be answered in future work) is,
given a target confidence interval, a given prior distribution
over documents and fixing the estimator and the sampling
strategy to be the ones proposed here, how many documents
one needs to sample? Thats is, solve for the size of the
sample by setting 2σ to be a specific target; one possible
complication are estimated quantities for precision numbers
in the variance formula.

10

