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Abstract
In this paper we present a system for static and

dynamic information organization and show our eval-
uations of this system on TREC data. We intro-
duce the off-line and on-line star clustering algorithms
for information organization. Our evaluation exper-
iments show that the off-line star algorithm outper-
forms the single link and average link clustering algo-
rithms. Since the star algorithm is also highly efficient
and simple to implement, we advocate its use for tasks
that require clustering, such as information organiza-
tion, browsing, filtering, routing, topic tracking, and
new topic detection.

1 Introduction
Modern information systems have vast amounts of

unorganized data that change dynamically. Consider,
for example, the flow of information that arrives con-
tinuously on news wires, or is aggregated by a news
organization such as CNN. Some stories are new while
other stories are follow-ups on previous stories. Yet
another type of stories make previous reportings ob-
solete. The news focus changes regularly with this
flow of information. In such dynamic systems, users
need to locate information quickly and efficiently.

Current information systems such as Inquery
[Tur90], Smart [Sal91] and Alta Vista provide some
simple automation by computing ranked (sorted) lists
of documents, but it is ineffective for users to scan a
list of hundreds of document titles. To cull the crit-
ical information out of a large set of potentially use-
ful dynamic sources, we need methods for organizing
information to highlight the topic content of a collec-
tion and reorganize the data to adapt to the incoming
flow of documents. Such information organization al-
gorithms would support incremental information pro-
cessing tasks such as routing, topic tracking and new
topic detection in a stream of documents.

In this paper, we present a system for the static and
dynamic organization of information and we evaluate

the system on TREC data. We introduce the off-line
and on-line star clustering algorithms for information
organization. We also describe a novel method for vi-
sualizing clusters, by embedding them in the plane so
as to capture their relative difference in content. Our
evaluation experiments show that the off-line star al-
gorithm outperforms the single link and average link
clustering algorithms. Since the star algorithm is also
highly efficient and simple to implement, we advocate
its use for tasks that require clustering, such as infor-
mation organization, routing, topic tracking, and new
topic detection.

1.1 Previous Work

There has been extensive research on clustering and
applications to many domains. For a good overview
see [JD88]. For a good overview of using clustering in
information retrieval see [Wil88].

The use of clustering in information retrieval was
mostly driven by the cluster hypothesis [Rij79] which
states that relevant documents tend to be more closely
related to each other than to non-relevant documents.
Efforts have been made to determine whether the clus-
ter hypothesis is valid. Voorhees [Voo85] discusses
a way of evaluating whether the cluster hypothesis
holds and shows negative results. Jardine and van Ri-
jsbergen [JR71] show some evidence that search re-
sults could be improved by clustering. Hearst and
Pedersen [HP96] re-examine the cluster hypothesis by
focusing on the Scatter/Gather system [CKP93] and
conclude that it holds for browsing tasks.

Systems like Scatter/Gather [CKP93] provide a
mechanism for user-driven organization of data into a
fixed number of clusters, but user feedback is required
and the computed clusters do not have accuracy guar-
antees. Scatter/Gather uses fractionation to compute
nearest-neighbor clusters. In a recent paper, Charika
et al. [CCFM97] consider a dynamic clustering algo-
rithm to partition a collection of text documents into
a fixed number of clusters. However, since the num-



ber of topics in a dynamic information systems is not
generally known a priori, a fixed number of clusters
cannot generate a natural partition of the information.

1.2 Our Work

Our work on clustering presented in this paper and
in [APR99] describes a simple incremental algorithm,
provides positive evidence for the cluster hypothesis,
and shows promise for on-line tasks that require dy-
namically adjusting the topic content of a collection
such as filtering, browsing, new topic detection and
topic tracking. We propose an off-line algorithm for
clustering static information and an on-line version
of this algorithm for clustering dynamic information.
These two algorithms compute clusters induced by the
natural topic structure of the space. Thus, this work
is different than [CKP93, CCFM97] in that we do not
impose a fixed number of clusters as a constraint on
the solution. As a result, we can guarantee a lower
bound on the topic similarity between the documents
in each cluster.

To compute accurate clusters, we formalize the
clustering problem as one of covering a thresholded
similarity graph by cliques. Covering by cliques is NP-
complete and thus intractable for large document col-
lections. Recent graph-theoretic results have shown
that the problem cannot even be approximated in
polynomial time [LY94, Zuc93]. We instead use a
cover by dense subgraphs that are star-shaped1, where
the covering can be computed off-line for static data
and on-line for dynamic data. We show that the off-
line and on-line algorithms produce high-quality clus-
ters very efficiently. Asymptotically, the running time
of both algorithms is roughly linear in the size of the
similarity graph that defines the information space.
We also derive lower bounds on the topic similarity
within clusters guaranteed by a star covering, thus
providing theoretical evidence that the clusters pro-
duced by a star cover are of high-quality. We pack-
aged these algorithms as a system that supports ad-
hoc queries, static information organization, dynamic
information organization, and routing. In this sys-
tem we contributed a novel way of visualizing topic
clusters by using disks whose radii are proportional
to the size of the cluster and that are embedded in
the plane in a way that captures the topic distance
between the clusters. Finally, we provide experimen-
tal data for off-line and on-line topic organization. In
particular, our off-line results on a TREC collection in-
dicate that star covers exhibit significant performance
improvements over either the single link [Cro77] or

1In [SJJ70] stars were also identified to be potentially useful
for clustering.

average link [Voo85] methods (21.6% and 16.2% im-
provements, respectively, with respect to a common
cluster quality measure) without sacrificing simplicity
or efficiency.

2 Off-line Information Organization

In this section, we begin by presenting an efficient
algorithm for off-line organization of information. We
then describe our system built around this algorithm,
including user interface design and visualization tech-
niques. Finally, we present a performance evaluation
of our organization algorithm. We begin by examin-
ing the organization problem and introducing the star
algorithm.

2.1 The Star Algorithm

We formalize our problem by representing an infor-
mation system by its similarity graph. A similarity
graph is an undirected, weighted graph G = (V, E, w)
where vertices in the graph correspond to documents
and each weighted edge in the graph corresponds to
a measure of similarity between two documents. We
measure the similarity between two documents by us-
ing the cosine metric in the vector space model of the
Smart information retrieval system [Sal91].

G is a complete graph with edges of varying weight.
An organization of the graph that produces reliable
clusters of similarity σ (i.e., clusters where documents
have pairwise similarities of at least σ) can be obtained
by first thresholding the graph at σ and then perform-
ing a minimum clique cover with maximal cliques on
the resulting graph Gσ. The thresholded graph Gσ is
an undirected graph obtained from G by eliminating
every edge whose weight is lower that σ. The min-
imum clique cover has two features. First, by using
cliques to cover the similarity graph, we are guaran-
teed that all the documents in a cluster have the de-
sired degree of similarity. Second, minimal clique cov-
ers with maximal cliques allow vertices to belong to
several clusters. In our information retrieval applica-
tion this is a desirable feature as documents can have
multiple subthemes. However, the algorithm can also
be used to compute non-overlapping clusters. In our
experimental evaluations (see Figure 3) we show that
the difference in results between star with overlapping
clusters and star without overlapping clusters is very
small.

Unfortunately, this approach is not tractable com-
putationally. For real corpora, similarity graphs can
be very large. The clique cover problem is NP-
complete, and it does not admit polynomial-time ap-
proximation algorithms [LY94, Zuc93]. While we can-
not perform a clique cover nor even approximate such



a cover, we can instead cover our graph by dense sub-
graphs. What we lose in intra-cluster similarity guar-
antees, we gain in computational efficiency. In this
section and the sections that follow, we describe off-
line and on-line covering algorithms and analyze their
performance and efficiency.

We approximate a clique cover by covering the as-
sociated thresholded similarity graph with star-shaped
subgraphs. A star-shaped subgraph on m + 1 vertices
consists of a single star center and m satellite ver-
tices, where there exist edges between the star cen-
ter and each of the satellite vertices. While finding
cliques in the thresholded similarity graph Gσ guar-
antees a pairwise similarity between documents of at
least σ, it would appear at first glance that finding
star-shaped subgraphs in Gσ would provide similar-
ity guarantees between the star center and each of the
satellite vertices, but no such similarity guarantees be-
tween satellite vertices. However, by investigating the
geometry of our problem in the vector space model,
we can derive a lower bound on the similarity between
satellite vertices as well as provide a formula for the
expected similarity between satellite vertices. The lat-
ter formula predicts that the pairwise similarity be-
tween satellite vertices in a star-shaped subgraph is
high, and together with empirical evidence support-
ing this formula, we shall conclude that covering Gσ

with star-shaped subgraphs is a reliable method for
clustering a set of documents.

The star algorithm is based on a greedy cover of
the thresholded similarity graph by star-shaped sub-
graphs; the algorithm itself is summarized in Figure 1.
The star algorithm is very efficient. In [APR99] we
show that the star algorithm can be correctly imple-
mented in such a way that given a thresholded simi-
larity graph Gσ, the running time of the algorithm is
Θ(V + Eσ), linear in the size of the input graph.

2.2 Cluster Quality

In this section, we argue that the clusters produced
by a star cover have high average intra-cluster similar-
ity weights; thus, the clusters produced are accurate
and of high quality. Consider three documents C, S1

and S2 which are vertices in a star-shaped subgraph
of Gσ, where S1 and S2 are satellite vertices and C is
the star center. By the definition of a star-shaped sub-
graph of Gσ, we must have that the similarity between
C and S1 is at least σ and that the similarity between
C and S2 is also at least σ. In the vector space model,
these similarities are obtained by taking the cosine of
the angle between the vectors associated with each
document. Let α1 be the angle between C and S1,
and let α2 be the angle between C and S2. We then

For any threshold σ:

1. Let Gσ = (V, Eσ) where Eσ = {e : w(e) ≥ σ}.

2. Let each vertex in Gσ initially be unmarked.

3. Calculate the degree of each vertex v ∈ V .

4. Let the highest degree unmarked vertex be a
star center and construct a cluster from the
star center and its associated satellite vertices.
Mark each node in the newly constructed clus-
ter.

5. Repeat step 4 until all nodes are marked.

6. Represent each cluster by the document corre-
sponding to its associated star center.

Figure 1: The star algorithm

have that cos α1 ≥ σ and cos α2 ≥ σ. Note that the
angle between S1 and S2 can be at most α1 + α2, and
therefore we have the following lower bound on the
similarity between satellite vertices in a star-shaped
subgraph of Gσ.

Theorem 1 Let Gσ be a similarity graph and let S1

and S2 be two satellites in the same star in Gσ. If
α1 ≥ σ and α2 ≥ σ are the respective similarities
between S1 and the star center and between S2 and
the star center, then the similarity between S1 and S2

must be at least

cos(α1 + α2) = cos α1 cos α2 − sin α1 sin α2.

If σ = 0.7, cos α1 = 0.75 and cos α2 = 0.85, for
instance, we can conclude that the similarity between
the two satellite vertices must be at least2

(0.75) · (0.85)−
√

1− (0.75)2
√

1− (0.85)2 ≈ 0.29.

While this may not seem very encouraging, the above
analysis is based on absolute worst-case assumptions,
and in practice, the similarities between satellite ver-
tices are much higher. We further undertook a study
to determine the expected similarity between two satel-
lite vertices. Under the assumption that “similar”
documents are essentially “random” perturbations of
one another in an appropriate vector space, we have
proven the following [APR99]:

2Note that sin θ =
√

1− cos2 θ.
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Figure 2: This figure shows the actual mean-squared
prediction error for a 6,000 abstract subset of MED-
LINE.

Theorem 2 Let Gσ be a similarity graph and let S1

and S2 be two satellites in the same star in Gσ. If
α1 ≥ σ and α2 ≥ σ are the respective similarities
between S1 and the star center and between S2 and
the star center, then the expected similarity between
S1 and S2 is

cos α1 cos α2 +
σ

1 + σ
sin α1 sin α2.

For the previous example, the above formula would
predict a similarity between satellite vertices of ap-
proximately 0.78. We have tested this formula against
real data, and the results of the test with the MED-
LINE data set are shown in Figure 2. In this plot,
the x- and y-axes are similarities between a cluster
center and each of two satellite vertices, and the z-
axis is the actual mean squared prediction error of the
above formula for the similarity between satellite ver-
tices. Note that the root mean square error (RMS)
is quite small (approximately 0.13 in the worst case),
and for reasonably high similarities, the error is neg-
ligible. From our tests with real data, we have con-
cluded that this formula is quite accurate and that
star-shaped subgraphs are reasonably “dense” in the
sense that they imply relatively high pairwise similar-
ities between documents.

2.3 Performance Comparison with
Two Clustering Algorithms

In order to evaluate the performance of our sys-
tem, we tested the star algorithm against two classic
clustering algorithms: the single link method [Cro77]
and the average link method [Voo85]. We used data
from the TREC-6 conference as our testing medium.

The TREC collection contains a set of 130,471 doc-
uments of which 21,694 have been ascribed relevance
data with respect to 47 topics. These 21,694 docu-
ments were partitioned into 22 separate subcollections
of approximately 1,000 documents each. Within a sub-
collection, each of the 47 topics has a corresponding
subset of documents which is relevant to that topic.

The goal of a clustering method is to organize the
set of documents in such a way that the subset of doc-
uments corresponding to a selected topic appears as a
cluster in the organization. For each of the subcollec-
tions, we performed the following experiment. Given
a selected topic, the set of documents was organized
by a clustering method in question, and the “best”
cluster corresponding to this topic was returned. Two
issues immediately arise: first, how does one measure
the “quality” of a cluster to determine which is “best”;
and second, how does one appropriately generate clus-
ters from which to choose. To measure the quality of
a cluster, we use the common E measure [Rij79] as
defined below

E(p, r) = 1−
2

1/p + 1/r

where p and r are the standard precision and re-
call of the cluster with respect to the set of docu-
ments relevant to the topic. Note that E(p, r) is sim-
ply one minus the harmonic mean of the precision
and recall; thus, E(p, r) ranges from 0 to 1 where
E(p, r) = 0 corresponds to perfect precision and re-
call and E(p, r) = 1 corresponds to zero precision and
recall. It is worthwhile to note that when viewing
data comparing two clustering methods, lower E(p, r)
values correspond to better performance. In order
to compare the clustering methods fairly, each of the
methods was run in such a way so as to produce the
“best” possible cluster with respect to a given topic,
as defined by the E(p, r) measure above. (This is in
keeping with previous comparative analyses of clus-
tering methods; see, for example, Burgin [Bur95] and
Shaw [Sha93].) In the case of the single link and
star cover algorithms, the algorithms were run using a
range of thresholds, and the best cluster obtained over
all thresholds was returned. (One can view the clus-
tering obtained with respect to a given threshold as a
“slice” within a hierarchical clustering over all thresh-
olds; thus, in effect, the best cluster in the hierarchy
was returned in these experiments.) In the case of
the average-link algorithm which naturally produces
a hierarchical clustering, the best cluster within the
hierarchy was returned.

Unlike the star algorithm, single and average link
algorithms do not allow overlapping clusters. It has



been suggested that the differences in performance
may be attributed to the effects of overlapping rather
than to the actual properties of the algorithm. To
investigate this issue we conducted the same experi-
ments using a version of the star clustering algorithm
that eliminates the overlapping clusters. In this set-
ting we used the star algorithm to find a set of star
centers, then partitioned a collection by assigning a
document to the closest star center. This methodology
has been used before [JD88]. We note that the differ-
ence in results between star with overlapping clusters
and star without overlapping clusters is very small.
Both algorithms still outperform single link and aver-
age link (See Figure 3).
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Figure 4: This figure shows the E(p, r) measure for
the partitioning star clustering algorithm and for the
single link clustering algorithm. The y axis shows the
E(p, r) measure, while the x axis shows the cluster
number. Clusters have been sorted according to the
E(p, r) values of the star algorithm.

Each subcollection of 1,000 documents corre-
sponded to an individual experiment. For a given
clustering method, the appropriate algorithm was em-
ployed to determine the best possible cluster (as de-
fined by the E(p, r) measure) for each of the 47 topics.
For each optimal cluster, the E(p, r), precision and re-
call values were calculated with respect to the actual
set of documents relevant to the topic, and these val-
ues were averaged over all topics to obtain the three
numbers reported for each experiment and clustering
method in Figure 3. Averaging over all 22 experi-
ments, we find that the mean E(p, r) values for star,
partitioning star, average link and single link are 0.37,
0.39, 0.43 and 0.45, respectively. Thus, the star algo-
rithm represents a 16.2% improvement in performance
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Figure 5: This figure shows the E(p, r) measure for
the partitioning star clustering algorithm and for the
average link clustering algorithm. The y axis shows
the E(p, r) measure, while the x axis shows the cluster
number. Clusters have been sorted according to the
E(p, r) values of the star algorithm.

with respect to average link and an 21.6% improve-
ment with respect to single link. The difference is
only partly due to the effect of allowing overlapping
clusters - the partitioning star algorithm still gives us
a 10.2% and 15.4% improvement in performance over
average link and single link respectively.

We repeated this experiment on the same data, us-
ing one collection only (of 21,694 documents.) The
precision, recall, and E values for star (overlap), star,
average link, and single link were (.52, .36, .58), (.53,
.32, .61), (.63, .25, .64), and (.66, .20, .70) respec-
tively. We note that the E measures are worse for all
four algorithms on this larger collection and that the
star algorithm outperforms average link by 10.3% and
single link by 20.7%.

Figures 4 and 5 show detailed E(p, r) values for the
star algorithm vs. the single link algorithm and for the
star algorithm vs. the average link algorithm over the
collection of experiments. Each cluster computed by
the algorithm has an E(p, r) value. For better read-
ability of these graphs, we sorted the clusters produced
by the star algorithm according to their E(p, r) val-
ues. We plotted the corresponding E(p, r) values for
the single link algorithm (see the oscillating line in
Figure 4) and for the average link algorithm (see the
oscillating line in Figure 5). We note that the E(p, r)
values for the star clusters are almost everywhere lower
than the corresponding values for the single link and
average link algorithms; thus, the star algorithm out-



star (overlap) star (partition) average link single link
coll p r E p r E p r E p r E

1 0.78 0.56 0.35 0.79 0.53 0.36 0.74 0.50 0.40 0.77 0.47 0.41

2 0.74 0.59 0.35 0.70 0.55 0.38 0.88 0.43 0.43 0.88 0.41 0.44

3 0.78 0.53 0.37 0.79 0.48 0.41 0.84 0.44 0.43 0.83 0.43 0.43

4 0.76 0.50 0.40 0.81 0.46 0.41 0.71 0.46 0.44 0.73 0.41 0.48

5 0.80 0.50 0.38 0.78 0.50 0.39 0.85 0.40 0.46 0.81 0.40 0.46

6 0.76 0.41 0.47 0.68 0.45 0.46 0.78 0.39 0.48 0.83 0.34 0.51

7 0.76 0.62 0.32 0.79 0.61 0.31 0.81 0.52 0.36 0.78 0.50 0.39

8 0.75 0.57 0.35 0.73 0.57 0.36 0.82 0.48 0.39 0.86 0.44 0.42

9 0.82 0.49 0.39 0.80 0.50 0.38 0.89 0.44 0.41 0.87 0.43 0.43

10 0.74 0.52 0.39 0.79 0.46 0.42 0.85 0.42 0.44 0.87 0.38 0.47

11 0.82 0.55 0.34 0.86 0.48 0.38 0.83 0.45 0.42 0.85 0.44 0.42

12 0.80 0.55 0.35 0.83 0.53 0.36 0.82 0.49 0.38 0.83 0.40 0.46

13 0.81 0.53 0.36 0.81 0.49 0.39 0.84 0.46 0.40 0.89 0.40 0.44

14 0.76 0.47 0.42 0.73 0.46 0.43 0.86 0.36 0.50 0.91 0.31 0.54

15 0.75 0.54 0.37 0.79 0.48 0.40 0.83 0.35 0.50 0.87 0.33 0.52

16 0.87 0.47 0.39 0.86 0.46 0.40 0.91 0.40 0.45 0.95 0.39 0.45

17 0.64 0.53 0.42 0.64 0.51 0.43 0.80 0.39 0.48 0.76 0.39 0.48

18 0.77 0.56 0.35 0.81 0.51 0.37 0.79 0.53 0.36 0.81 0.48 0.40

19 0.73 0.54 0.38 0.74 0.50 0.40 0.83 0.42 0.45 0.85 0.39 0.46

20 0.71 0.51 0.41 0.76 0.48 0.41 0.81 0.41 0.45 0.86 0.36 0.49

21 0.74 0.61 0.33 0.79 0.56 0.34 0.84 0.49 0.38 0.88 0.46 0.40

22 0.76 0.63 0.31 0.80 0.60 0.32 0.83 0.47 0.40 0.85 0.46 0.40

avg 0.77 0.54 0.37 0.78 0.51 0.39 0.83 0.44 0.43 0.84 0.41 0.45

Figure 3: This figure shows comparison data for the star algorithm, the partitioning star algorithm, the single
link algorithm, and the average link algorithm for 22 subcollections of TREC documents. For each algorithm,
p represents the average precision computed across all clusters found for the collection; r represents the average
recall computed across all clusters found for the collection; and E(p, r) is the aggregate measure 1− 2

1/p+1/r .

performs these two methods.

These experiments show that the star algorithm
outperforms the single link and average link methods.
Since the star algorithm is also simple to implement
and highly efficient, we believe that the star algorithm
is very effective for information organization and other
text clustering applications.

3 On-line Information Organization

In this section we consider algorithms for comput-
ing the organization of a dynamic information system.
We derive an on-line version of the star algorithm for
information organization that can incrementally com-
pute clusters of similar documents. We continue as-
suming the vector space model and the cosine metric
to capture the pairwise similarity between the docu-
ments of the corpus.

3.1 The On-line Star Algorithm

We assume that documents are inserted or deleted
from the collection one at a time. For simplicity, we
will focus our discussion on adding documents to the
collection. The delete algorithm is similar. The intu-
ition behind the incremental computation of the star
cover of a graph after a new vertex is inserted is de-
picted in Figure 6. The top figure denotes a thresh-
olded similarity graph and a correct star cover for this
graph. Suppose a new vertex is inserted in the graph,
as in the middle figure. The original star cover is no
longer correct for the new graph. The bottom figure
shows the correct star cover for the new graph. How

does the addition of this new vertex affect the correct-
ness of the star cover? In general, the answer depends
on the degree of the new vertex and on its adjacency
list. If the adjacency list of the new vertex does not
contain any star centers, the new vertex can be added
in the star cover as a star center. If the adjacency list
of the new vertex contains any center vertex c whose
degree is higher, the new vertex becomes a satellite
vertex of c. The difficult case that destroys the cor-
rectness of the star cover is when the new vertex is
adjacent to a collection of star centers, each of whose
degree is lower than that of the new vertex. In this
situation, the star structure already in place has to
be modified to assign the new vertex as a star center.
The satellite vertices in the stars that are broken as a
result have to be re-evaluated.

Motivated by the intuition in the previous para-
graph, we have developed an on-line algorithm for in-
crementally computing star covers of dynamic graphs
[APR99]. In this paper we have shown that the star
cover produced by the on-line star algorithm is correct
in that it is identical to the star cover produced by the
off-line algorithm (or one of the correct covers, if more
than one exists) [APR99]. Furthermore, the on-line
star algorithm is very efficient. In our initial tests, we
have implemented the on-line star algorithm using a
heap for the priority queue and simple linked lists for
the various lists required. The time required to insert
a new vertex and associated edges into a thresholded
similarity graph and to appropriately update the star



Figure 6: This figure shows the star cover change after
the insertion of a new vertex. The larger-radius disks
denote star centers, the other disks denote satellite
vertices. The star edges are denoted by solid lines.
The inter-satellite edges are denoted by dotted lines.
The top figure shows an initial graph and its star cover.
The middle figure shows the graph after the insertion
of a new document. The bottom figure shows the star
cover of the new graph.

cover is largely governed by the number of stars that
are broken during the update, since breaking stars re-
quires inserting new elements into the priority queue.
In practice, very few stars are broken during any given
update (see Figure 7). This is due partly to the fact
that relatively few stars exist at any given time (as
compared to the number of vertices or edges in the
thresholded similarity graph) and partly to the fact
that the likelihood of breaking any individual star is
also small [APR99].

We evaluated the on-line star cover algorithm on a
2224 document corpus consisting of a judged subcol-
lection of TREC documents augmented with our de-
partment’s technical reports. We ran 4 experiments.
Each time we selected a different threshold and pro-
ceeded to insert the 2224 documents in random order,
using the on-line star cluster algorithm. The results of
these experiments were averaged. The running time
measurements appear to be linear in the number of
edges of the similarity graph. Figures 7 and 8 show
the experimental data. Note that the number of bro-

ken stars is roughly linear in the number of vertices,
the running time is linear in the number of edges in
the graph, although we can see the effects of lower
order terms.
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Figure 7: The dependence of number of broken stars
on the number of vertices for TREC data.
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Figure 8: This figure shows the dependence of the run-
ning time of the on-line star algorithm on the number
of edges in a TREC subcollection.

4 Applications to Filtering

Filtering is the task of selecting from an incom-
ing stream of documents those relevant to a query.
Typically, the filtering system decides whether a new
document is relevant instantly, without waiting for the
subsequent documents to arrive. The user may correct
the filtering profile by providing relevance feedback on
the retrieved documents.



4.1 Filtering algorithms

We use the topic clusters computed with the star al-
gorithm and relevance feedback information to deduce
the relevancy of a new document. Our cluster-based
approach to document filtering is based on the premise
that the similarity between a new document and a star
center that corresponds to a given topic approximates
well the relevance of the document to the topic. We
base this assertion on the following observations:

• the cluster hypothesis (“closely related docu-
ments are relevant to the same queries”);

• the star clustering algorithm finds accurate clus-
ters; and

• a cluster obtained with the star clustering algo-
rithm is well-represented by the document at the
star center.

Thus, we define the following rules for determining
the relevancy of a document based on the relevancy
the cluster center:

1. A document is relevant if its adjacent center is
relevant.

2. A document is not relevant if its adjacent center
is not relevant.

These rules result in the following algorithm for fil-
tering:

1. Select clustering threshold.
2. Cluster documents using the star algorithm.
3. Obtain initial relevancy information.
4. For each new document:
5. Add the document to the clustering using

the star algorithm Update procedure [APR99].
6. Decide whether the document is relevant

based on its cluster membership.
7. Retrieve the document, if relevant; correct

relevance information based on the user’s input.

An implementation of a filtering system based in
this algorithm needs to address the following points:

• Which threshold parameter for clustering to se-
lect?

• How to obtain the relevance feedback?

• How to resolve undefined cases when deciding
document relevancy?

We explore the performance of this filtering system in
the next section.

4.2 Filtering Evaluation

The TREC filtering track experimented with differ-
ent evaluation measures over the years. For adminis-
trative and practical reasons, the TREC filtering task
uses utility measures F1 and F3 (see Table 1). Preci-
sion and recall based measures were discarded because
of their inability to differentiate between systems that
return no relevant documents (where clearly returning
no documents at all is a much better behavior than re-
turning a great number of non-relevant documents).

Relevant Not Relevant
Retrieved R+ N+

Not Retrieved R− N−

F1 = 3R+ − 2N+

F3 = 4R+ − N+

Table 1: Utility measures.

The drawback of these utility measures is that they
cannot be meaningfully averaged over all topics. Fur-
thermore, these (and other) utility measures place
equal value on all relevant documents. An example
cited in the TREC-7 filtering report points out that
the 1000th retrieved relevant document likely will pro-
vide no new content over the previous 999 relevant
documents, and should therefore be valued less than
the others. One can similarly argue about the relative
importance of the 998th relevant document, and so
on. It is not only the fact that we already have many
relevant documents that makes a new relevant docu-
ment potentially uninteresting, but the actual content
similarity of this document to the previous ones.3 Un-
fortunately, current performance measures do not take
content retrieval into account. Given a choice of tradi-
tional performance measures, we select one such mea-
sure (F = 2pr/(p + r), where p is precision and r is
recall) for our experiments. Our preference for this
measure is based on the ease of averaging and com-
parison across the topics, even though we are aware
of the limitations of recall-precision based evaluation
measures.

We have used the above collections to evaluate the
performance of cluster-based filtering. We tested each
of the following three procedures with each test col-

3In fact, a filtering system that uses clustered organization
is well suited to dealing with this problem by separating the
documents with new content from the rest. This way, the total
number of retrieved relevant documents does not matter, as long
as they fit into a small number of topics.



lection.

Filtering around the topic centroid. In this
method, we take a set consisting of all training rel-
evant documents for a topic, find the centroid of this
set, and the minimum similarity between the centroid
and vectors in the set. Select documents from the test
set which similarity to the centroid is no less than the
minimum similarity established on the training set.
Compare the selected set of documents to the set of
relevant test documents using F = 2pr/(p + r) mea-
sure. We will refer to this method by CENT, and look
at two variations. In the first variation called static, we
use the centroid and the best threshold from the train-
ing collection throughout the filtering experiments. In
the second variation, called moving, we adjust the cen-
troid with each new relevant document added.

Filtering using the optimal cluster in a topic.

In this method, we take a set consisting of all train-
ing relevant documents for a topic, for every possible
threshold find all clusters in this set using the star
algorithm. A document from the test set is selected
if its similarity to a cluster center is no less than the
threshold used to obtain the clustering. Compare the
selected set of documents to the set of relevant test
documents using F = 2pr/(p + r) measure, find the
threshold that maximizes F . We will refer to this
method by CLUS, and look at two variations. In
the first variation called static, we use the centroid of
the best cluster from the training collection through-
out the filtering experiments. In the second variation,
called moving, we adjust the centroid with each new
relevant document added.

Filtering using the star algorithm. In this
method, a new document is added to the clustering
using the star algorithm Update procedure. If the new
document is not at the center of a new cluster, then
it is relevant if all its adjacent cluster centers are rel-
evant. If the new document is at the cluster center, it
is relevant if 75% of its adjacent vertices are relevant.
We will refer to this method by STAR.

Figure 2 presents the results from the five experi-
ments outlined above on the three test collections. We
describe the performance of each algorithm as the av-
erage F -measure, where F is averaged over all topics.
Thus, the higher the F value, the better the perfor-
mance. We observe that the moving methods outper-
form the static methods and that the cluster meth-
ods outperform the centroid methods. Furthermore,
the method based on the star algorithm has the best

static moving static moving

CENT CENT CLUS CLUS STAR

FBIS .230 .263 .243 .285 .294

AP .257 .285 .260 .302 .310

News .842 .893 .904 .907 .907

Table 2: This tables shows the best Favg achieved by
each of the three filtering algorithms described above
(with two variations for the centroid (CENT) and clus-
ter (CLUS) algorithms) over several filtering thresh-
olds.

performance. Thus, we conclude that clustering, and
especially the star algorithm are useful in improving
the performance of the filtering task.

5 Discussion

We have presented, analyzed, and evaluated the
star clustering algorithm for information organization.
We described an off-line version of this algorithm that
can be used to organize static information in accu-
rate clusters efficiently. We also described an on-line
version of the algorithm that can be used to organize
dynamic data for tasks that require incremental up-
dates in the topic structure of the corpus, such as the
routing task, the new topic detection task, and the
topic tracking task.

Our implementation of this algorithm contributes
a novel visualization method for clusters that presents
users with disks whose radii correspond to the clus-
ter size and that are embedded in the plane so as to
capture the topic distance between the clusters.

We evaluated the star algorithm by comparing it
against the single link and the average link algorithms
in several experiments with TREC data. We found
that the star algorithm outperforms the single link
algorithm and the average link algorithm. Since the
star algorithm is faster and easier to implement and
than the average link algorithm, we advocate its use.
The on-line algorithm produces the same clustering as
the off-line algorithm. Thus, our evaluation of the off-
line star algorithm also suggests using the on-line star
algorithm for tasks that require computing the topic
structure incrementally and adaptively.

Our findings so far suggest using the star algorithm
for a variety of tasks. We are currently conducting
experiments using the on-line star algorithm for new
topic detection and topic tracking. Because of its clus-
ter quality, efficiency, and incremental properties, we
believe this algorithm will lead to improved results in
solving these tasks.
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