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Abstract

We consider the problem of evaluating the
performance of query retrieval systems, and
we propose a sampling technique for effi-
ciently estimating standard measures of re-
trieval performance using incomplete judg-
ments. Unlike existing techniques which (1)
rely on effectively complete, and thus pro-
hibitively expensive, relevance judgment sets,
(2) produce biased estimates of standard per-
formance measures, or (3) produce estimates
of non-standard measures thought to be cor-
related with these standard measures, our
proposed sampling technique produces un-
biased estimates of the standard measures
themselves.

Our technique is based on random sampling,
and as such, the greater the number of ran-
dom samples (i.e., relevance judgments), the
higher the accuracy of our estimators. We
further derive a number of enhancements to
the general technique which allow one to de-
termine accurate estimates for the standard
performance measures associated with large
collections of systems from a single, small
judgment pool. Our experiments with the
benchmark TREC data collection indicate
that highly accurate estimates of these stan-
dard measures can be obtained using a num-
ber of relevance judgments as small as 2% of
the typical judgment pool.

Appearing in Proc. of the 22 nd ICML Workshop on Learn-
ing with Partially Classified Training Data, Bonn, Ger-
many, August 2005. Copyright 2005 by the author(s).

1. Introduction

We begin by describing relevant background informa-
tion from the field of Information Retrieval. In Sec-
tion 1.1 we describe the standard measures used to
evaluate the quality of a query retrieval system’s per-
formance. In Section 1.2 we describe the manner in
which retrieval systems are most often evaluated with
respect to these measures, and we describe how this
standard evaluation methodology is, in practice, ei-
ther expensive or only weakly approximate of “ground
truth.” Finally, in Section 1.3 we introduce our work:
a sampling technique for efficiently estimating retrieval
performance using incomplete judgments.

1.1. Performance measures

The Information Retrieval community has developed
a number of standard measures for assessing the qual-
ity of a ranked list of documents returned in response
to a user query. (Consider, for example, the prob-
lem of assessing the quality of a web search engine’s
results.) Virtually all standard measures of query re-
trieval performance are based on the binary relevance
model; i.e., each document is judged to be either rel-
evant (label = 1) or non-relevant (label = 0) with
respect to the given query.

Perhaps the simplest standard measure of perfor-
mance is precision at standard cutoffs. For exam-
ple, precision-at-cutoff 10, PC (10), is simply the frac-
tion of documents among the first 10 in a list which
are relevant. This may, for example, correspond to
the accuracy of the first page of a web search en-
gine’s results. PC (c) can be calculated, in principle,
for any c; however, for consistency the IR commu-
nity most often reports PC (c) at the standard cutoffs
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c = 5, 10, 15, 20, 30, 100, 200, 500, and 1000.

The performance of a given retrieval system is most
often calculated with respect to many returned lists,
each corresponding to one of a collection of “repre-
sentative” queries, and the average of these perfor-
mances is reported, e.g., mean precision-at-cutoff 10,
MPC (10). However, precision-at-standard-cutoff val-
ues do not necessarily “average” well. For example,
achieving a high PC (100) value may be quite easy
given a query which has thousands of relevant docu-
ments while it would be impossible given a query which
has only a few dozen relevant documents. R-precision,
precision-at-cutoff R where R is the total number of
documents relevant to a query, largely avoids these av-
eraging issues. R-precision (RP) is always a value in
the range [0, 1], and the value 1 is achieved if and only
if the retrieved results are “perfect,” i.e., all relevant
documents are retrieved before any non-relevant doc-
uments. R-precision is known to be a good overall
measure of performance, and mean R-precision values
are widely reported in the IR literature.

Perhaps the most widely reported overall measure of
retrieval performance is (mean) average precision. The
average precision of a list is the average of the preci-
sions at each relevant document in that list. For ex-
ample, given a query with three relevant documents
retrieved at ranks 2, 5, and 8 in a list, the average
precision would be

AP = (PC (2) + PC (5) + PC (8))/3

= (1/2 + 2/5 + 3/8)/3

= 0.425

Precisions at unretrieved relevant documents are as-
sumed to be zero, and thus average precision is effec-
tively the sum of the precisions at retrieved relevant
documents divided by R. Note that like R-precision,
average precision1 (AP) is always a value in the range
[0, 1], and the value 1 is achieved if and only if the
retrieved results are “perfect.”

1.2. Pooling

The problem of building test collections for evaluating
the performance of retrieval systems has been widely
studied in the information retrieval community, per-
haps most prominently in the annual text retrieval
conference TREC (Harman, 1995). In TREC, collec-
tions of retrieval systems are evaluated by (1) con-
structing a test collection of documents, (2) construct-

1Average precision is approximately the area under the
precision-recall curve (Baeza-Yates & Ribeiro-Neto, 1999);
as such, it is analogous to the area under the ROC curve
often cited in the machine learning literature.

ing a test collection of queries, (3) judging the rel-
evance of each document to each query, and (4) as-
sessing the quality of the ranked lists of documents
returned by each retrieval system for each topic using
standard measures of performance such as mean av-
erage precision. For meaningfully large collections of
documents and/or queries, Step (3) is for all practical
purposes impossible: in a typical TREC, for example,
one might be faced with the prospect of assessing the
relevance of 1,000,000 documents to each of 50 queries.
To overcome this difficulty while obtaining substan-
tially identical performance assessments, a relatively
small subset of the documents is chosen with respect
to each query, and the relevance of these documents to
the query is assessed. Documents outside this “pool”
are assumed to be non-relevant. The pool of docu-
ments to be judged is typically constructed by taking
the union of the top c documents returned by each sys-
tem in response to a given query. In TREC, c = 100
has been shown to be an effective cutoff in evaluating
the relative performance of retrieval systems (Harman,
1995; Zobel, 1998). Shallower pools (Zobel, 1998) and
greedily chosen dynamic pools (Cormack et al., 1998;
Aslam et al., 2003) have also been studied in an at-
tempt to alleviate the burden of requiring large num-
bers of relevance judgments.

While pooling greatly reduces the number of relevance
judgments required for effective system evaluation, it
can still be quite expensive. In the TREC confer-
ence, for example, upwards of 100 systems return lists
of 1,000 ranked documents in response to each of 50
topics. While many of the top documents are re-
trieved by multiple systems, thus reducing the overall
size of the depth 100 pool, the total number of rele-
vance judgments is still substantial. For example, in
TREC8 (Voorhees & Harman, 2000) 86,830 relevance
judgments were used to assess the quality of the re-
trieved lists submitted by 129 systems in response to
50 topics. (See Table 1.)

1.3. Our work

Our goal in this work is to accurately evaluate the
performance of retrieval systems using few relevance
judgments. We focus on efficient estimations of the
aforementioned standard measures of query retrieval
performance and in particular average precision since
it is perhaps the most widely used and cited overall
measure of performance in the IR community. Un-
like previously proposed methodologies based on shal-
low or greedily chosen pools which tend to produce
biased estimates using few judgments (Aslam et al.,
2003; Cormack et al., 1998; Zobel, 1998) or method-
ologies based on estimating measures other than the
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TREC
Pool 7 8 10

Depth n = 103 n = 129 n = 96
1 32 40 33
3 76 95 82
5 114 144 128

10 207 260 234
20 389 494 425

100 1860 2176 1705

Table 1. The size of the pool (on average per query) for var-
ious pool depths if the pooling is performed TREC-style.
Here n is the number of input systems in the given data
set. The full TREC pool corresponds to depth 100 in prin-
ciple though in practice the actual TREC pool may be
somewhat smaller or larger.

most widely reported standard measures (Buckley &
Voorhees, 2004), our methodology, by statistical de-
sign, produces unbiased estimates of the standard mea-
sures of retrieval performance themselves.

The core of our methodology is the derivation, for each
measure, of a distribution over documents such that
the value of the measure corresponds to the expecta-
tion of observing a relevant document drawn according
to that distribution. (In the case of average precision,
the distribution is over pairs of documents, and the ob-
servation is the product of the relevances for the pair
drawn.) Given such distributions, one can estimate
the expectations (and hence measurement values) us-
ing random sampling. We further show how a sample
drawn according to one such distribution can be used
to properly estimate the expectations with respect to
other distributions; thus, we effectively show how a
single sample can be used to estimate multiple per-
formance measures for a given list. Finally, we show
how to generalize our sampling technique so that a
single sample can be used to estimate multiple per-
formance measures over multiple lists simultaneously,
thus providing an efficient alternative to TREC-style
evaluations.

We tested our extended methodology using TREC
data, and the results we obtained were uniformly ex-
cellent across all TREC data sets examined; represen-
tative results are reported for the TREC 7, 8, and
10 data sets. While detailed results are described
later in the text, Figure 1 provides a preview of these
results. On the left is a scatter plot showing ac-
tual TREC mean average precision values for the sys-
tems in TREC8 vs. the inferred MAP values by us-
ing depth 20 pooling (the equivalent of 494 judgments
per query on average, approximately 22% of the full
TREC pool); on the right is a scatter plot showing ac-

tual TREC MAP values for the systems in TREC8 vs.
the inferred MAP values by using our sampling tech-
nique. Note the bias inherent in TREC-style depth-
pooling in contrast to the unbiased results obtained
from random sampling with an equivalent total num-
ber of judgments. Further note that the variance in
the errors is also reduced.

In the sections that follow, we begin by describing our
core methodology as well as the extensions necessary
for the efficient evaluation of multiple measures across
multiple lists from a single judged pool. We conclude
by describing the results of experiments run with the
benchmark TREC data collection.

2. Methodology

In this section, we describe our methodology in de-
tail. While many of the details are somewhat complex
and/or omitted for space considerations, the basic idea
can be summarized in the following sequence of steps.
(1) For each measure, we derive a random variable and
associated probability distribution such that the value
of the measure in question is the expectation of the ran-
dom variable with respect to the probability distribu-
tion. For example, to estimate precision-at-cutoff 500,
one could simply uniformly sample documents from
the top 500 in a given list and output the fraction
of relevant documents seen. Thus, the underlying ran-
dom variable for precision-at-cutoff c is dictated by the
binary relevance assessments, and the associated dis-
tribution is uniform over the top c documents. (Since
R-precision is effectively precision-at-cutoff R, an iden-
tical strategy holds.) For average precision, the situ-
ation is somewhat more complex. We show that the
required sampling distribution is over pairs of docu-
ments and the underlying random variable is the prod-
uct of the binary relevance judgments for that pair.
(2) Given that the value of a measure can be viewed
as the expectation of a random variable, one can apply
standard sampling techniques to estimate this expec-
tation and hence the value of the measure. However,
a naive implementation of such a methodology would
be relatively inefficient: separate i.i.d. samples would
need to be drawn (and evaluated) for each measure and
each list. For efficiency purposes, our goal is to draw
a single sample according to a carefully chosen dis-
tribution over the documents, judge those documents,
and then evaluate the various measures for the various
lists given this single judged pool. As such, one is con-
fronted with the task of estimating the expectation of
a random variable with respect to a known distribu-
tion by using a sample drawn according to a different
(but known) distribution. We introduce scaling fac-
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Figure 1. Comparing the performance of the TREC8 depth 20 pool vs. a sampling pool of an equivalent size.

tors to accomplish this task where these scaling factors
are essentially the ratio between the desired and sam-
pling distributions. (3) Finally, while our estimators
are unbiased by design, it is also important that they
have low variance so that their empirical means will
converge to their true expectations quickly, i.e., with
relatively few samples. We discuss conditions under
which our estimators will have low variance, and we
describe a heuristic for reducing the variance of our
estimators. In the sections that follow, we describe
each of these steps in more detail.

2.1. Average precision as an expected value

While our goal is to simultaneously estimate multiple
measures of performance over multiple lists, we be-
gin by considering the problem of estimating average
precision from a random sample. Unlike R-precision
or precision at standard cutoffs, deriving a sampling
distribution for average precision is non-trivial, and it
yields a distribution which empirically is quite useful
for estimating the other measures of interest.

One can compute average precision as follows, where
Z is the length of the retrieved list, rel(i) is the bi-
nary relevance of the document at rank i, and R is the
number of relevant documents for the query.

AP =
1

R
·

∑

i : rel(i)=1

PC (i)

=
1

R
·

Z∑

i=1

rel(i) · PC (i)

=
1

R
·

Z∑

i=1

rel(i)

i∑

j=1

rel(j)/i

=
1

R
·

∑

1≤j≤i≤Z

1

i
· rel(i) · rel(j)

Thus, in order to evaluate R · AP , one must compute
the weighted product of relevances of documents at

1 2 3 . . . Z
1 1
2 1/2 1/2
3 1/3 1/3 1/3
...
Z 1/Z 1/Z 1/Z . . . 1/Z

1 2 3 . . . Z
1 2 1/2 1/3 . . . 1/Z
2 1/2 1 1/3 . . . 1/Z
3 1/3 1/3 2/3 . . . 1/Z
...
Z 1/Z 1/Z 1/Z . . . 2/Z

Table 2. (Left) Weights associated with pairs of ranks; nor-
malizing by Z yields an asymmetric joint distribution.
(Right) Symmetric weights; normalizing by 2Z yields the
symmetric joint distribution JD .

pairs of ranks, where for any pair j ≤ i, the associated
weight is 1/i. (See Table 2, left.) In order to view
this sum as an expectation, we define an event space
corresponding to pairs of ranks (i, j), a random vari-
able X corresponding to the product of the binary rele-
vances rel(i)·rel(j), and an appropriate probability dis-
tribution over the event space. One such distribution
corresponds to the (appropriately normalized) weights
given in Table 2 (left); for convenience, we shall in-
stead define a symmetrized version of these weights
(see Table 2 (right)) and the corresponding joint dis-
tribution JD (appropriately normalized by 2Z). It is
not difficult to see that

R · AP = Z · E[X ]

where the expectation is computed with respect to ei-
ther distribution. Thus, if U is a multiset of pairs
drawn according to JD , we obtain the following esti-
mate for AP

ÂP =
Z

R
·

1

|U |

∑

(i,j)∈U

rel(i) · rel(j).

2.2. Efficiency considerations

The technique described above can be used to esti-
mate the average precision of a single retrieval system
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with respect to any given query. However, it is rela-
tively inefficient: (1) On a per system basis, i.i.d. pairs
of documents are drawn and judged, but the induced
pairs of judged documents across i.i.d. samples are not
used. Furthermore, (2) one is often faced with the task
of evaluating the average precisions of many retrieval
systems with respect to a given query (as in TREC),
and in a naive implementation of the technique de-
scribed, the documents judged for one system will not
necessarily be reused in judging another system. In
contrast, TREC creates a single pool of documents
from the collection of systems to be evaluated, judges
that pool, and evaluates all of the systems with re-
spect to this single judged pool. In order to combat
the inefficiency inherent in (1), we shall instead draw
a sample from a distribution over documents and con-
sider all induced pairs of judgments. In order to com-
bat the inefficiency inherent in (2), we shall construct
a single distribution over documents where this dis-
tribution is derived from the joint distributions JD s

associated with every system s.

In both cases, we shall effectively be sampling from
a distribution different from the one necessary to es-
timate the expectations desired. To combat this, we
introduce scaling factors as follows. Let D(i, j) be
the joint distribution over documents from which we
effectively sample. Note that i and j now denote doc-
uments, not ranks. Similarly abusing notation, let
JDs(i, j) denote the joint distribution over documents
(not ranks) required to estimate the proper expecta-
tion for system s. We define scaling factors SF s(i, j)
which correspond to the ratio between the desired and
sampling distributions

SF s(i, j) =
JDs(i, j)

Ds(i, j)

where Ds is the distribution induced by D over docu-
ments retrieved by s. We then have

ÂP =
Zs

R
·

1

|Us|

∑

(i,j)∈Us

rel(i) · rel(j) · SF s(i, j)

where Zs is the length of the list returned by system s
and Us ⊆ U is the subset of samples corresponding to
documents retrieved by s. Note that the above for-
mulation holds for any sampling distribution D. In
what follows, we describe a heuristic for determining
a good sampling distribution—one which corresponds
to a distribution over documents (for efficiency) and
which explicitly attempts to minimize the variance in
the estimates produced (for accuracy).

2.3. Finding the best sampling distribution

In determining a sampling distribution D, we consider
two factors. First, we impose the condition that D
be a symmetric product distribution, i.e., D(i, j) =
M(i) ·M(j) for some (marginal) distribution over doc-
uments M . The purpose for this is efficiency: we will
sample documents according to M and consider all in-
duced pairs of documents, which will be distributed
(approximately) according to D. Second, we seek a D
which explicitly attempts to minimize the variance in
our estimator, for accuracy. We begin by considering
the latter factor.

Variance minimization. For a sampling distribu-
tion D and a given system s, let Ds be the distribu-
tion induced by D over pairs of documents contained
in the list returned by system s. Furthermore, let Y
be the random variable rel(i) · rel(j) · SF s(i, j) such
that AP = (Zs/R) ·EDs

[Y ]. Since Zs and R are fixed,
in order to minimize the variance of AP , we must min-
imize the variance of Y .

Var[Y ]

= E[Y 2] −E2[Y ]

=
∑

i,j

Ds(i, j) · rel(i)
2 · rel(j)2 · SF s(i, j)

2

−(AP · R/Zs)
2

=
∑

i,j:rel(i)=rel(j)=1

Ds(i, j) ·
JDs(i, j)

2

Ds(i, j)2

−(AP · R/Zs)
2

=
∑

i,j:rel(i)=rel(j)=1

JDs(i, j)
2

Ds(i, j)
− (AP · R/Zs)

2

To minimize this variance, it is enough to minimize
the first term since AP · R/Zs is fixed. Employ-
ing ideas similar to importance sampling for minimiz-
ing the variance of Monte Carlo estimators (Ander-
son, 1999), we find that the best sampling distribu-
tion D is the distribution induced by JDs over rel-
evant documents. (Details omitted for space consid-
erations.) Of course, we do not have the complete
relevance judgments necessary to calculate the ideal
sampling distribution. However, the marginal distri-
bution MDs(i) =

∑
j JDs(i, j) associated with the

average precision sampling distribution JDs(i, j) has
been shown to be a reasonable prior for relevant docu-
ments (Aslam et al., 2005a), and using such a prior one
can argue that a sampling distribution Ds(i, j) pro-

portional2 to (MDs(i) ·MDs(j))
3/2 is likely to result

2The expression must be normalized to form a distribu-
tion.
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in low variance. (Again, details omitted for space con-
siderations.) Ds(i, j) is a product distribution having
identical marginals with respect to i and j; let MD ′

s(i)
be the marginal associated with Ds(i, j).

If our task were to estimate the performance of only
one retrieval system, we could sample documents ac-
cording to MD ′

s(i), consider all induced pairs of docu-
ments, and estimate AP using appropriate scaling fac-
tors. However, in general our task is to simultaneously
estimate AP for N systems from a single sample. We
obtain a final sampling marginal M(i) by averaging
the marginals associated with each system s.

M(i) =
1

N

∑

s

MD ′
s(i)

We finally note that in a typical TREC setting, one
averages AP over 50 queries to obtain a final estimate
of the performance of a system, and this averaging
results in a further significant variance reduction.

Exact computation of scaling factors. M(i) is
the distribution we use for sampling documents, and
given a sample of K such documents, we consider all
K2 induced pairs and estimate the required expecta-
tions from these induced pairs and appropriate scaling
factors. For sufficiently large K, the distribution over
induced pairs will approximate the associated product
distribution D(i, j) = M(i) · M(j); however, the ac-
tual distribution is multinomial. One can show that
the actual induced pairs distribution I(i, j) is given by

I(i, j) =
K − 1

K
·M(i) · M(j)

when i 6= j and

I(i, i) =
1

K
M(i)

(
1 + (K − 1)M(i) + (1−M(i))K−1

)

otherwise. As a consequence, if Ks is the size of the
subset of K sampled documents which are retrieved
by system s, one obtains the following final scaling
factors:

SF s(i, j) =
JDs(i, j)

K2I(i, j)/Ks
2 .

(Details omitted for space considerations.)

2.4. Estimating R

To obtain an estimate for AP , we must know or ob-
tain estimates for R, Zs, and the expectation described
above. We have described in detail how to estimate the
expectation, and Zs is a known quantity (the length
of the system’s returned list). However, R, the total
number of documents relevant to the given query, is

not typically known and must also be estimated. So-
phisticated approaches for estimating R exist (Kantor
et al., 1999); however, in this preliminary study we
employ techniques similar to those described above.
In order to estimate R (as calculated by TREC), one
could simply uniformly sample documents from the
depth 100 pool. Given that our sample is drawn ac-
cording to M(i) instead, one can employ appropriate
scaling factors to obtain the correct estimate.

2.5. Estimating PC (c)

To estimate precision-at-cutoff c, one could simply uni-
formly sample documents from the top c in any given
list. Given that we sample according to M(i), we again
employ appropriate scaling factors to obtain correct
estimates for PC (c).

2.6. Estimating RP

R-precision is simply the precision-at-cutoff R. We do
not know R; however, we can obtain an estimate R̂ for
R as described above. Given this estimate, we simply
estimate PC (R̂) as described above.

3. Results

We tested the proposed sampling method as a mech-
anism for estimating the performance of retrieval sys-
tems using data from TRECs 7, 8 and 10. We
used mean average precision (MAP), mean R-precision
(MRP), and mean precision at cutoffs 5, 10, 15, 20, 30,
100, 200, 500, and 1000 (MPC(c)) as evaluation mea-
sures. We compared the estimates obtained by the
sampling method with the “actual” evaluations, i.e.
evaluations obtained by depth 100 TREC-style pool-
ing. The estimates are found to be consistently good
even when the total number of documents judged is far
less than the number of judgments used to calculate
the actual evaluations.

To evaluate the quality of our estimates, we calculated
three different statistics, root mean squared (RMS)
error, linear correlation coefficient ρ (Wackerly et al.,
2002), and Kendall’s τ (Stuart, 1983).

RMS error measures the deviation of estimated values
from actual values. Hence, it is related to the standard
deviation of the estimation error. Let (a1, a2, ..., aN )
be the actual values and (e1, e2, ..., eN ) be the esti-
mated values. The RMS error of the estimation can
be calculated as

RMS =

√√√√ 1

N

N∑

i=1

(ai − ei)
2
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The linear correlation coefficient evaluates how well
the actual and estimated values are correlated. This
correlation is measured based on how well the esti-
mated and actual values fit to a straight line.

We can convert the values of measures to a ranking
of systems by sorting the systems in descending order
according to the measures. Kendall’s τ evaluates how
well the estimated measures rank the systems com-
pared to the actual rankings. It is a function of the
minimum number of pairwise adjacent interchanges
needed to convert one ranking into the other. Both ρ
and Kendall’s τ values range from −1 (perfectly neg-
atively correlated values) to +1 (perfectly correlated
values).

Note that in contrast to the RMS error, Kendall’s τ
and ρ does not measure how much the estimated values
differ from the actual values. Therefore, even if they
indicate perfectly correlated estimated and actual val-
ues, the estimates may still not be accurate. Hence,
it is much harder to achieve small RMS errors than to
achieve high τ or ρ values. Because of this, we mainly
focus on the RMS error values when evaluating the
performance of the sampling method.

In order to show how the sampling method compares
with the TREC-style pooling method, we run two dif-
ferent sets of experiments on TREC8 data for each
measure (MAP, MRP and MPC(100)3). In the first
set, we compare the estimates of the measures ob-
tained using TREC-style depth pooling with the ac-
tual values for depths 1, 3, and 10. TREC-style depth
pooling for depths 1, 3, and 10 correspond to 40, 95,
and 260 relevance judgments on average per query, re-
spectively. In the second set of experiments, we com-
pare the estimated values of the measures obtained
using the sampling method with the actual values of
the measures using the same total numbers of judg-
ments obtained from the first set of experiments (i.e.,
40, 95, and 260 judgments). Since the performance of
the sampling method varies depending on the actual
sample, we sampled 10 times and picked a representa-
tive sample that exhibited typical performance based
on the three evaluation statistics used.

We report the results of the experiments for MAP,
MRP, and MPC(100) in Figure 2, Figure 3, and Fig-
ure 4, respectively. The results of the first and second
set of experiments are illustrated in the upper three
and lower three plots of each corresponding figure. As
can be seen, for all three depths there is a significant
improvement in all three statistics when sampling is

3Since sampling has similar performance at all cutoff
levels, we only report the results for cutoff 100 due to space
limitations.

used versus the TREC-style pooling for all the mea-
sures. As illustrated in the figures, the sampling esti-
mates have reduced variance and little or no bias com-
pared to depth pooling estimates. This can be seen
from the great reduction in the RMS error when the
estimates are obtained via sampling. Furthermore, the
bottom-right plots of all three figures show that with as
few as 260 relevance judgments, the sampling method
can very accurately estimate the actual measure val-
ues which were obtained using 86, 830 total relevance
judgments (1,737 relevance judgments on average per
query).

Figure 5 illustrates how MAP, MRP, and MPC(100)
estimates using TREC-style depth pooling compare
with those obtained using sampling as the depth of
the pool changes. Since the RMS error is the most
important of the three statistics used, the compari-
son in this figure is based on RMS error. In this set
of experiments, for depths 1 to 10, we first calculated
the number of documents required to be judged using
TREC-style depth pooling. Then, for each depth, we
formed 10 different samples of the same size as the re-
quired judgment set for each corresponding depth and
calculated the average RMS error values over the 10
samples for each measure. The leftmost, middle, and
rightmost columns in Figure 5 show the average RMS
error for sampling versus the RMS error using TREC-
style depth pooling for the measures MAP, MRP, and
MPC(100), respectively. Plots in rows 1 to 3 corre-
sponds to the results obtained from the TREC 7, 8 and
10 datasets, respectively. As can be seen in the figure,
for all TRECs the sampling method significantly out-
performs the TREC-style depth pooling method for all
three measures at all depths.

4. Conclusions and Future Work

We proposed a sampling technique for efficiently es-
timating standard measures of retrieval performance
using incomplete judgments. The proposed method
can also be used as part of a strategy for estimat-
ing the labels of unjudged documents with respect to
a query. Given values for average precision and R,
one can accurately infer probabilities of relevance for
documents via a maximum entropy technique (Aslam
et al., 2005b). Given that one can obtain highly accu-
rate estimates of average precision and R from a small
number of judged documents using the proposed sam-
pling method, and given that one can then use these
estimates to infer accurate estimates for the relevance
of each document via the maximum entropy method,
one can in principle obtain accurate (probabilistic) rel-
evance assessments for large document collections from
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Figure 2. Comparison of correlations: sampling vs. depth pooling mean average precision in TREC8.
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Figure 3. Comparison of correlations: sampling vs. depth pooling for mean R-precision in TREC8.
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Figure 4. Comparison of correlations: sampling vs. depth pooling for mean precision at cutoff 100 measures in TREC8.
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Figure 5. RMS error comparisons for mean average precision, mean R-precision, mean precision at cutoff 100 measures in
TRECs 7, 8 and 10.
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a small number of judgments.

As mentioned in Section 2.4, the estimation of R can
be accomplished in a more sophisticated manner. We
have examined our simple estimates, and we note that
they are not as accurate as the estimates for the re-
trieval measures themselves (AP ,RP ,PC ). As such,
it is not at all clear that a better estimate for R would
yield improved estimates for retrieval measures. In
fact, the simultaneous estimate of the expectations de-
scribed and R from a single sample seems to be “self-
correcting:” when one is high (or low), the other is also
high (or low), and thus the ratio is “preserved.” Un-
derstanding this phenomenon will be important in or-
der to derive provable bounds on performance (sample
complexity, accuracy, etc.) for the method described.
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