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ABSTRACT
We present a unified model which, given the ranked lists
of documents returned by multiple retrieval systems in re-
sponse to a given query, simultaneously solves the problems
of (1) fusing the ranked lists of documents in order to ob-
tain a high-quality combined list (metasearch); (2) gener-
ating document collections likely to contain large fractions
of relevant documents (pooling); and (3) accurately evalu-
ating the underlying retrieval systems with small numbers
of relevance judgments (efficient system assessment). Our
approach is based on the Hedge algorithm for on-line learn-
ing. In effect, our proposed system “learns” which docu-
ments are likely to be relevant from a sequence of on-line
relevance judgments. In experiments using TREC data, our
methodology is shown to outperform standard methods for
metasearch, pooling, and system evaluation, often remark-
ably so.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
Models, Search Process, Relevance Feedback

General Terms
Theory, Algorithms, Experimentation

Keywords
Metasearch, Pooling, Evaluation, Active Learning

1. INTRODUCTION
We consider the problems of metasearch, pooling, and sys-

tem evaluation, and we show that all three problems can

∗This work partially supported by NSF Career Grant CCR-
0093131 and NSF Grant 5-36955.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’03, November 3–8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-723-0/03/0011 ...$5.00.

be efficiently and effectively solved with a single technique
based on the Hedge algorithm for on-line learning. Our re-
sults from experiments with TREC data demonstrate that:
(1) As an algorithm for metasearch, our technique combines
ranked lists of documents in a manner whose performance
equals or exceeds that of benchmark algorithms such as
CombMNZ and Condorcet, and it generalizes these algo-
rithms by seamlessly incorporating user feedback in order to
obtain dramatically improved performance. (2) As an algo-
rithm for pooling, our technique generates sets of documents
containing far more relevant documents than standard tech-
niques such as TREC-style depth pooling. (3) These pools,
when used to evaluate retrieval systems, estimate the per-
formance of retrieval systems and rank these systems in a
manner superior to TREC-style depth pools of an equivalent
size.

Our unified model for solving these three problems is based
on the Hedge algorithm for on-line learning. In the context
of these problems, Hedge effectively learns which systems
are “better” than others and which documents are “more
likely relevant” than others, given on-line relevance feed-
back. Thus, Hedge (1) learns to rank documents in order of
relevance (metasearch), (2) learns how to generate document
sets likely to contain large fractions of relevant documents
(pooling), and (3) efficiently and effectively evaluates the
underlying retrieval systems using these pools.

In the sections that follow, we describe the problems of
metasearch, pooling, and system evaluation in more detail
and discuss our results.

1.1 Metasearch
Metasearch is the well-studied process of fusing the ranked

lists of documents returned by a collection of systems in re-
sponse to a given user query in order to obtain a combined
list whose quality equals or exceeds that of any of the under-
lying lists. Many metasearch techniques have been proposed
and studied [3, 9, 14, 2, 12]. In this work, we consider two
benchmark techniques: the first is based on combining the
normalized scores given to each document by the underly-
ing systems (CombMNZ [6, 10]), and the second is based on
viewing the metasearch problem as a multi-candidate elec-
tion where the documents are candidates and the systems
are voters expressing preferential rankings among the can-
didates (Condorcet [13]).

CombMNZ and Condorcet produce quality ranked lists
of documents by fusing the ranked lists provided by a col-



lection of underlying systems. Given ranked lists produced
by good but sufficiently different underlying systems, these
metasearch techniques can produce fused lists whose qual-
ity exceeds that of any of the underlying lists. Given ranked
lists produced by possibly correlated systems of varying per-
formance, these metasearch techniques will most often pro-
duce fused lists whose performance exceeds that of the “av-
erage” underlying list but which rarely exceeds that of the
best underlying list.

In the context of a metasearch engine, the fused list pro-
duced by CombMNZ or Condorcet would be presented to
the user who would naturally begin processing the docu-
ments in rank order to satisfy the desired information need.
While the user could naturally and easily provide relevance
feedback to the metasearch algorithm, these techniques are
not naturally amenable to incorporating such feedback.

By contrast, our technique based on the Hedge algorithm
for on-line learning quite naturally incorporates relevance
feedback and performs impressively even in the absence of
feedback.

In the absence of feedback, the metasearch performance
of our technique most often equals or exceeds that of bench-
mark techniques such as CombMNZ and Condorcet. In ex-
periments using TREC data, Hedge effectively equaled the
performance of CombMNZ in four out of five data sets tested
(TRECs 3, 6, 7, and 8), and Hedge outperformed CombMNZ
in one data set (TREC 5). Hedge consistently outperformed
Condorcet in each of the data sets tested, significantly so in
two of them (TRECs 6 and 7).

In the presence of relevance feedback, our technique rapidly
and effectively “learns” how to fuse the underlying ranked
lists, significantly outperforming CombMNZ and Condorcet,
and often outperforming the best underlying system after
only a handful of relevance judgments.

1.2 Pooling and System Evaluation
Collections of retrieval systems are traditionally evaluated

by (1) constructing a test collection of documents (the “cor-
pus”), (2) constructing a test collection of queries (the “top-
ics”), (3) judging the relevance of the documents to each
query (the “relevance judgments”), and (4) assessing the
quality of the ranked lists of documents returned by each
retrieval system for each topic using standard measures of
performance such as mean average precision. Much thought
and research has been devoted to each of these steps in, for
example, the annual TREC conference [8].

For large collections of documents and/or topics, it is im-
practical to assess the relevance of each document to each
topic. Instead, a small subset of the documents is chosen,
and the relevance of these documents to the topics is as-
sessed. When evaluating the performance of a collection
of retrieval systems, as in the annual TREC conference [8],
this judged “pool” of documents is typically constructed by
taking the union of the top k documents returned by each
system in response to a given query. In TREC, k = 100
has been shown to be an effective cutoff in evaluating the
relative performance of retrieval systems [8]. Both shallower
and deeper pools have been studied [16, 8], both for TREC
and within the greater context of the generation of large
test collections [4]. Pooling is an effective technique since
many of the documents relevant to a topic will appear near
the top of the lists returned by (quality) retrieval systems;
thus, these relevant documents will be judged and used to
effectively assess the performance of the collected systems.

While pooling is an effective technique for greatly reduc-
ing the number of relevance judgments required for effective
system evaluation, it can still be quite expensive. In the
TREC conference, for example, upwards of 100 systems re-
turn lists of 1000 ranked documents in response to each of
50 topics. Traditional TREC-style pooling dictates that the
top 100 documents returned by each system in response to
each topic should be judged, and these relevance judgments
should then be used to assess the relative performance of the
systems. While many of the top documents are retrieved by
multiple systems, thus reducing the overall size of the pool,
the total number of relevance judgments is still substantial.
For example, in TREC 8 [15] 86,830 relevance judgments
were used to assess the quality of the retrieved lists submit-
ted by 129 systems in response to 50 topics.

Pools are often used to evaluate retrieval systems in the
following manner. The documents within a pool are judged
to determine whether they are relevant or not relevant to the
given user query or topic. Documents not contained within
the pool are assumed to be non-relevant. The ranked lists
returned by the retrieval systems are then evaluated using
standard measures of performance (such as mean average
precision) using this “complete” set of relevance judgments.
Since documents not present in the pool are assumed non-
relevant, the quality of the assessments produced by such a
pool is often in direct proportion to the fraction of relevant
documents found in the pool (its recall). On-line pooling
techniques have been proposed which attempt to identify
relevant documents as quickly as possible in order to exploit
this phenomenon [4].

While TREC-style pools with large numbers of relevance
judgments corresponding to documents chosen “fairly” from

TREC
Pool 3 5 6 7 8

Depth n = 40 n = 82 n = 79 n = 103 n = 129
1 19 38 38 32 40
2 39 68 67 55 69
3 47 98 95 76 95
4 60 126 120 95 119
5 73 153 146 114 144
6 85 181 172 134 167
7 96 208 197 152 191
8 107 234 221 170 215
9 118 262 246 189 238

10 129 288 271 207 260
15 183 418 393 297 379
20 235 543 513 389 494
30 336 791 743 571 717
40 436 1034 969 754 939
50 531 1273 1191 936 1155
60 626 1509 1410 1114 1366
70 718 1745 1629 1299 1574
80 811 1978 1845 1486 1777
90 903 2206 2058 1675 1978

100 995 2434 2271 1860 2176

Table 1: The size of the pool (per query) for various
pool depths if the pooling is performed TREC-style.
Here n is the number of input systems in the given
data set.



among the underlying systems are extremely useful from a
research perspective, there are circumstances under which
smaller, perhaps biased, pools are warranted. Examples of
this might include: (1) when attempting to assess large num-
bers of systems over vast, changing data collections such as
the World Wide Web, (2) when budget or manpower con-
straints dictate smaller pools, and (3) when the judgments
are provided on-line by a user, for example when attempting
to quickly determine the best underlying search engine for
a particular user-given query.

In the results that follow, we demonstrate that the Hedge
algorithm for on-line learning is ideally suited to generating
efficient pools which effectively evaluate retrieval systems.
In effect, the Hedge algorithm learns which documents are
likely to be relevant. These documents can then be judged
and added to the pool, and their relevance judgments can
be used as feedback to improve the learning process—thus
generating more relevant documents in subsequent rounds.
The quality of the pools generated can be measured in two
ways: (1) At what rate are relevant documents found (recall
percentage as a function of total judgments)? (2) How well
do these pools evaluate the retrieval systems (score or rank
correlations vs. “ground truth”)? In our experiments using
TREC data, Hedge found relevant documents at rates nearly
double that of benchmark techniques such as TREC-style
depth pooling. These Hedge pools were found to evaluate
the underlying retrieval systems much better than TREC-
style depth pools of an equivalent size (as measured by
Kendall’s τ rank correlation, for example). Finally, these
Hedge pools seemed particular effective at properly evaluat-
ing the best underlying systems, a task which is difficult to
achieve using small pools.

In the sections that follow, we first describe our algorithm
for simultaneously solving the metasearch, pooling and sys-
tem evaluation problems using Hedge. We then describe
the results of our methodology in experiments conducted
on TREC data. Finally, we conclude by mentioning some
possible extensions of this work.

2. INTUITION AND SETUP
The intuition for our algorithm can be described as fol-

lows. Consider a user who submits a given query to multiple
search engines and receives a collection of ranked lists in re-
sponse. How would the user select documents to read in
order to satisfy his or her information need? In the ab-
sence of any knowledge about the quality of the underly-
ing systems, the user would probably begin by selecting
some document which is “highly ranked” by “many” sys-
tems. Such a document has, in effect, the collective weight
of the underlying systems behind it. If the selected docu-
ment were relevant, the user would begin to “trust” systems
which retrieved this document highly (i.e., they would be
“rewarded”), while the user would begin to “lose faith” in
systems which did not retrieve this document highly (i.e.,
they would be “punished”). Conversely, if the document
were non-relevant, the user would punish systems which re-
trieved the document highly and reward systems which did
not. In subsequent rounds, the user would likely select docu-
ments according to his or her faith in the various systems in
conjunction with how these systems rank the various docu-
ments; in other words, the user would likely pick documents
which are ranked highly by trusted systems.

Algorithm Hedge(β)

Parameters:

number of systems N.

initial weight vector w1
∈ [0, 1]N

number of trials T .
β ∈ [0, 1].

Do for t = 1, 2, . . . , T .

1. Choose allocation pt = w
t

�
N
i=1

wt
i

.

2. Receive loss `t
∈ [0, 1]N from environment.

3. Suffer loss pt
· `t.

4. Set the new weight vector to be w
t+1

i
= wt

i
β`

t
i .

Figure 1: Hedge Algorithm

How can the above intuition be quantified and encoded
algorithmically? Such questions have been studied in the
machine learning community for quite some time and are of-
ten referred to as “combination of expert advice” problems.
One of the seminal results in this field is the Weighted Ma-
jority Algorithm due to Littlestone and Warmuth [11]; in
this work, we use a generalization of the Weighted Majority
Algorithm called Hedge due to Freund and Schapire [7].

Hedge is an on-line allocation strategy which solves the
combination of expert advice problem as follows. (See Fig-
ure 1.) Hedge is parameterized by a tunable learning rate
parameter β ∈ [0, 1], and in the absence of any a priori
knowledge, begins with an initially uniform “weight” w1

i for
each expert i (in our case, w1

i = 1 ∀ i). The relative weight
associated with an expert corresponds to one’s “faith” in its
performance.

For each round t ∈ {1, . . . , T}, these weights are normal-
ized to form a probability distribution pt where

pt
i =

wt
i�

j
wt

j

,

and one places pt
i “faith” in system i during round t.

This “faith” can be manifested in any number of ways,
depending on the problem being solved. If the underlying
experts are making predictions about which stocks will rise
in the next trading day, one might invest one’s money in
stocks according to the weighted predictions of the underly-
ing experts. If a stock goes up, then each underlying expert
i which predicted this rise would receive a “gain,” and the
investor would also receive a gain in proportion to the money
invested, pt

i. If the stock goes down, then each underlying
expert i which predicted a rise would suffer a “loss,” and
the investor would also suffer a loss in proportion to the
money invested. This is encoded in Hedge as follows. In
each round t, expert i suffers a loss `t

i, and the algorithm
suffers a weighted average (mixture) loss of

�
i
pt

i`
t
i.

1

1For the purposes of the Hedge algorithm and its analysis,
it is assumed that the losses and/or gains are bounded so
that they can be appropriately mapped to the range [0, 1].



Finally, the Hedge algorithm updates its “faith” in each
expert according to the losses suffered in the current round,

wt+1
i = wt

iβ
`t
i . Thus, the greater the loss an expert suffers

in round t, the lower its weight in round t + 1, and the
“rate” at which this change occurs is dictated by the tunable
parameter β.

Over time, the “best” underlying experts will get the
“highest” weights, and the cumulative (mixture) loss suf-
fered by Hedge will be not much higher than that of the
best underlying expert. Specifically, Freund and Schapire
show that if Li =

�
t
`t
i is the cumulative loss suffered by ex-

pert i, then the cumulative (mixture) loss suffered by Hedge
is bounded by

LHedge ≤
mini{Li} · ln(1/β) + ln N

1 − β

where N is the number of underlying experts.

2.1 Hedge Application
We employ the Hedge algorithm to simultaneously solve

the problems of metasearch, pooling, and system evaluation
as follows. On a per query basis, each underlying retrieval
system is an “expert” providing “advice” about the rele-
vance of various documents to the given query. We must
define a method for selecting likely relevant documents based
on system weights and document ranks, and we must also
define an appropriate loss that a system should suffer for
retrieving a particular relevant or non-relevant document at
a specified rank. While a loss function which converges to
some standard measure of performance such as average pre-
cision might be desirable, we instead work with a simpler but
related loss. The loss function is designed to reflect a docu-
ment’s complete contribution to a system’s total precision—
the sum of the precisions at all document levels. It is defined
for document dk at rank rk by: ` = 1

2
· (−1)rel(dk) ·

� rmax

r=rk

1
r
,

where rel(dk) is an indicator function for the relevance of
document dk (i.e., 1 if dk is relevant and 0 if it is not) and
rmax is the total number of unique documents retrieved by
all systems for this query (i.e., the size of the union of the
documents sets returned). In the limit of complete rele-
vance judgments, one can show that the total loss of a sys-
tem converges to the negative of the total precision plus a
system-independent constant. For our purposes, this mea-
sure demonstrates a close empirical relationship to other
popular measures of performance (such as average precision
at relevant documents) while it has the advantage of being
simple and “symmetric” (the magnitude of the loss or gain
is independent of relevance). We note that this loss can be
easily approximated since its magnitude is the difference be-
tween two harmonic numbers. Let Hk =

� k

i=1 1/i be the
k-th harmonic number. We then have

` =
1

2
· (−1)rel(dk) ·

rmax�
r=rk

1

r

=
1

2
· (−1)rel(dk) · � rmax�

r=1

1

r
−

rk−1�
r=1

1

r �
=

1

2
· (−1)rel(dk) · (Hrmax − Hrk−1)

≈
1

2
· (−1)rel(dk) · (ln rmax − ln(rk − 1))

≈
1

2
· (−1)rel(dk) · ln

rmax

rk

.

Note that the magnitude of this loss (or gain) is highest for
documents which are highly ranked; this is as desired and
expected.2

Given this loss function, we implement a simple pool-
ing strategy designed to maximize the learning rate of the
Hedge algorithm. At each iteration, we select the unla-
beled document which would maximize the weighted average
(mixture) loss if it were non-relevant. Since the loss suffered
by a system would be large for a non-relevant document
which is highly ranked, this is exactly the unlabeled docu-
ment with the maximum expectation of relevance as voted
by a weighted linear combination of the systems. The strat-
egy is also appropriate for selecting documents to be output
in a metasearch list: instead of returning just the single un-
labeled document with highest mixture loss if it were non-
relevant, rank all the unlabeled documents by their mixture
loss if non-relevant, and output this list. (In fact, this list is
appended as a suffix to the ordered list of documents that
the user has already judged at this point.)

3. EXPERIMENTAL SETUP AND RESULTS
We tested the performance of the above algorithm using

data from TRECs 3, 5, 6, 7, and 8. For any given TREC
and any given query within that TREC, the experiment
proceeds in rounds. In Round 0, each underlying search
engine is given an equal Hedge weight, and the correspond-
ing ranked lists are combined by ranking documents accord-
ing to highest weighted average mixture loss, as described
above.3 This metasearch list created in the absence of rel-
evance judgments, referred to as Hedge-0, can be directly
compared to benchmark techniques such as CombMNZ and
Condorcet.

In Round 1, the top document from the previous meta-
search list is added to an initially empty pool and judged.4

This judgment can then be used as feedback to reweight
the systems and rerank the remaining unlabeled documents

2We use rk in the denominator of the natural log as it avoids
a divide-by-zero condition for rank 1 documents. Further-
more, for the purposes of the Hedge algorithm, these losses
or gains are mapped to the range [0, 1] by an appropriate
shift and scale.
3One implementation detail is how to assign a loss to a doc-
ument which is not retrieved by a particular system. For
example, if System i retrieves 1,000 documents and there
are rmax total unique documents retrieved by all systems for
this query, then there are rmax−1000 unretrieved documents
for which losses must be assigned for this system. Each of
these documents is given a loss corresponding to the average
of the losses for documents ranked 1,001 to rmax.
4Judgments are obtained from the appropriate TREC qrel
file; documents unjudged by TREC are assumed non-
relevant.

TREC MNZ COND Hedge-0 %MNZ %COND
3 0.423 0.403 0.418 −1.2 +3.7
5 0.294 0.307 0.309 +5.1 +0.6
6 0.341 0.315 0.345 +1.2 +9.5
7 0.320 0.308 0.323 +0.9 +4.9
8 0.350 0.343 0.352 +1.4 +2.6

Table 2: Hedge-0 Method vs. Metasearch Tech-
niques CombMNZ and Condorcet.
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Figure 2: (a)Hedge-m: metasearch performance. (b)Hedge-m vs. Depth-n: percent of total relevant docu-
ments discovered. (c) Hedge-m and Depth-n vs. actual ranks: k-τ .

as described above. Thus, the metasearch list in Round 1
corresponds to the judged document (whether relevant or
not) followed by the remaining unlabeled documents ranked
according to Hedge.

Subsequent rounds proceed in an identical manner: the

top unlabeled document from the previous metasearch list
is judged and added to the pool while the systems are re-
weighted and the remaining unlabeled documents are re-
ranked by Hedge given this feedback. Thus, the pool in
Round j will consist of the j documents judged by the user,
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Figure 3: Depth-1 and equivalent Hedge-m rankings vs. actual ranks.

and the metasearch list in Round j will consist of these j
judged documents (whether relevant or not) in order fol-
lowed by the remaining unlabeled documents as ranked by
Hedge. Note that the metasearch list corresponds to the
user’s interactive experience: it consists of the documents
the user has judged, in order, followed by those documents
the user would see if he were to cease providing feedback.

The qualities of the pool and metasearch list in any round
are evaluated as follows. The metasearch list is evaluated
using standard TREC routines and “ground truth” TREC
relevance judgments (from the appropriate qrel file) to ob-
tain average precision scores. The pools are evaluated in
two ways. First, the fraction of total relevant documents
for this query present in the pool is assessed (recall per-



centage). This is intended to measure the rate at which
relevant documents are discovered by the evolving pools.
Second, the pool is used to evaluate the underlying systems
in the usual TREC manner: documents within the pool are
assigned their appropriate relevance judgments, documents
not in the pool are assumed non-relevant, and this “com-
plete” set of judgments is then used to evaluate the systems
to obtain average precision scores. Finally, these results are
averaged over all 50 TREC queries to obtain mean average
precision scores for the metasearch lists and average recall
percentage scores for the evolving pools. Finally, the mean
average precisions of the underlying systems induced by the
evolving pools are used to rank the systems, and these rank-
ings are compared to the “ground truth” TREC rankings of
the underlying systems via Kendall’s τ .

The Hedge algorithm demonstrated uniformly excellent
performance across all TRECs tested (TRECs 3, 5, 6, 7,
and 8) in all three measures of performance—as an online
metasearch engine, as a pooling strategy for finding large
fractions of relevant documents, and as a mechanism for
rapidly evaluating the relative performance of retrieval sys-
tems.

In what follows, we compare the performance of the evolv-
ing metasearch list to the benchmark techniques CombMNZ
and Condorcet as well as to the performance of the best un-
derlying system in any given TREC. We further compare the
performance of standard TREC-style pools to Hedge pools
of an equivalent total size; i.e., if a TREC-style depth k pool
contains m total judgments, it is compared to a Hedge pool
with m total judgments. These pools are denoted Depth-k
and Hedge-m, respectively.5

As shown in Table 2, the Hedge algorithm begins (in the
absence of feedback) with a baseline MAP score which is
equivalent or slightly better, in almost all instances, to the
performance of the CombMNZ and Condorcet metasearch
methods (the lower dashed lines in Figure 2(a)). As judg-
ments are made and feedback given, the Hedge on-line meta-
search results quickly surpass those of the best underlying
retrieval system (the upper dashed lines). In TRECs 3, 5,
and 7, the performance of the best system is equalled in 10
or fewer judgments. TRECs 6 and 8 require somewhat more
judgments to achieve the performance of the best underly-
ing system. This reflects the fact that in both cases the best
systems are outliers, both in their total performance and
in the documents they retrieve. Hedge must evaluate more
documents to “discover” them.

Figure 2(b) demonstrates the algorithm’s success in find-
ing relevant documents. The vertical axis corresponds to
recall percentage, and the dashed line indicates the perfor-
mance of Depth-k pools for depths 1–10, 15, and 20 as a
function of the number of total judged documents. Hedge
performance far surpasses the recall rates of the depth pool-
ing method when compared at equivalent numbers of to-
tal judged documents. But even more indicative of the
success of the algorithm is a comparison of the number
of judgments required to achieve equivalent recall percent-
ages. For example, examining the TREC 8 curves along

5Note that the size of a depth k pool may vary on a query-
by-query (and TREC-by-TREC) basis. In any given TREC,
the total size of a depth k pool over all 50 queries is calcu-
lated, and for simplicity this pool is compared to a Hedge
pool containing an equal number of total judgments, spread
uniformly over all 50 queries.

the horizontal axis, we see that the Depth-k method re-
quires approximately 104 judgments to match the Hedge-
40 return rate, and the Hedge-69 rate (36 percent) is un-
matched until Depth-8 (199 judgments). After almost 500
judgments, Depth-20 has found only approximately 55% of
relevant documents—a rate achieved by Hedge in less than
150 judgments.

Figure 2(c) compares the the quality of the system rank-
ings produced by Hedge pools against those of Depth-k pools
at equivalent numbers of total judged documents using the
Kendall’s τ measure, where ground truth is the system or-
dering established by TREC. Again, the dashed line indi-
cates the results of system evaluations performed using stan-
dard TREC routines, given Depth-k pools of size 1–10, 15,
and 20. Examination of TREC 8 demonstrates typical per-
formance. At 40 documents, the τ for Hedge is 0.87. This
compares with 0.73 for the Depth-1 equivalent—a substan-
tial improvement. Likewise, Hedge-69 achieves an accuracy
of 0.91 vs. a Depth-2 equivalent accuracy of 0.73.

Next, comparing along the horizontal axis the pool depths
required to achieve equivalent rates of ordering accuracy,
we see that to achieve an accuracy of 0.87 (Hedge-40), the
equivalent Depth-3 pool requires 95 judgments. An accu-
racy of 0.91 (Hedge-69) is not achieved in the depth-pooling
method until approximately 198 judgments (Depth-8).

Finally, a look at the scatter plots in Figure 3 demon-
strates another aspect of the algorithm’s performance in
ranking systems—one which is somewhat obscured by the
traditional Kendall’s τ measure. Each pair of plots shows
Depth-1 and equivalent Hedge-m predicted ranks vs. actual
TREC rankings. Note in these plots that the rankings pro-
ceed from best systems in the lower left corner to worst in
the upper right. TREC 3 plots are somewhat anomalous
due to the relatively low number of systems in the confer-
ence, but later TRECs demonstrate the common tendency
toward a difficulty in establishing proper rankings for the
best systems using few relevance judgments.

While poor systems tend to be easily identified due to
their lack of commonality with any other systems, the better
systems tend to exhibit a similar divergence from the fold.
Thus, while the rankings of poorer systems may be estab-
lished using standard techniques with depth pools as small
as Depth-1, the better systems (and for many purposes, the
systems of most interest) tend to be the more difficult to
rank correctly. As the Kendall’s τ measure of accuracy in
object ordering treats objects at all rank levels equally, much
of the qualitative superiority of algorithms which perform
well in classifying the best systems is obscured by a com-
mon tendency of most techniques to perform well on the
poorer systems. Examination of tightened patterns of the
Hedge plots in the region of the best systems suggests that
performance of the algorithm in evaluating system orderings
is somewhat better than the excellent performance demon-
strated in Figure 2(c).

4. CONCLUSIONS
We have shown that the Hedge algorithm for on-line learn-

ing can be adapted to simultaneously solve the problems of
metasearch, pooling, and system evaluation, in a manner
which is both efficient and highly effective. In the absence
of relevance judgments, Hedge produces metasearch lists
whose quality equals or exceeds that of benchmark tech-
niques such as CombMNZ and Condorcet. While in the



presence of relevance judgments, the performance of Hedge
increases rapidly and dramatically.

When applied to the problems of pooling and system eval-
uation, Hedge identifies relevant documents very quickly,
and these documents form an excellent and efficient pool for
evaluating the quality of retrieval systems.

We note two possible extensions to this work. First, in all
our experiments the tunable parameter β was set to 0.1. We
were guided by results of Freund and Schapire in choosing
this value, but we have not attempted to optimize it for our
purposes, nor have we investigated its affect on our results.
Our results may very well improve with a better choice of
β. Second, the pools need not be generated one document
at a time. At any round of the algorithm, one could output
any prefix of the metasearch list as candidate documents
for inclusion in the pool. We suspect that performance will
degrade as larger prefixes are added to the pool with batch
feedback, and this remains work to be explored.
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