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Abstract

We consider the problem of determining an unknown
quantity x by asking “yes-no” questions, where some of
the answers may be erroneous. In particular, we focus
on a linearly bounded model of errors where for some
known constant r, 0 < r < 1

2 , each initial sequence of
i answers is guaranteed to have no more than ri errors.
This model allows the errors to occur in a somewhat ma-
licious way: for example, we must deal with a scenario
where all errors occur in the last few answers. The prob-
lem is examined under the following variations: kinds
of questions allowed (comparison or membership), na-
ture of the domain of the searched quantity (bounded
[x ∈ {1, . . . , n}, for some fixed n] or unbounded [x is
any positive integer]). In the bounded domain, the only
previous bound on the number of questions which works
for the entire range 0 < r < 1

2 (with either compari-

son or membership questions) is O(nlog2
1

1−2r ). We im-
prove this significantly by showing that O(log n) mem-
bership questions are enough. The upper bound on
number of comparison questions needed is improved to

O(nlog2
1

1−r ), which is o(n) even when r gets arbitrar-
ily close to 1

2 . In the unbounded domain, where now
n is the number being searched, we show that O(log n)

membership questions or O([n log2 n]log2
1

1−r ) compari-
son questions are enough. The problem is solved using
the framework of chip games.
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1 Introduction

Coping with erroneous information during computation
has been studied in various contexts: error-correctiong
codes [Ber68], selection and sorting [FPRU90, RGL87],
evaluating boolean functions [KY90], learning [AL86,
KL88, GKS90], and searching [RMK+80, Pel87, Pel88,
Pel89a, Pel89b, RL84, Fra90], to name a few. In this
paper we further examine this problem in the context
of searching.

We consider the problem of determining an unknown
quantity x by asking “yes-no” questions where some of
the answers may be erroneous. This problem can be
further qualified by:

• Kinds of questions that may be asked.

– Comparison questions: “Is x less than y?”

– Membership questions: “Is x in the set
S?”, where S is some subset of the domain.

• Kinds of errors possible.

– Constant number: It is known a priori that
there will be at most some k errors, where k

is some fixed constant.

– Probabilistic: The answer to each question
is erroneous independently with some proba-
bility p, 0 < p < 1

2 .

– Linearly Bounded: For some constant r,
0 < r < 1

2 , any initial sequence of i answers
has at most ri errors. This model allows the
answers to be erroneous in a malicious way.
Unlikely scenarios in the probabilistic model
(such as a long sequence of correct answers fol-
lowed by a short sequence of false ones) must
be dealt with here.

• Domain of searched quantity.

– Bounded: x ∈ {1, . . . , n}, for some known n.

– Unbounded: x may be any positive integer.
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Figure 1: Bounds for searching in the bounded domain
with linearly bounded errors. Here n is a bound on the
number being sought.
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Figure 2: Bounds for searching in the unbounded do-
main with linearly bounded errors. Here n is the num-
ber being sought.

Work on this problem started with Rivest, et al.
[RMK+80], who showed that in the bounded domain
with comparison questions and a constant number of er-
rors, x can be determined exactly in O(lg n) questions1.
Naturally, this bound also applies to searching with
membership questions, since comparison questions are
a restricted version of membership questions.

In the probabilistic error model, Pelc [Pel89b] has
shown that x can be determined correctly (within some
given confidence of correctness) in O(lg n) questions if
p < 1

3 , and in O(lg2 n) questions if 1
3 ≤ p < 1

2 . These
bounds apply to searching in both the bounded and un-
bounded domains.2

Pelc [Pel89b] has also examined the linearly bounded
error model with comparison questions and shown that
x can be determined exactly in O(lg n) questions in
both the bounded and unbounded domains. However,
these bounds only work for r < 1

3 . The best known
bound with comparison questions in the bounded do-

main for 1
3 ≤ r < 1

2 was O(nlg 1
1−2r ). Note that the

degree of the polynomial in this bound becomes very
large as r approaches 1

2 . This bound comes from a brute
force binary search, where each question of the search
is asked enough times so that the correct answer can
be determined by taking majority. A simple argument
[SW90, Fra90] shows that the search problem cannot
be solved (with either membership or comparison ques-
tions) if r ≥ 1

2 .

In this paper, we focus on the linearly bounded er-
ror model, where r may be any constant between 0
and 1

2 . We show that with membership questions,
x can be determined exactly in O(lg n) questions in

1lg n will denote log2 n throughout this paper.
2In the unbounded domain, n refers to the number being

sought.
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Figure 3: Chip Game

both the bounded and unbounded domains. These
bounds are tight since searching has a trivial Ω(lg n)
lower bound. With comparison questions, we have im-

proved the bounds to O(nlg 1
1−r ) = o(n) questions for

the bounded domain and O([n lg2
n]lg

1
1−r ) = o(n) in

the unbounded domain. A comparison of this work with
best known results so far can be found in figures 1 and 2.
Our results come from looking at the search problem in
the framework of chip games. These chip games have
also proved useful in modeling a hypergraph 2-coloring
problem [AD90]. In general, chip games model compu-
tational problems in such a way that winning strategies
for the players translate into bounds on the critical re-
source. This critical resource is represented by some
aspect of the chip game, such as number of chips used
or number of moves in the game.

Spencer and Winkler [SW90] have also examined this
problem. They have arrived independently at one of the
theorems in this paper using different proof techniques.

We begin in section 2 by defining the searching prob-
lem with membership questions and the framework
of chip games in which we solve it. In sections 3
and 4 we show an O(lg n) upper bound in both the
bounded and unbounded domains. Section 5 exam-
ines the search problem with comparison questions and
proves the aforementioned bounds. Section 6 concludes
the paper.

2 Searching with Membership

Questions and the Chip Game

Formulation

Let x ∈ {1, . . . , n} be an unknown number. We wish
to determine x by asking questions of the type “Is x in
S?”, for some S ⊆ {1, . . . , n}. Some of the answers we
receive may be erroneous. However, we are guaranteed
that for some known constant r, 0 < r < 1

2 , any initial
sequence of i answers contains at most ri errors. How
many questions are needed to determine x exactly?

This problem can be reformulated as a Chip Game
between two players, the Pusher and the Chooser. The
Chip Game starts with a unidimensional board marked
in levels from 0 on upwards (see figure 3). We start with
n chips on level 0, each chip representing one number in
{1, . . . , n}. At each step, the Chooser picks some chips
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from the board. These chips correspond to the subset
S of {1, . . . , n} that we want to ask about. The Pusher
now moves either the set of chips picked by the Chooser
to the next level, indicating a “no” answer (i.e., x is not

in S), or it does the same for the set of chips not picked
by the Chooser, indicating a “yes” answer. Thus, the
presence of a chip representing the number y at level
i says that if y is the unknown number x, then there
have been i lies about y. After some k steps, if a chip is
at any level greater than brkc, then it may be thrown
away since the corresponding number can’t possibly be
the answer. To win, the Chooser must eliminate all but
one chip from the board.

To clarify which chips may be thrown away, we will
maintain a boundary line on the board. After k steps,
the boundary line will be at level brkc. Thus the
Chooser may dispose of the chips at levels to the right of
the boundary line at any time. Note that the boundary
line moves one level to the right after approximately 1

r

steps. The number of questions that we need to ask to
determine x exactly is the same as the number of steps
needed for the Chooser to win the above Chip Game.

3 O(lg n) questions are enough

We will show a winning strategy for the Chooser which
requires O(lg n) steps. The strategy works in three
stages. In stage 1, the Chooser eliminates all but O(lg n)
chips from the board in O(lg n) steps. In stage 2, the
Chooser eliminates all but O(1) chips from the board
in an additional O(lg n) steps. In stage 3, the Chooser
removes all but one chip from the board in the final
O(lg n) steps.

3.1 Stage 1

The strategy employed during stage 1 is simple. We
describe it inductively on the number of steps as follows:
let hm(i) be the height of the stack of chips at level i

after m steps. In the (m + 1)-st step, the Chooser will

pick
⌊

hm(i)
2

⌋

from each stack of chips at all levels i. He

will continue this way for c1 lg n steps (where c1 is a
constant that will be determined in the analysis).

Before we can analyze this strategy, we will need a
few definitions. Let normalized binomial coefficients

bm(i) =
n

2m

(

m

i

)

and let
∆m(i) = hm(i) − bm(i).

The normalized binomial coefficient bm(i) will approx-
imate hm(i), the height of the stack at level i after m

steps, while ∆m(i) will account for any discrepancy.
In order to analyze the given strategy, we need to

be able to determine the number of chips which are to

left of the boundary line after some number of steps
in our strategy. After m steps, this is equivalent to
∑

i≤brmc hm(i) (since r is the rate at which the bound-

ary line moves). This sum is difficult to determine ex-
actly. Instead, we will derive an upper bound for it by
using the fact that

∑

i≤brmc hm(i) =
∑

i≤brmc bm(i) +
∑

i≤brmc ∆m(i). In particular, we will show an upper

bound for
∑

i≤brmc ∆m(i).

For the strategy given above, we will now bound the
discrepancy between the actual number of chips in any
initial set of j stacks and the number of chips predicted
by the normalized binomial coefficients. We will need
three lemmas. The first two lemmas will handle bound-
ary conditions, while the third will be required in the
proof of the main theorem.

Lemma 1 (∀m ≥ 0), ∆m(0) ≤ 1.

Proof: The proof is by induction on m.

• base case: For m = 0, h0(0) = n = b0(0) =⇒
∆0(0) = 0.

• inductive step: Assume ∆m−1(0) ≤ 1. We now
have the following:

hm(0) ≤

⌈

hm−1(0)

2

⌉

≤
hm−1(0)

2
+

1

2

=
bm−1(0)

2
+

∆m−1(0)

2
+

1

2

= bm(0) +
∆m−1(0)

2
+

1

2
≤ bm(0) + 1

Thus, ∆m(0) = hm(0) − bm(0) ≤ 1.

Lemma 2 (∀m ≥ 0),

m
∑

i=0

∆m(i) = 0.

Proof:

m
∑

i=0

hm(i) = n =

m
∑

i=0

bm(i) =⇒

m
∑

i=0

∆m(i) = 0

Lemma 3

j−1
∑

i=0

bm−1(i) +
bm−1(j)

2
=

j
∑

i=0

bm(i).

Proof: We first note the fact that
(

a
b−1

)

+
(

a
b

)

=
(

a+1
b

)

.
The proof proceeds as follows:
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Figure 4: Chips before and after step m

j−1
∑

i=0

bm−1(i) +
bm−1(j)

2

=

j−1
∑

i=0

n

2m−1

(

m − 1

i

)

+
n

2m

(

m − 1

j

)

=
n

2m

[

j−1
∑

i=0

2 ·

(

m − 1

i

)

+

(

m − 1

j

)

]

=
n

2m

[(

m − 1

0

)

+

[(

m − 1

0

)

+

(

m − 1

1

)]

+ · · ·

+

[(

m − 1

j − 1

)

+

(

m − 1

j

)]]

=
n

2m

[(

m

0

)

+

(

m

1

)

+ · · · +

(

m

j

)]

=
n

2m

j
∑

i=0

(

m

i

)

=

j
∑

i=0

bm(i)

Theorem 1 (∀m ≥ 0) (∀j ≤ m),

j
∑

i=0

∆m(i) ≤ j + 1.

Proof: The proof of the theorem is by induction on
m. The base case of m = 0 is trivial. In the induc-
tive step, we show that if the theorem holds for m − 1,
then the theorem holds for m. The boundary conditions
j = 0 and j = m are handled by Lemmas 1 and 2. We
concentrate on the case 0 < j < m below. Consider the
following (see figure 4):

j
∑

i=0

hm(i)

≤

j−1
∑

i=0

hm−1(i) +

⌈

hm−1(j)

2

⌉

≤

j−1
∑

i=0

hm−1(i) +
hm−1(j)

2
+

1

2

=

j−1
∑

i=0

bm−1(i) +
bm−1(j)

2
+

j−1
∑

i=0

∆m−1(i) +
∆m−1(j)

2
+

1

2

=

j
∑

i=0

bm(i) +

j−1
∑

i=0

∆m−1(i) +
∆m−1(j)

2
+

1

2

We will now bound the quantity
∑j−1

i=0 ∆m−1(i) +
∆m−1(j)

2 + 1
2 . There are two cases, depending upon

whether ∆m−1(j) ≤ 1 or ∆m−1(j) > 1. If ∆m−1(j) ≤ 1,
we have the following:

j−1
∑

i=0

∆m−1(i) +
∆m−1(j)

2
+

1

2
≤

j−1
∑

i=0

∆m−1(i) + 1

≤ j + 1

If ∆m−1(j) > 1, then ∆m−1(j)
2 + 1

2 < ∆m−1(j). We thus
obtain the following:

j−1
∑

i=0

∆m−1(i) +
∆m−1(j)

2
+

1

2
<

j
∑

i=0

∆m−1(i)

≤ j + 1

We therefore have

j
∑

i=0

hm(i)

≤

j
∑

i=0

bm(i) +

j−1
∑

i=0

∆m−1(i) +
∆m−1(j)

2
+

1

2

≤

j
∑

i=0

bm(i) + j + 1

which implies that

j
∑

i=0

∆m(i) ≤ j + 1.

Now we will bound
∑

i≤brmc bm(i). We will find a

constant c1 such that for m = c1 lg n,
∑brmc

i=0 bm(i) is
a constant. If we can do this, then it follows from the

theorem above that
∑brmc

i=0 hm(i), the number of chips
remaining to the left of the boundary line, is O(lg n).
The reasoning goes thus:

brmc
∑

i=0

hm(i) =

brmc
∑

i=0

bm(i) +

brmc
∑

i=0

∆m(i)

≤

brmc
∑

i=0

bm(i) + brmc + 1

= c2 + br · c1 lg nc

≤ c3 lg n

for appropriate constants c2 and c3.
To determine c1, note that:

brmc
∑

i=0

bm(i) =
n

2m

brmc
∑

i=0

(

m

i

)

≤
n

2m
2mH(r)

= n2m(H(r)−1)
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where H(r) is the binary entropy function3.

This last quantity is O(1) when m = lg n

1−H(r) . Thus if

we pick c1 = 1
1−H(r) , then after m = c1 lg n steps, there

will be at most c3 lg n chips remaining on the board to
the left of the boundary line.

The strategy in this stage can also be applied to the
game where the boundary line starts out at level l =
O(lg n) instead of at l = 0. We omit the proof in this
extended abstract, but it can be shown that stage 1 still
ends in O(lg n) steps with at most O(lg n) chips to the
left of the boundary line. This fact will be useful when
we examine the unbounded domain.

3.2 Stage 2

At the end of stage 1 we are left with some c2 lg n chips
on the board with the boundary line at level c1 lg n (for
appropriate constants c1 and c2). After stage 2, the
Chooser will leave the board with O(1) chips to the left
of the boundary line after O(lg n) additional steps.

Before starting stage 2, we alter the board by moving
everything on the board (chips and boundary line) to
the right by c2 lg n, so that the boundary line is now at
level (c1 + c2) lg n = c lg n. While this new board corre-
sponds to a different game than the one we have played
until now (i.e. to a game where many more questions
and lies have occured), they are equivalent in the sense
that the Chooser can win from the first board within k

extra moves if and only if he can win from the second
board within k extra moves.

Now move the chips to the left in such a way such
that there is exactly one chip on each of the first c2 lg n

levels. Note that the Chooser does not help himself by
doing this, since moving chips to the left is in effect
ignoring lies that he knows about.

At each step in this stage, the Chooser will first order
the chips from left to right, ordering chips on the same
level arbitrarily. Then he will pick every other chip ac-
cording to this order; that is, he will pick the 1st, 3rd,
5th, . . . chips. We shall say that the board is in a nice

state if no level has more than 2 chips.

Lemma 4 Throughout stage 2, the board is in a nice
state.

Proof: We show this by induction on the number of
steps in stage 2. Certainly at the beginning of stage 2,
the board is in a nice state since each level is occupied
by at most one chip. Now suppose that the board is in
a nice state after i steps. Consider any level j after the
(i+1)-st step. Since both levels j−1 and j had at most
2 chips before the (i + 1)-st step, after this step level
j retains at most one chip and gains at most one chip,
thus ending with at most 2 chips.

3H(r) = −r lg r − (1 − r) lg(1 − r)

Now we will show that after O(lg n) steps, there will
be at most 2k chips remaining to the left of the bound-
ary line. Here k is a constant (depending only on r)
which we will determine later. If there are fewer than
2k chips to the left of boundary line, stage 2 terminates.
Let the weight of a chip be the level it is on, and let the
weight of the board be the weight of its 2k leftmost
chips.

Lemma 5 After each step in stage 2, the weight of the

board increases by at least k − 1.

Proof: Of the 2k leftmost chips after step i, at least
the leftmost (2k− 1) chips remain in the set of leftmost
2k chips after step i + 1. (The 2k-th chip may be on
the same level as the (2k + 1)-st. In this case, if the
2k-th chip moves in step i + 1, then the (2k +1)-st chip
becomes the new 2k-th chip.) At least

⌊

2k−1
2

⌋

= k − 1
of these chips move to the right one level during step
i+1, thus increasing the weight of the board by at least
k − 1.

Let S be the number of steps taken during this stage
and W be the weight of the board at the end of these
S steps. Since the weight of the board goes up by at
least k − 1 at each step, and since the initial weight of
the board was non-negative, W ≥ (k − 1)S. At the end
of the S steps, the boundary line is at c lg n + brSc.
So W ≤ 2k(c lg n + rS). Putting these two inequalities
together, we obtain:

2k(c lg n + rS) ≥ S(k − 1)
⇒ 2kc lg n ≥ S(k − 1 − 2kr)
⇒ 2kc

k−1−2kr
lg n ≥ S

If we let k = 2
1−2r

, then S ≤ 4c
1−2r

lg n = O(lg n).
Thus after O(lg n) steps, stage 2 ends leaving at most
2k chips to the left of the boundary line.

3.3 Stage 3

At the beginning of stage 3, the Chooser will move all of
the remaining chips to level 0. Again, this is legal, since
he is essentially choosing to ignore some information he
has gathered.

The Chooser plays this stage in phases. Each phase
corresponds to getting the correct answer to a single
question. This is done by asking the question repeatedly
until the majority of the answers given to this question
must be true. In the chip game, at the beginning of
each phase there will be a single stack of chips some-
where on the board. The Chooser will pick half of these
chips. The selected half-stack corresponds to the ques-
tion whose correct answer he wishes to determine. He
continues picking the same half-stack throughout this
phase until either it or the other half-stack moves be-
yond the boundary line. Then he begins the next phase
with the remaining half stack. This will continue until
there is only one chip left on the board to the left of the
boundary line. Note that if there are m chips on the

5
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Figure 5: Chips before and after phase j.

board initially, dlg me questions need to be answered
correctly.

In what follows, we will show that if we start with d

questions we wish to have answered correctly and the
boundary line at a distance l0 > 0 away from the single
stack of chips on the board, then the Chooser can ef-
fect a win (i.e. remove all but one chip from the board)
within O(l0(

1
1−r

)d) steps. Since stage 3 begins with
some 2k chips a distance c lg n away from the boundary
line (for appropriate constants c and k), the Chooser
can win the game in O[(c lg n) · ( 1

1−r
)dlg 2ke] = O(lg n)

steps in stage 3. Since each of the three stages takes
O(lg n) steps, we will have shown that:

Theorem 2 The problem of searching in the lin-

early bounded error model in the bounded domain

{1, . . . , n} with membership questions and error con-

stant r, 0 < r < 1
2 , can be solved with O(lg n) questions.

Now consider the board before and after some
phase j. At the beginning of phase j, there is a stack
of size m at some level some distance lj away from the
boundary line (see figure 5). At the end of phase j, one
half-stack has moved to some distance i from its original
position and the other has moved to the boundary line.
The boundary line is now at some distance lj+1 from
the first half-stack.

Let T (d, l) be the number of steps the Chooser takes
to answer d questions correctly when a single stack of
chips on the board is a distance l away from the bound-
ary line. We will make a couple of assumptions which
simplify the analysis, without affecting our bounds for
T (d, l). First, we will assume that a stack may be dis-
carded as soon as it reaches the line. Second, we will
assume that the number of steps during phase j is ex-
actly equal to the number of levels the boundary line
moves divided by r. The number of actual steps may
be at most

⌊

1
r

⌋

more than this quantity. Now:

T (d, lj) ≤ T (d − 1, lj+1) + (steps during phase j)

Lemma 6 Total number of steps during phase j is
2lj−lj+1

1−2r
.

Proof: The total number of steps during phase j is
the same as the total number of levels the two half-
stacks move. One half-stack moves i levels and the
other moves i + lj+1 levels. The number of steps is

also (approximately) equal to 1
r
(# levels the boundary

line moves). Equating these two quantities, we obtain

i + i + lj+1 =
i + lj+1 − lj

r
.

Solving the above equation for i, we get i =
lj−(1−r)lj+1

1−2r
.

Substituting this value for i in the left hand side of the
equation above, we have that the number of steps in
phase j is

2lj−lj+1

1−2r
.

Now we are ready to show that:

Theorem 3 T (d, l0) =

{

O(l0(
1

1−r
)d) if l0 > 0

O(( 1
1−r

)d) if l0 = 0

Proof: We will only show the case for l0 > 0. There
are some technicalities involved in showing the l0 = 0
case which we will not include in this extended abstract.

We first show that ∀j, lj+1 ≤
lj

1−r
. Solving the equa-

tion:

i + i + lj+1 =
i + lj+1 − lj

r
.

for lj+1, we get:

lj+1 =
lj + i(2r − 1)

1 − r

≤
lj

1 − r
, since 2r − 1 < 0 and i ≥ 0

We use this to find bounds on T (d, l0):

T (d, l0) ≤ T (d − 1, l1) +
2l0 − l1

1 − 2r

=
2l0 − l1

1 − 2r
+

2l1 − l2

1 − 2r
+ · · · +

2ld−1 − ld

1 − 2r

≤
1

1 − 2r
[2l0 + l1 + l2 + · · · + ld−1]

≤
1

1 − 2r

[

2l0 +

(

1

1 − r

)

l0 +

(

1

1 − r

)2

l0

+ · · · +

(

1

1 − r

)d−1

l0

]

=
1

1 − 2r

[

l0 +
( 1
1−r

)d − 1
1

1−r
− 1

l0

]

= O(l0(
1

1−r
)d)

4 Unbounded Search

Now consider the problem of searching for a positive
integer in the presence of errors as before, but where no
upper bound on its size is known. Let this integer be
n. Using strategies developed in this paper already, we
will show that n can be found with O(lg n) questions.

The search will occur in two stages. First, we will
determine a bound for the unknown number n. Second,
given a bound on n, we will employ the techniques for
bounded searching given above.
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4.1 Stage 1

Consider the problem of bounding the unknown number
n if all of the answers we receive are known to be correct.
We could ask questions of the form “Is x < 22i

?”. We
would begin by asking “Is x < 220

?”. If the answer were
“no”, we would follow with “Is x < 221

?”, and so on.

Since n ≤ 22dlg lg ne

, we will obtain our first “yes” answer
(and thus have a bound on n) after at most dlg lg ne
questions. We further note that our bound is not too
large:

22dlg lg ne

< 22lg lg n+1

= 22 lg n = n2

Employing the techniques and results of section 3.3,
we can use the above strategy in the presence of errors.
We need the correct answers to dlg lg ne questions. By
Theorem 3, we can obtain these answers in

O(( 1
1−r

)dlg lg ne) = O((lg n)lg
1

1−r ) = o(lg n)

questions.

4.2 Stage 2

Having found a bound for n, we have reduced our un-
bounded search problem to a bounded search problem.
We can now apply our bounded search strategy of sec-
tion 3. It is important to note that since we have al-
ready asked o(lg n) questions, the boundary line will
have moved to o(lg n). But recall that stage 1 of our
bounded search algorithm can tolerate starting out with
the boundary line at O(lg n). Thus, in this stage, the
Chooser can start with all relevant chips at level 0 and
boundary line at level o(lg n) and apply the bounded
search strategy of section 3. Since our bound on the
unknown number n is at most n2, we will finish this
stage after O(lg(n2)) = O(lg n) questions. We can now
claim:

Theorem 4 The problem of searching in the linearly

bounded error model in the unbounded domain with

membership questions and error constant r, 0 < r < 1
2

can be solved with O(lg n) questions, where the number

being sought is n.

5 Searching with Comparison

Questions

In the bounded search problem, if the questions that
the first player can ask are restricted to be comparison
questions (“Is x less than y?”), then the Chooser can no
longer pick arbitrary sets of chips as he does in stages 1
and 2 of the bounded case given in section 3.

However, the strategy in stage 3 of the bounded case
lends itself well to comparison questions. Starting with
n chips on the board at level 0, we will simply ask ques-
tions corresponding to a simple binary search. This

search will require the correct answers to dlg ne ques-
tions. By Theorem 3, we can obtain these answers in

O(( 1
1−r

)dlg ne) = O(nlg 1
1−r ) = o(n)

questions.

Theorem 5 The problem of searching in the lin-

early bounded error model in the bounded domain

{1, . . . , n} with comparison questions and error constant

r, 0 ≤ r < 1
2 , can be solved with O(nlg 1

1−r ) = o(n) ques-

tions.

We can employ techniques similar to those used above
to solve the unbounded search problem using compar-
ison questions. The first stage, in which a bound for
the unknown number n is sought, will be identical to
stage 1 of the unbounded search algorithm for mem-
bership questions given in section 4.1. We will thus
bound the unknown number n by at most n2 using

O((lg n)lg
1

1−r ) questions. Note that the boundary line

will now be at O((lg n)lg
1

1−r ).

Having bounded the unknown number n by at most
n2, we could simply use Theorem 3 directly. By per-
forming a simple binary search, we will need the correct
answers to at most

⌈

lg(n2)
⌉

questions. Using Theo-
rem 3, we obtain an overall question bound of

O((lg n)lg
1

1−r · ( 1
1−r

)dlg(n2)e) = O([n2 lg n]lg
1

1−r ).

This can be improved, however, by adding an extra
stage. After bounding the unknown number n by at
most n2, partition this bounded interval into exponen-
tially growing subintervals Ij = [2j , 2j+1 − 1] ∀j ≥ 0.
Note that there will be at most

⌈

lg(n2)
⌉

such subin-
tervals. To determine the correct subinterval, we will
perform a simple binary search on these subintervals re-
quiring the correct answers to

⌈

lg
⌈

lg(n2)
⌉⌉

questions.
By Theorem 3, we will need

O((lg n)lg
1

1−r · ( 1
1−r

)dlgdlg(n2)ee) = O([lg2 n]lg
1

1−r )

additional questions. Since our subintervals grew expo-
nentially, the subinterval containing the unknown num-
ber n will be of size at most n. We can thus perform
a final binary search on this subinterval, and employ
Theorem 3 to obtain an overall question bound of

O([lg2 n]lg
1

1−r · ( 1
1−r

)dlg ne) = O([n lg2 n]lg
1

1−r ) = o(n).

Theorem 6 The problem of searching in the linearly

bounded error model in the unbounded domain with com-

parison questions and error constant r, 0 < r < 1
2 can

be solved with O([n lg2 n]lg
1

1−r ) = o(n) questions, where

the number being sought is n.
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6 Conclusion

We have looked at the problem of searching in the
presence of linearly bounded errors. We have shown
that if membership questions are allowed, then O(lg n)
questions are enough to determine x exactly in both
bounded and unbounded domain. When comparison

questions are allowed, we show that O(nlg 1
1−r ) and

O([n lg2 n]lg
1

1−r ) questions are enough in the bounded
and unbounded domains, respectively.

The upper bounds with membership questions are
tight, since searching has a trivial Ω(lg n) lower bound.
The bounds with comparison questions can probably be
improved.
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