Metasearch

ISU535 Prof. Aslam

The Metasearch Problem

Search Engines

- Provide a ranked list of documents.
- May provide relevance scores.
- May have performance information.

Search Engine: Alta Vista

Search Engine: Ultraseek

Search Engine: inq102 TREC3

```
Queryid (Num):
                       50
Total number of documents over all queries
    Retrieved:
                    50000
   Relevant:
                     9805
                     7305
   Rel ret:
Interpolated Recall - Precision Averages:
    at 0.00
                   0.8992
   at. 0.10
                   0.7514
   at 0.20
                   0.6584
   at 0.30
                   0.5724
   at 0.40
                   0.4982
   at 0.50
                   0.4272
   at 0.60
                   0.3521
   at 0.70
                   0.2915
   at. 0.80
                   0.2173
   at 0.90
                   0.1336
   at 1.00
                   0.0115
Average precision (non-interpolated)
for all rel docs (averaged over queries)
                   0.4226
Precision:
 At.
      5 docs:
                   0.7440
     10 docs:
                   0.7220
 At 15 docs:
                 0.6867
 At 20 docs:
                 0.6740
     30 docs:
                 0.6267
 At 100 docs:
                 0.4902
 At. 200 docs:
                 0.3848
 At 500 docs:
                 0.2401
 At 1000 docs:
                   0.1461
R-Precision (precision after R
(= num rel for a query) docs retrieved):
    Exact:
                   0.4524
```

External Metasearch

Internal Metasearch

Metasearch Engines

- Query multiple search engines.
- May or may not combine results.

Metasearch: Dogpile

Metasearch: Metacrawler

Metasearch: Profusion

Outline

- ✓ Introduce problem
- Characterize problem
- Survey techniques
- Upper bounds for metasearch

Characterizing Metasearch

- Three axes:
 - common vs. disjoint database,
 - relevance scores vs. ranks,
 - training data vs. no training data.

Axis 1: DB Overlap

- High overlap
 - data fusion.
- Low overlap
 - collection fusion (distributed retrieval).
- Very different techniques for each...
- Today: data fusion.

Classes of Metasearch Problems

Outline

- ✓ Introduce problem
- Characterize problem
- Survey techniques
- Upper bounds for metasearch

Classes of Metasearch Problems

CombSUM [Fox, Shaw, Lee, et al.]

- Normalize scores: [0,1].
- For each doc:
 - sum relevance scores given to it by each system (use 0 if unretrieved).
- Rank documents by score.
- Variants: MIN, MAX, MED, ANZ, MNZ

CombMNZ [Fox, Shaw, Lee, et al.]

- Normalize scores: [0,1].
- For each doc:
 - sum relevance scores given to it by each system (use 0 if unretrieved), and
 - multiply by number of systems that retrieved it (MNZ).
- Rank documents by score.

How well do they perform?

- Need performance metric.
- Need benchmark data.

Metric: Average Precision

Benchmark Data: TREC

- Annual Text Retrieval Conference.
- Millions of documents (AP, NYT, etc.)
- 50 queries.
- Dozens of retrieval engines.
- Output lists available.
- Relevance judgments available.

Data Sets

Data set	Number systems	Number queries	Number of docs
TREC3	40	50	1000
TREC5	61	50	1000
Vogt	10	10	1000
TREC9	105	50	1000

CombX on TREC5 Data

CombX on TREC5 Data, II

Experiments

- Randomly choose n input systems.
- For each query:
 - combine, trim, calculate avg precision.
- Calculate mean avg precision.
- Note best input system.
- Repeat (statistical significance).

CombMNZ on TREC3

CombMNZ on TREC5

CombMNZ on Vogt

TREC 5 subset: avg precision over between 1 and 200 random sets of systems.

CombMNZ on TREC9

Metasearch via Voting

[Aslam, Montague]

- Analog to election strategies.
 - Requires only rank information.
 - No training required.

Classes of Metasearch Problems

Election Strategies

- Plurality vote.
- Approval vote.
- Run-off.
- Preferential rankings:
 - instant run-off,
 - Borda count (positional),
 - Condorcet method (head-to-head).

Metasearch Analogy

- Documents are candidates.
- Systems are voters expressing preferential rankings among candidates.

Borda Count

- Consider an n candidate election.
- One method for choosing winner is the Borda count. [Borda, Saari]
 - For each voter i
 - Assign n points to top candidate.
 - Assign n-1 points to next candidate.
 - ...
 - Rank candidates according to point sum.

Election 2000: Florida

NATIONAL > FLORIDA

VOTER RESULTS IN FLORIDA | EXIT POLLS | HOUSE AND SENATE

Last updated: 12:32 a.m. EST, 12/14 | refresh this page | print this page

FLORIDA VOTE COUNT

	Nov. 7	Recount	Certified	12/8 Ruling		
Bush 🗹	1,725	930	537	<u>193</u>		
Source: Associated Press						

25 electoral votes at stake

PRESIDENT DEC. 13

100% of precincts

	Candidates		Votes	Vote %	States Won	EV	
	R	Bush 🗹	2,909,176	49 %	29	0	
}	D	<u>Gore</u>	2,907,451	49 %	20	0	
	G	Nader	96,837	2 %	0	0	
	1	Browne	18,856	0 %	0	0	
	RF	Buchanan	17,356	0 %	0	0	
	1	Phillips	4,280	0 %	0	0	
	1	Hagelin	2,287	0 %	0	0	
winner declared					exit polls		

Borda Count: Election 2000

- Ideological order: Nader, Gore, Bush.
- Ideological voting:
 - Bush voter: Bush, Gore, Nader.
 - Nader voter: Nader, Gore, Bush.
 - Gore voter:
 - Gore, Bush, Nader.
 Gore, Nader, Bush.

Election 2000: Ideological Florida Voting

	Gore	Bush	Nader
50/50	14,734,379	13,185,542	7,560,864
100/0	14,734,379	14,639,267	6,107,138

Gore Wins

Borda Count: Election 2000

- Ideological order: Nader, Gore, Bush.
- Manipulative voting:
 - Bush voter: Bush, Nader, Gore.
 - Gore voter: Gore, Nader, Bush.
 - Nader voter: Nader, Gore, Bush.

Election 2000: Manipulative Florida Voting

Gore	Bush	Nader	
11,825,203	11,731,816	11,923,765	

Nader Wins

Metasearch via Borda Counts

- Metasearch analogy:
 - Documents are candidates.
 - Systems are voters providing preferential rankings.
- Issues:
 - Systems may rank different document sets.
 - How to deal with unranked documents?

Borda on TREC5 Data, I

Borda on TREC5 Data, II

Borda on TREC5 Data, III

Condorcet Voting

- Each ballot ranks all candidates.
- Simulate head-to-head run-off between each pair of candidates.
- Condorcet winner: candidate that beats all other candidates, head-to-head.

Election 2000: Florida

NATIONAL > FLORIDA

VOTER RESULTS IN FLORIDA | EXIT POLLS | HOUSE AND SENATE

Last updated: 12:32 a.m. EST, 12/14 | refresh this page | print this page

FLORIDA VOTE COUNT

	Nov. 7	Recount	Certified	12/8 Ruling		
Bush 🗹	1,725	930	537	<u>193</u>		
Source: Associated Press						

25 electoral votes at stake

PRESIDENT DEC. 13

100% of precincts

	Candidates		Votes	Vote %	States Won	EV	
	R	Bush 🗹	2,909,176	49 %	29	0	
}	D	<u>Gore</u>	2,907,451	49 %	20	0	
	G	Nader	96,837	2 %	0	0	
	1	Browne	18,856	0 %	0	0	
	RF	Buchanan	17,356	0 %	0	0	
	1	Phillips	4,280	0 %	0	0	
	1	Hagelin	2,287	0 %	0	0	
winner declared					exit polls		

Condorcet Paradox

- Voter 1: A, B, C
- Voter 2: B, C, A
- Voter 3: C, A, B

- Cyclic preferences: cycle in Condorcet graph.
- Condorcet consistent path: Hamiltonian.
- For metasearch: any CC path will do.

Condorcet Consistent Path

Hamiltonian Path Proof

Base Case:

Inductive Step:

Condorcet-fuse: Sorting

- Insertion-sort suggested by proof.
- Quicksort too; $O(n \log n)$ comparisons.
 - n documents.
- **Each comparison:** O(m).
 - m input systems.
- Total: $O(m n \log n)$.
- Need not compute entire graph.

Condorcet-fuse on TREC3

Condorcet-fuse on TREC5

Condorcet-fuse on Vogt

TREC 5 subset: avg precision over between 1 and 200 random sets of systems.

Condorcet-fuse on TREC9

Outline

- ✓ Introduce problem
- Characterize problem
- Survey techniques
- Upper bounds for metasearch

Upper Bounds on Metasearch

- How good can metasearch be?
- Are there fundamental limits that methods are approaching?

Upper Bounds on Metasearch

- Constrained oracle model:
 - omniscient metasearch oracle,
 - constraints placed on oracle that any reasonable metasearch technique must obey.
- What are "reasonable" constraints?

Naïve Constraint

- Naïve constraint:
 - Oracle may only return docs from underlying lists.
 - Oracle may return these docs in any order.
 - Omniscient oracle will return relevant docs above irrelevant docs.

TREC5: Naïve Bound

Pareto Constraint

- Pareto constraint:
 - Oracle may only return docs from underlying lists.
 - Oracle must respect unanimous will of underlying systems.
 - Omniscient oracle will return relevant docs above irrelevant docs, subject to the above constraint.

TREC5: Pareto Bound

Majoritarian Constraint

- Majoritarian constraint:
 - Oracle may only return docs from underlying lists.
 - Oracle must respect majority will of underlying systems.
 - Omniscient oracle will return relevant docs above irrelevant docs and break cycles optimally, subject to the above constraint.

TREC5: Majoritarian Bound

Upper Bounds: TREC3

Upper Bounds: Vogt

TREC 5 subset: avg precision over between 1 and 200 random sets of systems.

Upper Bounds: TREC9

