
1

compression

some slides courtesy James allan@umass

2

outline

• Introduction
• Fixed Length Codes

– Short-bytes
– bigrams / Digrams
– n-grams

• Restricted Variable-Length Codes
– basic method
– Extension for larger symbol sets

• Variable-Length Codes
– Huffman Codes / Canonical Huffman Codes
– Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)

• Synchronization
• Compressing inverted files
• Compression in block-level retrieval

3

compression

• Encoding transforms data from one representation to

• another

• Compression is an encoding that takes less space
– e.g., to reduce load on memory, disk, I/O, network

• Lossless: decoder can reproduce message exactly

• Lossy: can reproduce message approximately

• Degree of compression:
– (Original - Encoded) / Encoded

– example: (125 Mb - 25 Mb) / 25 Mb = 400%

4

compression

• advantages of Compression
• Save space in memory (e.g., compressed cache)
• Save space when storing (e.g., disk, CD-ROM)
• Save time when accessing (e.g., I/O)
• Save time when communicating (e.g., over network)

• Disadvantages of Compression
• Costs time and computation to compress and

uncompress
• Complicates or prevents random access
• May involve loss of information (e.g., JPEG)
• Makes data corruption much more costly. Small errors

may make all of the data inaccessible

5

compresion

• Text Compression vs Data Compression

• Text compression predates most work on general data
compression.

• Text compression is a kind of data compression optimized for
text (i.e., based on a language and a language model).

• Text compression can be faster or simpler than general data
compression, because of assumptions made about the data.

• Text compression assumes a language and language model
• Data compression learns the model on the fly.

• Text compression is effective when the assumptions are met;
• Data compression is effective on almost any data with a

skewed distribution

6

outline

• Introduction
• Fixed Length Codes

– Short-bytes
– bigrams / Digrams
– n-grams

• Restricted Variable-Length Codes
– basic method
– Extension for larger symbol sets

• Variable-Length Codes
– Huffman Codes / Canonical Huffman Codes
– Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)

• Synchronization
• Compressing inverted files
• Compression in block-level retrieval

7

fixed length compression

• Storage Unit: 5 bits

• If alphabet ≤ 32 symbols, use 5 bits per symbol

• If alphabet > 32 symbols and ≤ 60
– use 1-30 for most frequent symbols (“base case”),
– use 1-30 for less frequent symbols (“shift case”), and

– use 0 and 31 to shift back and forth (e.g.,
typewriter).

– Works well when shifts do not occur often.

– Optimization: Just one shift symbol.

– Optimization: Temporary shift, and shift-lock

– Optimization: Multiple “cases”.

8

fixed length compression :
bigrams/digrams

• Storage Unit: 8 bits (0-255)
• Use 1-87 for blank, upper case, lower case, digits and 25
special characters
• Use 88-255 for bigrams (master + combining)
• master (8): blank, A, E, I, O, N, T, U
• combining(21): blank, plus everything but J, K, Q, X, Y

Z
• total codes: 88 + 8 * 21 = 88 + 168 = 256
• Pro: Simple, fast, requires little memory.
• Con: based on a small symbol set
• Con: Maximum compression is 50%.

– average is lower (33%?).

• Variation: 128 ASCII characters and 128 bigrams.
• Extension: Escape character for ASCII 128-255

9

fixed length compression :
n-grams

• Storage Unit: 8 bits

• Similar to bigrams, but extended to cover
sequences of 2 or more characters.

• The goal is that each encoded unit of length >
1 occur with very high (and roughly equal)
probability.

• Popular today for:
– OCR data (scanning errors make bigram assumptions

less applicable)

– asian languages

• two and three symbol words are common

• longer n-grams can capture phrases and names

10

fixed length compression :
summary

• Three methods presented. all are
– simple

– very effective when their assumptions are correct

• all are based on a small symbol set, to varying
degrees
– some only handle a small symbol set

– some handle a larger symbol set, but compress best
when a few symbols comprise most of the data

• all are based on a strong assumption about the
language(English)

• bigram and n-gram methods are also based on
strong assumptions about common sequences
of symbols

11

outline

• Introduction
• Fixed Length Codes

– Short-bytes
– bigrams / Digrams
– n-grams

• Restricted Variable-Length Codes
– basic method
– Extension for larger symbol sets

• Variable-Length Codes
– Huffman Codes / Canonical Huffman Codes
– Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)

• Synchronization
• Compressing inverted files
• Compression in block-level retrieval

12

restricted variable length codes

• an extension of multicase encodings (“shift
key”) where different code lengths are used for
each case. Only a few code lengths are chosen,
to simplify encoding and decoding.

• Use first bit to indicate case.
• 8 most frequent characters fit in 4 bits (0xxx).
• 128 less frequent characters fit in 8 bits

(1xxxxxxx)
• In English, 7 most frequent characters are 65%

of occurrences
• Expected code length is approximately 5.4 bits

per character, for a 32.8% compression ratio.
• average code length on WSJ89 is 5.8 bits per

character, for a 27.9% compression ratio

13

restricted varible length codes:
more symbols

• Use more than 2 cases.

• 1xxx for 23 = 8 most frequent symbols, and

• 0xxx1xxx for next 26 = 64 symbols, and

• 0xxx0xxx1xxx for next 29 = 512 symbols, and

• ...

• average code length on WSJ89 is 6.2 bits per

symbol, for a 23.0% compression ratio.

• Pro: Variable number of symbols.

• Con: Only 72 symbols in 1 byte.

14

restricted variable length codes :
numeric data

• 1xxxxxxx for 27 = 128 most frequent
symbols

• 0xxxxxxx1xxxxxxx for next 214 = 16,384
symbols

• ...

• average code length on WSJ89 is 8.0
bits per symbol, for a 0.0% compression
ratio (!!).

• Pro: Can be used for integer data

– Examples: word frequencies, inverted lists

15

restricted variable –length codes :
word based encoding

• Restricted Variable-Length Codes can be used
on words (as opposed to symbols)

• build a dictionary, sorted by word frequency,
most frequent words first

• Represent each word as an offset/index into
the dictionary

• Pro: a vocabulary of 20,000-50,000 words with
a Zipf distribution requires 12-13 bits per word
– compared with a 10-11 bits for completely variable

length

• Con: The decoding dictionary is large,
compared with other methods.

16

Restricted Variable-Length
Codes: Summary

• Four methods presented. all are

– simple

– very effective when their assumptions are
correct

• No assumptions about language or
language models

• all require an unspecified mapping from
symbols to numbers (a dictionary)

• all but the basic method can handle any
size dictionary

17

outline

• Introduction
• Fixed Length Codes

– Short-bytes
– bigrams / Digrams
– n-grams

• Restricted Variable-Length Codes
– basic method
– Extension for larger symbol sets

• Variable-Length Codes
– Huffman Codes / Canonical Huffman Codes
– Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)

• Synchronization
• Compressing inverted files
• Compression in block-level retrieval

18

Huffman codes

• Gather probabilities for symbols
– characters, words, or a mix

• build a tree, as follows:
– Get 2 least frequent symbols/nodes, join with a

parent node.
– Label least probable branch 0; label other branch 1.
– P(node) = Σi P(childi)
– Continue until the tree contains all nodes and

symbols.

• The path to a leaf indicates its code.
• Frequent symbols are near the root, giving

them short codes.
• Less frequent symbols are deeper, giving them

longer codes.

19

Huffman codes

20

Huffman codes

• Huffman codes are “prefix free”; no code is a prefix of another.
• Many codes are not assigned to any symbol, limiting the

amount of compression possible.
• English text, with symbols for characters, is approximately 5

bits per character (37.5% compression)
• English text, with symbols for characters and 800 frequent

words, yields 4.8-4.0 bits per character (40-50% compression).
• Con: Need a bit-by-bit scan of stream for decoding.
• Con: Looking up codes is somewhat inefficient. The decoder

must store the entire tree.
• Traversing the tree involves chasing pointers; little locality.
• Variation: adaptive models learn the distribution on the fly.
• Variation: Can be used on words (as opposed to characters).

21

Huffman codes

22

Huffman codes

23

Lempel-Ziv

• an adaptive dictionary approach to variable
length coding.

• Use the text already encountered to build the
dictionary.

• If text follows Zipf’s laws, a good dictionary is
built.

• No need to store dictionary; encoder and
decoder each know how to build it on the fly.

• Some variants: LZ77, Gzip, LZ78, LZW, Unix
compress

• Variants differ on:
– how dictionary is built,
– how pointers are represented (encoded), and
– limitations on what pointers can refer to.

24

Lempel Ziv: encoding

• 0010111010010111011011

25

Lempel Ziv: encoding

• 0010111010010111011011

• break into known prefixes

• 0|01 |011|1 |010|0101|11|0110|11

26

Lempel Ziv: encoding

• 0010111010010111011011

• break into known prefixes

• 0|01 |011|1 |010|0101|11|0110|11

• encode references as pointers

• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

27

Lempel Ziv: encoding

• 0010111010010111011011

• break into known prefixes

• 0|01 |011|1 |010|0101|11|0110|11

• encode references as pointers

• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

• encode the pointers with log(?)bits

• 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|101,0
|0010,?

28

Lempel Ziv: encoding

• 0010111010010111011011

• break into known prefixes

• 0|01 |011|1 |010|0101|11|0110|11

• encode references as pointers

• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

• encode the pointers with log(?)bits

• 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|101,0 |0010,?

• final string

• 01101100101100011011110100010

29

Lempel Ziv: decoding

• 01101100101100011011110100010

30

Lempel Ziv: decoding

• 01101100101100011011110100010

• decode the pointers with log(?)bits

• 0|1,1|01,1 |00,1|011,0 |001,1
|011,1|101,0 |0010,?

31

Lempel Ziv: decoding

• 01101100101100011011110100010

• decode the pointers with log(?)bits

• 0|1,1|01,1 |00,1|011,0 |001,1
|011,1|101,0 |0010,?

• encode references as pointers

• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

32

Lempel Ziv: decoding

• 01101100101100011011110100010

• decode the pointers with log(?)bits

• 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|101,0
|0010,?

• encode references as pointers

• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

• decode references

• 0|01 |011|1 |010|0101|11|0110|11

33

Lempel Ziv: decoding

• 01101100101100011011110100010

• decode the pointers with log(?)bits

• 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|101,0 |0010,?

• encode references as pointers

• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

• decode references

• 0|01 |011|1 |010|0101|11|0110|11

• original string

• 0010111010010111011011

34

Lempel Ziv optimality

• LempelZiv compression rate
approaches (asymptotic) entropy

–When the strings are generated by an
ergodic source [CoverThomas91].

– easier proof : for i.i.d sources

• that is not a good model for English

35

LempelZiv optimality –i.i.d source
• let x = α1α2...αn a sequence of length n gen-

erated by a iid source and Q(x) = the proba-

bility to see such a sequence

• say LempelZiv breaks into c phrases x =

y1y2...yc and call cl = # of phrases of length l

then − logQ(x) ≥ P
l
cl logcl

(proof)
P

|yi|=l
Q(yi) < 1 so

Q
|yi|=l

Q(yi) < (
1
cl
)cl

• if pi is the source probab for αi then by law
of large numbers x will have roughly npi occur-

rences of αi and then

logQ(x) = − logQ
i
pnpii ≈ nPpi logpi = nHsource

• note that P
l
cl logcl is roughly the LempelZiv

encoding length so th einequality reads

nH ≥≈ LZencodingwhich is to sayH ≈≥ LZrate.

36

outline

• Introduction
• Fixed Length Codes

– Short-bytes
– bigrams / Digrams
– n-grams

• Restricted Variable-Length Codes
– basic method
– Extension for larger symbol sets

• Variable-Length Codes
– Huffman Codes / Canonical Huffman Codes
– Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)

• Synchronization
• Compressing inverted files
• Compression in block-level retrieval

37

synchronization

• It is difficult to randomly access encoded text

• With bit-level encoding (e.g., Huffman codes), it is
difficult to know where one code ends and another
begins.

• With adaptive methods, the dictionary depends upon the
prior encoded text.

• Synchronization points can be inserted into an
encoded message, from which decoding can begin.

– For example, pad Huffman codes to the next byte, or
restart an adaptive dictionary.

– Compression effectiveness is reduced, proportional to the
number of synchronization points

38

self-syncronizing codes

• In a self-synchronizing code, the decoder can start in the
middle of a message and eventually synchronize(figure
out the code).

• It may not be possible to guarantee how long it will take
the decoder to synchronize.

• Most variable-length codes are self-synchronizing to
some extent

• Fixed-length codes are not self-synchronizing, but
boundaries are known (synchronization points).

• adaptive codes are not self-synchronizing.

39

synchronization

40

outline

• Introduction
• Fixed Length Codes

– Short-bytes
– bigrams / Digrams
– n-grams

• Restricted Variable-Length Codes
– basic method
– Extension for larger symbol sets

• Variable-Length Codes
– Huffman Codes / Canonical Huffman Codes
– Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)

• Synchronization
• Compressing inverted files
• Compression in block-level retrieval

41

compression of inverted files

• Inverted lists are usually compressed

• Inverted files with word locations are about the size of
the raw data

• Distribution of numbers is skewed
– Most numbers are small (e.g., word locations, term

frequency)

• Distribution can be made more skewed easily
– Delta encoding: 5, 8, 10, 17 → 5, 3, 2, 7

• Simple compression techniques are often the best choice
– Simple algorithms nearly as effective as complex algorithms
– Simple algorithms much faster than complex algorithms

– Goal: Time saved by reduced I/O > Time required to
uncompress

42

inverted list indexes

• The longest lists, which take up the most space, have
the most frequent (probable) words.

• Compressing the longest lists would save the most
space.

• The longest lists should compress easily because
they contain the least information (why?)

• algorithms:
– Delta encoding
– Variable-length encoding
– Unary codes
– Gamma codes
– Delta codes

43

Inverted List Indexes:
Compression

• Delta Encoding (”Storing Gaps”)

• Reduces range of numbers.

• Produces a more skewed distribution.

• Increases probability of smaller numbers.

• Stemming also increases the probability
of smaller numbers. (Why?)

44

Inverted List Indexes:
Compression

• Variable-Length Codes (Restricted
Fixed-Length Codes)

• review the numeric data generalization
of restricted variable length codes

• advantages:

– Effective

– Global

– Nonparametric

45

Inverted List Compression:
Unary Code

• Represent a number n ≥ 0 as n 1-
bits and a terminating 0.

• Great for small numbers.

• Terrible for large numbers

46

Inverted List Compression:
Gamma Code

• a combination of unary and binary codes

• The unary code stores the number of bits needed to
represent n in binary.
• The binary code stores the information necessary to

reconstruct n.
• unary code stores dlog ne
• binary code stores n - 2blog nc

• Example: n = 9
– log 9 = 3, so unary code is 1110.
– 9-8=1, so binary code is 001.
– The complete encoded form is 1110001 (7 bits).

• This method is superior to a binary encoding

47

Inverted List Compression:
Delta Code

• Generalization of the Gamma code

• Encode the length portion of a Gamma code in
a Gamma code.

• Gamma codes are better for small numbers.

• Delta codes are better for large numbers.

• Example:
– For gamma codes, number of bits is 1 + 2 *log n

– For delta codes, number of bits is:

log n + 1 + 2 * log(1 + log n)

	outline
	compression
	compression
	compresion
	outline
	fixed length compression
	fixed length compression : bigrams/digrams
	fixed length compression : n-grams
	fixed length compression : summary
	outline
	restricted variable length codes
	restricted varible length codes: more symbols
	restricted variable length codes : numeric data
	restricted variable –length codes : word based encoding
	Restricted Variable-Length Codes: Summary
	outline
	Huffman codes
	Huffman codes
	Huffman codes
	Huffman codes
	Huffman codes
	Lempel-Ziv
	Lempel Ziv: encoding
	Lempel Ziv: encoding
	Lempel Ziv: encoding
	Lempel Ziv: encoding
	Lempel Ziv: encoding
	Lempel Ziv: decoding
	Lempel Ziv: decoding
	Lempel Ziv: decoding
	Lempel Ziv: decoding
	Lempel Ziv: decoding
	Lempel Ziv optimality
	LempelZiv optimality –i.i.d source
	outline
	synchronization
	self-syncronizing codes
	synchronization
	outline
	compression of inverted files
	inverted list indexes
	Inverted List Indexes: Compression
	Inverted List Indexes: Compression
	Inverted List Compression:Unary Code
	Inverted List Compression:Gamma Code
	Inverted List Compression:Delta Code

