
Condorcet Fusion for Improved Retrieval ∗

Mark Montague
Department of Computer Science

Dartmouth College
6211 Sudikoff Laboratory

Hanover, NH 03755

montague@cs.dartmouth.edu

Javed A. Aslam
Department of Computer Science

Dartmouth College
6211 Sudikoff Laboratory

Hanover, NH 03755

jaa@cs.dartmouth.edu

ABSTRACT
We present a new algorithm for improving retrieval results
by combining document ranking functions: Condorcet-fuse.
Beginning with one of the two major classes of voting proce-
dures from Social Choice Theory, the Condorcet procedure,
we apply a graph-theoretic analysis that yields a sorting-
based algorithm that is elegant, efficient, and effective. The
algorithm performs very well on TREC data, often outper-
forming existing metasearch algorithms whether or not rel-
evance scores and training data is available. Condorcet-fuse
significantly outperforms Borda-fuse, the analogous repre-
sentative from the other major class of voting algorithms.

1. INTRODUCTION
Metasearch is the term usually applied to techniques that

combine final results from a number of search engines in or-
der to improve retrieval. In its simplest form, a metasearch
engine takes as input the n ranked lists output by each of
n search engines in response to a given query. It then com-
putes a single ranked list as output, which is usually an
improvement over any of the input lists (as measured by
standard IR performance metrics).

Current metasearch algorithms can be characterized by
the data they require: whether they need relevance scores
or only ranks, and whether they require training data or
not. See Figure 1.

External metasearch, one use of fusion, takes existing,
“complete” search systems and tries to improve upon them
by combining them. External metasearch engines include
the Web metasearch engines, for example MetaCrawler, Pro-
Fusion, SavvySearch, MetaFerret, InFind, etc. They com-
bine the output of “complete” search engines, as a form of
post-processing, value-adding stage. See Figure 2.

Internal metasearch, on the other hand, puts fusion at
the heart of a retrieval system. Metasearch offers a system-

∗This work generously supported by NSF grants EIA-
9802068, BCS-9978116, and Career Award CCR 00-93131.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’02, November 4–9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-492-4/02/0011 ...$5.00.

re
le

va
nc

e
sc

or
es

ra
nk

s
on

ly

no training
data

training
data

CombMNZ

Weighted
Condorcet−

fuse

CombMNZ
Weighted

Weighted
rCombMNZ

Condorcet−
fuse

rCombMNZ

Borda−fuse

Figure 1: Metasearch techniques may or may not
require relevance scores, and may or may not require
training. Listed are metasearch algorithms that we
shall discuss.

Search
Engine

A

Metasearch
Engine

Search
Engine

Search
Engine

B C

Database Database Database

Final Ranked List

Engine
Search

Sub−

A
engine

Sub−
engine

Sub−
engine

B C

Metasearch
Core

Final Ranked List

Shared Document Set

Figure 2: External metasearch (left), where a meta-
search engine is used to combine three complete and
independent search engines, versus internal meta-
search (right), where a metasearch algorithm is used
to combine three cooperating sub-engines over the
same set of documents.

atic way of incorporating all of the various types of evidence
available to a search engine. Fusion techniques have the po-
tential of combining effectively the information contained in

disparate components. For example, for the problem of web-
page retrieval, there are many sources of information: each
page has text, in-links, out-links, images, tags, keywords,
and structure tags. For each of these elements, numerous
indexing and searching algorithms may exist. Metasearch
can elegantly incorporate all of this information by merging
the results of specialized sub-engines.

In the case of internal metasearch, relevance scores are
likely available, but in external metasearch often only ranks
are available. But perhaps the biggest distinction between
internal and external metasearch is the amount of overlap
among the document sets of the input systems. In any use
of metasearch the document sets of the input systems may
be:

• disjoint, as in the case of distributed retrieval,

• overlapping, as in the case of external metasearch, or

• identical, as is likely in the case of internal metasearch.

In this paper we address only the “data fusion” scenario,
when the input systems have identical document sets. The
application which inspires this study is that of internal meta-
search: using fusion as a technique to improve retrieval
within one search engine. For simplicity, and in accordance
with common usage, in the remainder of this paper we refer
to this as the metasearch problem.

Metasearch offers several advantages over traditional mono-
lithic approaches to retrieval. First, metasearch improves
upon the performance of individual search engines because
different retrieval methods often return very different ir-
relevant documents, but many of the same relevant docu-
ments [19]. Second, metasearch provides more consistent
and reliable performance than individual search engines.
Since metasearch aggregates the advice of several systems,
the fusion tends to smooth out the idiosyncracies of any one
system, yielding a more reliable search system [20]. Third,
the metasearch architecture is inherently modular. A highly
specialized “sub-engine” module can be developed and fine-
tuned for each information source about the documents in
the collection (such as word frequencies, textual structure
within a document, hyperlink structure between documents,
etc.) Each sub-engine could be used alone as a search en-
gine. But, by querying all the engines in parallel and com-
bining their results using metasearch, performance is im-
proved. Finally, metasearch leads to focused ranking algo-
rithms that can take advantage of novel, highly specific in-
formation sources within documents. To prove the worth of
a new ranking technique, one can use a standard metasearch
algorithm to fuse their results with standard ranking tech-
niques. If the fused result significantly improves upon the
standard techniques alone, then they have indeed tapped a
source of novel information.

In this paper we present a new algorithm appropriate for
internal metasearch called Condorcet-fuse, which is (1) in-
spired by the Condorcet majoritarian voting algorithm, (2)
analysed in terms of graph theory, and (3) reduces to a sim-
ple and efficient sorting technique. We present experimental
results for Condorcet-fuse that show that it usually outper-
forms standard metasearch algorithms.

2. RELATED WORK
The use of data fusion to combine document retrieval re-

sults has been active in IR research since 1972 when Fisher

and Elchesen [10] showed that document retrieval results
were improved by combining the results of two Boolean
searches: one over the title words of the documents, and
one over manually-assigned index terms. This work has been
followed by more extensive studies, especially in the recent
past (for example, [2, 22, 31, 26, 29, 14, 33, 12, 4, 18, 16,
19, 23, 32, 5, 36, 28]. Many systems entered in the TREC
competition have taken advantage of metasearch effects [13,
27, 24]. For an excellent survey of the literature see [6].

Key contributions to understanding metasearch include
those made by Thompson [29, 30] who proposes a Bayesian
model called the Combination of Expert Opinion (CEO)
model; Fox, Shaw et al. [12, 13, 27] who developed the
CombSum and CombMNZ algorithms; Lee [18, 19] who per-
formed more experiments with these Comb algorithms; and
Bartell [3, 2] and Vogt [34, 33, 31, 32] who experiment with
linearly combining the normalized relevance scores given to
each document.

CombSum computes a new relevance score for each docu-
ment d as the sum of the normalized relevance scores given to
d by the input systems. In terms of ranking the documents,
this is equivalent to averaging the scores d is given. Comb-
MNZ, one of the most effective methods to date and thus
standard, assigns d the same relevance score as CombSum,
but multiplied by the number of input systems that retrieved
d. This weighting makes CombMNZ outperform CombSum
slightly on most data sets. In this work we compare our new
algorithms against CombMNZ (and rCombMNZ—the same
algorithm, but with ranks used to simulate scores).

In previous work (Aslam and Montague [1]), we first pro-
posed adapting voting algorithms to solve the metasearch
problem. We developed a metasearch algorithm based on
the Borda count voting procedure. The Borda count is the
central representative of one class of voting procedures: po-
sitional algorithms. The Condorcet-fuse model that we pro-
pose here is based on the other major class of voting pro-
cedures: majoritarian algorithms. In this paper we show
that, at least for TREC data, the Condorcet algorithm is
the superior technique.

3. THE CONDORCET MODEL
There is a natural analogy between metasearch and vot-

ing [1]. In an election, the candidates are ranked as a func-
tion of the votes. We can view the ranking of documents
from different systems by a metasearch algorithm as a spe-
cial instance of the voting problem where documents cor-
respond to candidates and input retrieval systems are the
voters. The ranking of documents is done according to some
function of the input system rankings. To apply a given vot-
ing algorithm to metasearch, however, we need to general-
ize the voting algorithms slightly; voting procedures usually
only compute the top candidate while in metasearch we are
interested in the entire ranked list of candidates.

3.1 The Social Choice Voting Model
Our inspiration for the metasearch model used in this pa-

per comes from the field of Social Choice Theory [25, 21,
17], which studies voting algorithms as techniques to make
group (social) decisions (choice). More specifically, we ap-
ply to metasearch the ideas from voting algorithms that
emerged in the 18th century to address the shortcomings of
simple majority voting when there are more than two can-
didates. The work on these more sophisticated algorithms

was spearheaded by Borda [8] and Condorcet [9], whose two
very different approaches founded the two main schools of
thought in voting. Their algorithms for voting have been at
the center of a large corpus of research in Social Choice in
this century.

An election is an instance of a voting problem. The input
is called a voting profile. For example, consider the following
profile of a 5 candidate, 10 voter election:

3: a, b, c, d, e
3: e, b, c, a, d
2: c, b, a, d, e
2: c, d, b, a, e

A social choice function is a function that maps voting
profiles to a set of candidates—the winners. For the ex-
ample profile, the simple majority rule (or plurality voting)
dictates that candidate c wins, since it received four first
place rankings, more than any other candidate.

Riker [25] distinguishes between majoritarian voting algo-
rithms (which are based on a series of pairwise comparisons
of candidates), and positional methods (which are based on
the ranks a candidate receives.) Positional algorithms com-
pute a score for each candidate based on the positions, or
ranks, given to each candidate by the voters. The common
plurality algorithm (simple majority), for example, gives one
point for each time a candidate is ranked first, and zero
points for any other position. The Borda count is perhaps
the most sensible positional voting procedure. In the Borda
count, for each voter, the top candidate receives n points
(if there are n candidates in the election), the second candi-
date receives n−1 points, and so on. The candidate with the
most points wins. In our example, according to the Borda
count, candidates b and c tie for first place, with a total of
38 points each.

The Condorcet voting algorithm is a majoritarian method
which specifies that the winner of the election is the candi-
date(s) that beats or ties with every other candidate in a
pair-wise comparison. In the example profile, candidate b is
ranked ahead of c in six of the ten profiles. Thus in a sim-
ple majority run-off election between these two candidates,
b would receive six of the ten votes cast. Indeed, in this
example, b beats every other candidate in a head-to-head
comparison, so b is the Condorcet winner.

An important result from the field of Social Choice is
May’s theorem, which states that in the case of a two-
candidate election, “majority voting is the only method that
is anonymous (equal treatment of all voters), neutral (equal
treatment of the candidates), and monotonic (more support
for a candidate does not jeopardize its election)” [21]. This
lends support to the Condorcet algorithm, since the Con-
dorcet winner is that candidate that wins (or ties in) every
possible pairwise majority contest.

3.2 Condorcet Metasearch
As we have seen, intuitively, the Condorcet algorithm says

that any candidate that can beat all other candidates in a
head-to-head contest should win the election. We generalize
this notion to generate a ranked list of candidates by mod-
eling the election with a directed graph of candidates which
we call the Condorcet graph. A Hamiltonian traversal of
this graph will produce the election rankings. Algorithm 2
shows an instantiation of this idea to metasearch. Unfortu-
nately, just to generate the graph takes O(n2k) time where

Algorithm 1 Simple Majority Runoff.

1: count = 0
2: for each of the k search systems Si do
3: If Si ranks d1 above d2, count++
4: If Si ranks d2 above d1, count−−
5: If count > 0, rank d1 better than d2

6: Else rank d2 better than d1

Algorithm 2 Theoretic Condorcet Metasearch.

1: for all pairs (d1, d2) of documents do
2: Use Algorithm 1 to compute the Condorcet Graph
3: Compute Hamiltonian path of Condorcet graph

n is the number of documents in the metasearch pool and
k is the number of search engines, which makes it too slow
for real document collections. For the rest of this section we
formalize this algorithm, examine its correctness, and derive
an efficient version called Condorcet-fuse.

3.2.1 The Condorcet Graph
Given a voting profile for an election with n candidates, its

corresponding Condorcet graph G = (V, E) has one vertex
for each of the n candidates. For each candidate pair (x, y),
there exists an edge from x to y (denoted by x → y) if x
would receive at least as many votes as y in a head-to-head
contest. In other words, x → y if x is ranked above y by at
least as many voters as ranked y above x. For the candidates
that tie there is an edge pointing in each direction (denoted
x ↔ y).

The Condorcet graph of any profile contains at least one
edge between every pair of candidates. We call graphs with
at least one edge between any two nodes semi-complete.

3.2.2 The Voting Paradox
Any candidate that beats or ties with all others is called a

Condorcet winner. In the Condorcet graph, this corresponds
to having an out-degree of n − 1. For some voting profiles,
instead of a single winner there is an entire equivalence class
of winners. This phenomenon is called the voting paradox
and is due to the fact that the Condorcet graphs may contain
cycles. The simplest example of a “paradoxical” profile has
three voters:

1: a, b, c
1: b, c, a
1: c, a, b

In this profile, a beats b twice, b beats c twice, and c beats a
twice. The resulting Condorcet graph is shown in Figure 3.

Although within the field of Social Choice Theory the ex-
istence of cycles in the Condorcet graph has been viewed as a
paradox (see especially Arrow’s famous theorem), we submit
that the possibility of cycles is not an artifact or an indicator
of an inferior voting method. On the contrary, algorithms
that cannot generate cycles ignore the actual complexity of
the profile. Fortunately, we have the freedom in the con-
text of metasearch to simply view cycles as ties. For us,
the relative ordering of candidates within a cycle is only of
secondary importance, whereas their ordering with respect
to the rest of the candidates is of primary importance. We

b

a

c

Figure 3: The “voting paradox:” a simple case of
cyclic preferences.

can clarify this distinction by considering the Strongly Con-
nected Components of the Condorcet graph.

3.2.3 Strongly Connected Components of Condorcet
Graphs

The strongly connected components (SCC) of a graph par-
tition the vertices of the graph. Two vertices are in the same
equivalence class if there exists a cycle in the graph contain-
ing them. Each SCC of the Condorcet graph contains a set
of equivalent nodes. In the strongly connected component
graph (SCCG) of a graph, each node represents one SCC
and for X, Y in the SCCG, X → Y if there exists an x ∈ X
and y ∈ Y such that x → y. In fact, in the case of semi-
complete graphs, if X → Y , then xi → yj for all xi ∈ X and
yj ∈ Y . Finally, note that SCCGs are acyclic by design.

The strongly connected components of the Condorcet graph
can be unambiguously sorted. Since the original graph was
semi-complete, so is the SCCG. Together with the fact that
the SCCG is acyclic, this implies that there is one node X0

with in-degree zero. If it is removed from the SCCG another
semi-complete, acyclic graph remains. Thus it has one node
X1 with in-degree zero. This process can be repeated until
all m nodes have been exhausted. The unique ordering is
X0 → X1 → . . . → Xm.

Thus the Condorcet graph is “totally ordered” at the level
of the SCCs. Each SCC represents a “pocket” of cycles,
within which we say each candidate is tied. The strongly
connected components partition the graph into sets of tied
candidates.

Condorcet graphs provide a natural model for metasearch
but they are costly to compute. We proceed by showing an
efficient way for capturing the information in the Condorcet
graph without explicitly computing the graph.

3.2.4 Condorcet Paths
We define a Condorcet-consistent Hamiltonian path (or

Condorcet path) to be any Hamiltonian path through the
Condorcet graph. Our goal is to efficiently find such a path.
Condorcet paths have two properties relevant to metasearch.

Theorem 1. Every semi-complete graph contains a Hamil-
tonian path.

Proof. We prove Theorem 1 by induction. The base case
is a graph with one node and is trivial.

For the inductive step, suppose every semi-complete graph
with n−1 nodes contains a Hamiltonian path. For a problem
of size n, let H be the Hamiltonian path for a sub-problem
containing only an arbitrary n−1 of the nodes. Now the nth

node x is introduced, along with its n − 1 edges to or from
the other nodes. There are three cases: (1) If x points to

the first node in H , then x followed by H is a Hamiltonian
path. (2) If not, then the first node in H points to x. Now
consider each node in H in turn. A new Hamiltonian path
can be created by inserting x into H just before the first
node that x points to, if one exists. (3) If x doesn’t point to
any of the nodes in H , then the last node in H points to x,
so a new Hamiltonian path can be created by appending x
to H .

Theorem 2. If candidate x is in an SCC ranked above
the SCC containing y, then x is ranked above y in every
Condorcet path.

Proof. This is a simple consequence of the fact that
there is only one way to sort the SCCG; thus there does
not exist a path from y to x. So any Hamiltonian path puts
x before y. Thus we say Condorcet paths properly order the
SCC’s.

In other words, a randomly chosen Condorcet path or-
ders the candidates that don’t tie correctly, and breaks ties
arbitrarily.

3.2.5 Efficiency: Condorcet-fuse
We know that we could find an ordering of nodes that

properly orders the SCC’s by generating the entire Con-
dorcet graph, computing its SCCs, sorting the SCCs, and
ordering candidates within each SCC arbitrarily. This al-
gorithm is O(n2k) for an election with n candidates and
k voters, since it takes time O(n2k) to generate the semi-
complete Condorcet graph. This is impractical for large doc-
ument sets. But Theorems 1 and 2 show that we can also
find a reasonable ordering (one that properly orders SCC’s)
by computing a Condorcet path. We derive an algorithm
called Condorcet-fuse (see Algorithm 3) that finds a Con-
dorcet path in O(nk lg n) time. The key idea is to sort the
nodes, resulting in a Condorcet path, without ever generat-
ing the entire Condorcet graph.

To derive Condorcet-fuse, note that the inductive step in
the proof of Theorem 1 resembles InsertionSort: incoming
items are compared to all previous items until their proper
location is found. Indeed, InsertionSort can be used to find
a Condorcet path. The key is to use Algorithm 1 as the com-
parison function in the sorting algorithm. This comparison
function can also be used with MergeSort or QuickSort to
find a Condorcet path—we formally prove this for QuickSort
as an example.

Theorem 3. Given a semi-complete graph, if pairwise
comparisons between nodes are made according to their edge
directions (e.g., a → b means a > b), then sorting the nodes
with QuickSort will yield a Hamiltonian path.

Proof. Recall first how QuickSort works, given a list L:
first a pivot element p is chosen from L. Next L is parti-
tioned into two lists A and B such that for all a and b in A
and B, respectively, a < p and p < b. Then A and B are
sorted recursively, and the final sorted list is ApB (that is,
A followed by p followed by B).

We may obtain the desired result by strong induction.
The base case, a semi-complete graph with one node, is
trivial. For the inductive step, assume the elements of L are

Algorithm 3 Condorcet-fuse.

1: Create a list L of all the documents
2: Sort(L) using Algorithm 1 as the comparison function
3: Output the sorted list of documents

nodes of a semi-complete graph, which, after sorting can be
written ApB where A and B are, by our inductive hypoth-
esis, Hamiltonian paths of their respective semi-complete
subgraphs. Then a → p and p → b for all a and b in A and
B, respectively. In particular, the last element of A points
to p, and the first element of B is pointed to by p, so ApB
is itself a Hamiltonian path.

In other words, we can compute a Condorcet path by call-
ing QuickSort with Algorithm 1 as the comparison function;
the entire graph need not be computed since a comparison
between any two nodes can be made when needed by Quick-
Sort. Condorcet-fuse is shown as Algorithm 3.

Theorem 4. Condorcet-fuse runs in O(nk lg n) time.

Proof. To efficiently compute a run-off election between
two candidates (that is, to compare them) we choose a rep-
resentation so that instead of having k ranked lists of up
to n candidates, we have n lists of the k ranks given to
each candidate in some canonical order. This preprocessing
step takes time O(nk). A binary comparison can then be
made between any two candidates in time O(k), and sorting
can be done with O(nlgn) comparisons, yielding total time
O(nk lg n).

In theory, the algorithm requires O(nk) space. In prac-
tice however, not all of this space is needed since not every
document is returned by every input system.

3.2.6 Within the SCC’s
We know that Condorcet-fuse, by finding a Condorcet

path, is guaranteed to properly order the SCC’s of the Con-
dorcet graph. But, its behavior within an SCC is of in-
terest as well. An SCC A may have many possible Con-
dorcet paths through it, and any of them may be found by
QuickSort, depending upon the sequence of pivots chosen
randomly by the algorithm. If a node a ∈ A has a low in-
degree, say 10% of the nodes in A, then it has at least a
90% chance of being ranked above the first pivot—it can
only be ranked below it if the pivot chosen is one of those
that pairwise-beat a. Thus QuickSort will tend to rank a
highly, in a probabilistic sense. The key factor appears to
be the relationship of out-degree and in-degree. In this way,
Condorcet-fuse appears to approximate the Copeland Rule
Condorcet extension, which ranks candidates by out-degree
minus in-degree.1 This behavior is likely an important part
of the performance of Condorcet-fuse, at least on standard
IR test sets which tend to generate large SCCs. It is an
interesting open question to determine the probabilistic ap-
proximation to the Copeland rule that Quicksort yields.

3.2.7 Weighted Condorcet-fuse

1See www.condorcet.org for a summary of many such Con-
dorcet extensions.

One advantage of using a sorting routine together with a
black-box comparison function is that the comparison func-
tion can be easily replaced. We can implement a weighted
version of Condorcet-fuse by using a weighted binary com-
parison.

In a simple majority two-candidate election, x beats y
if more voters choose x than choose y. We can generalize
this to give different voters different sway: x beats y if the
sum of the weights of those that voted for x is larger than
the sum of the weights of those that voted for y. Using this
comparison function in the sorting algorithm yields weighted
Condorcet-fuse.

Of course, how you choose the weights is important. It has
been shown [1] that even very simple weights based on the
performance of each individual input system can be effective.
In this work, as a heuristic, we weight each system by its
individual mean average precision. We do not suppose this
to be optimal, but it illustrates a simple and effective way
to take advantage of training data.

3.2.8 Relevance Scores
Interestingly, there does not seem to be an obvious way to

make good use of relevance scores in the comparison func-
tion. Many metasearch algorithms (like CombSum) can be
implemented through careful selection of the comparison
function (e.g., in the comparison function, one can calcu-
late the score given a doc a by metasearch algorithm X, the
score given a doc b by X, and order them appropriately),
but it is not clear how to use the scores in a new way.

4. EXPERIMENTS

4.1 Experimental Setup
We use systems submitted to the annual Text REtrieval

Conference (TREC) as input to our fusion algorithms. TREC
offers large, well-respected, standard data sets with many
ranked lists for each query, ready to be fused. Each sys-
tem submits 50 queries, which is enough to allow training
and testing when weights are being used. Table 1 shows
information about the data sets. We chose the data sets to
facilitate comparison with other work: TREC 3 was used by
Lee [19], and TREC 5 were used by Vogt [32]. We also chose
the more recent TREC 9 because it contains Web data.

Data Set TREC No. Mean Avg Precision
Name Topics Sys Min Max Avg St Dev
TREC 3 151–200 40 0.029 0.423 0.257 0.0859
TREC 5 251–300 61 0.004 0.317 0.190 0.0683
TREC 9 451–500 105 0.000 0.352 0.144 0.0779
Vogt (10 topics) 10 0.225 0.395 0.288 0.0543

Table 1: The data sets used in our experiments.
“Topics” are queries and they are numbered con-
secutively. “No. Sys” contains the number of search
systems that submitted results to TREC that year
and is the number of systems available for meta-
search.

In TREC, each system is allowed to return up to 1000
documents for each query. For TREC 3 and TREC 5, we
used the data submitted to the TREC “adhoc” task2. For

2For TREC 5 we only use runs over the complete data set,

TREC 9, the adhoc task had been replaced by the “web”
track. Therefore, over that data set we are fusing the results
of Web search engines.

The Vogt data set consists of a subset of the TREC 5
data set as defined by Vogt [32]. In particular, it contains
only 10 of the 61 TREC 5 systems, and only 10 of the 50
TREC 5 queries. This subset of retrieval systems was cho-
sen to maximize diversity as measured by nine similarity
criteria. The systems are: CLTHES, DCU961, anu5aut1,
anu5man6, brkly17, colm1, fsclt4, gm96ma1, mds002, and
uwgcx0. The queries were chosen for their large number of
relevant documents: queries 257, 259, 261, 272, 274, 280,
282, 285, 288, and 289. We include the Vogt data because
of its diverse inputs and to compare our results to [32]. Note
that this data set, due to its diversity, may be the most simi-
lar to the internal use of metasearch that we have described.

The last four columns in the table show performance in-
formation about each data set: the minimum mean average
precision obtained by a system in a given data set, the max-
imum, the mean, and the standard deviation. The Vogt and
TREC 9 data sets are very different: not only is Vogt small
while TREC 9 is large, but Vogt has the highest average per-
formance, while TREC 9 has the lowest (only half of Vogt’s
0.288). Vogt has low deviation, especially given its high
performance, while TREC 9 has high deviation, especially
given its low performance. Thus the performances of sys-
tems in Vogt are similar to each other (a situation that may
be advantageous for metasearch) while the performances of
systems in TREC 9 vary widely.

4.1.1 Training and Testing
The TREC data used for our experiments also includes

the correct answers for each query: documents labeled as
relevant or irrelevant. We use these answers primarily to
evaluate the result of each metasearch experiment that we
perform, but we also use it for training purposes. In all of
our experiments that require training data (e.g., weighted
Condorcet-fuse), we use two-way cross validation: we use
odd-numbered queries as training data, and even-numbered
queries as testing data. Then we reverse the data sets and
use evens for training and odds for testing. The performance
numbers we report are the average of these two. Thus for
three of our data sets (TREC 3, TREC 5, and TREC 9) we
train on 25 of the 50 queries. Since the Vogt data set only
contains ten queries, we train on five.

4.2 Procedure
We use two experimental procedures: one selects random

sets of input systems, and the other combines the best input
systems. In our first type of experiment, which we designate
the best-to-worst fusion experiment, we use the given meta-
search algorithm to combine the best i retrieval systems. In
other words, we combine the top two systems, then the top
three systems, and so on, up to the final combination of the
top 20 input systems. This experiment is designed to test
how the metasearch algorithm performs when combining the
best input systems.

In our second type of experiment, which we call the random-
sets experiment, we examine the performance of metasearch
strategies when combining random groups of retrieval sys-
tems. Each data point represents the average value obtained
over 200 trials (or as many as are combinatorially possi-

that is those systems in Category A, not B.

ble) performed as follows. Randomly select a set of k (for
k ∈ {2, 4, . . . , 12}) input systems, apply the given meta-
search algorithm to these systems, and record the average
precision of the metasearch algorithm’s output. (Addition-
ally, we record the average precision of the best of the k
input systems in order to meaningfully assess the improve-
ment gained, if any.) This experiment is designed:

1. to simulate a real-world situation in which one has a
set of k techniques available, and must try to obtain
the best performance possible from those k. And,

2. to see how the number of input systems affects the per-
formance of the algorithm. A good system will con-
sistently improve on the best of its inputs, no matter
how many input systems are available.

Although we believe these experiments do test the ability
of metasearch to improve upon the best input system be-
ing combined, they are designed primarily to compare the
performance of one metasearch algorithm against the per-
formance of another.

4.3 Results for Condorcet-fuse
Figures 4 and 5 show experimental results for Condorcet-

fuse. The left column of graphs shows results of the random-
sets experiment, while the right column shows the best-
to-worst experiment. Each row is for a different data set:
TREC 3, TREC 5, TREC 9, and Vogt. Each graph shows
the mean average precision acheived by a metasearch system—
the x-axis shows the number of systems being combined.

The title of each random-sets graph contains confidence-
interval information. If the title says “(max err: x),” this
means we are at least 90% confident that the actual value
of each data point in the graph lies within plus or minus
x of the value shown. The low values of x shown in the
graphs is an indication of the accuracy of our random-sets
experiments. The best-to-worst experiments, however, are
inherently less accurate: each data point is the result of only
one fusion, not 200 as in the random-sets experiment. For
this reason, we consider the random-sets experiment a much
more reliable method of comparing metasearch algorithms.

As can be seen in Figure 4, in the random-sets experi-
ment, when only ranks are available the Condorcet-fuse algo-
rithm outperforms rCombMNZ (CombMNZ based on ranks
not relevance scores) on each of the four data sets. When
relevance scores are available, Condorcet-fuse outperforms
CombMNZ on three of the four data sets, despite the fact
that Condorcet-fuse doesn’t take advantage of the relevance
scores.

Table 2 shows that our results for the random-sets exper-
iment are usually significant. After gathering the results of
the 200 fusion experiments3 that went into each data point,
we used the sign test to compare Condorcet-fuse to each
other metasearch algorithm. From the second column in
the table it is clear that Condorcet-fuse usually outperforms
(indicated with a “+”) the best input system being com-
bined, often significantly (indicated with a “*”). Similarly,
it outperforms CombMNZ significantly in almost every case

3Where combinatorially possible. On the Vogt data set,
there are only 45 ways of choosing two systems to combine
out of the ten. And as there is only one way to choose
ten systems out of ten, we cannot meaningfully compute
statistical significance when combining all ten systems.

0.32

0.34

0.36

0.38

0.4

0.42

2 4 6 8 10 12

M
ea

n
av

g
pr

ec
is

io
n

Number of randomly chosen input systems

TREC 3: combining 200 random sets of systems (max err: 0.008).

Condorcet-fuse
CombMNZ

rCombMNZ
Borda-fuse

The best input system

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n
av

g
pr

ec
is

io
n

Input retrieval systems sorted best to worst

TREC 3: Combining the top i systems in order.

Condorcet-fuse
CombMNZ

rCombMNZ
Borda-fuse

input system i

0.22

0.24

0.26

0.28

0.3

0.32

2 4 6 8 10 12

M
ea

n
av

g
pr

ec
is

io
n

Number of randomly chosen input systems

TREC 5: combining 200 random sets of systems (max err: 0.007).

Condorcet-fuse
CombMNZ

rCombMNZ
Borda-fuse

The best input system

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n
av

g
pr

ec
is

io
n

Input retrieval systems sorted best to worst

TREC 5: Combining the top i systems in order.

Condorcet-fuse
CombMNZ

rCombMNZ
Borda-fuse

input system i

0.18

0.2

0.22

0.24

0.26

0.28

2 4 6 8 10 12

M
ea

n
av

g
pr

ec
is

io
n

Number of randomly chosen input systems

TREC 9: combining 200 random sets of systems (max err: 0.008).

Condorcet-fuse
CombMNZ

rCombMNZ
Borda-fuse

The best input system

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n
av

g
pr

ec
is

io
n

Input retrieval systems sorted best to worst

TREC 9: Combining the top i systems in order.

Condorcet-fuse
CombMNZ

rCombMNZ
Borda-fuse

input system i

0.35

0.4

0.45

0.5

0.55

2 4 6 8 10 12

M
ea

n
av

g
pr

ec
is

io
n

Number of randomly chosen input systems

Vogt: combining 1-200 random sets of systems (max err: 0.012).

Condorcet-fuse
CombMNZ

rCombMNZ
Borda-fuse

The best input system

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5 6 7 8 9 10

M
ea

n
av

g
pr

ec
is

io
n

Input retrieval systems sorted best to worst

Vogt: Combining the top i systems in order.

Condorcet-fuse
CombMNZ

rCombMNZ
Borda-fuse

input system i

Figure 4: Condorcet-fuse versus CombMNZ and Borda-fuse on four data sets. Also shown is the best input
system. If relevance scores are available or not, Condorcet-fuse outperforms CombMNZ in most cases.

except in TREC 3. And it easily outperforms rCombMNZ
and Borda-fuse. Not surprisingly, Condorcet-fuse is usually
outperformed by its own weighted version that can take ad-
vantage of training data. We discuss a dependence-filtered
variant of Condorcet-fuse below. Note that this kind of anal-
ysis cannot be performed on the best-to-worst experiment
where each datapoint represents a single fusion experiment.

In the best-to-worst experiment, an interesting anomaly
occurs: input system dependence becomes an obvious per-
formance issue. Consider the TREC 9 data set. Notice the
dip in performance that Condorcet-fuse suffers when adding
input systems three, four, and five. The names of the first
five input systems in TREC 9, (along with their mean av-
erage precisions) are shown in Table 3. Systems two, three,

TREC Run Avg Prec
iit00m 0.3519
jscbt9wll2 0.2801
jscbt9wcl1 0.2687
jscbt9wll1 0.2659
ric9dpn 0.2616

Table 3: The top five input systems from the
TREC 9 data set. Systems 2, 3, and 4 are runs
from the same research team.

and four are runs by the Justsystem Corporation, and are
actually quite similar to each other. A simple method to
measure the similarity of these ranked lists is to consider
the ranked lists for each query simply as unordered sets of
documents, and define the similarity of two sets A and B as
sim(A, B) = A∩B

A∪B
. This measure runs from zero for disjoint

sets to one for identical sets. We use sim() as a measure of
similarity between two input systems by averaging its value
over the 50 queries. This is a rough but reasonable measure
of the similarity of two input systems—if they consistently
return similar sets of top 1000 documents, they probably re-
turn similar sets of top 100 documents, and similar sets of
top 10 documents, etc.

If we compare TREC runs using our set-similarity mea-
sure, we find that the average similarity of any two systems
in each data set is as shown in Table 4. Note that it is not

Data Set Avg Sim
TREC 3 0.229
TREC 5 0.167
TREC 9 0.162
Vogt 0.149

Table 4: The average pairwise set-similarity of runs
in each data set.

surprising that the Vogt data set has the lowest average sim-
ilarity, since this data set was chosen for its diversity. But,
the average similarity between the three Justsystem Corp.
runs listed above is 0.789—the runs are very similar.

Thus, on the TREC 9 data set, when Condorcet-fuse com-
bines the top two systems, it performs well (refer back to
Figure 4). But when it combines the top three systems,
suddenly the two Justsystem Corp. runs dominate over the

(much better performing) IIT run—they have a two versus
one majority when voting on each pair of documents. This
is repeated when combining the top four systems, and it is
not until combining the top six systems that the three Just-
system runs do not have a majority voice—at this point the
performance of Condorcet-fuse returns to a reasonable level.
Condorcet-fuse seems particularly sensitive to input system
dependence when combining only a few systems. Note that
the same effect can be seen in the TREC 5 data set, where
input systems two and three are again two runs from the
same retrieval team, and are highly similar (in this case,
their average set-similarity is 0.856).

4.3.1 Dependence Filtering
One way to address the problem of input dependence is

to try to eliminate it directly. We experiment with perhaps
the most simple way of doing this, which we call dependence
filtering. Dependence filtering can be used with any meta-
search algorithm A: before A runs on a set of input systems
S , filter the dependent systems out of S . That is, examine
each pair of systems S1, S2 ∈ S , in order of descending set-
similarity. If the average set-similarity of S1 and S2 is above
some threshold (we use 0.66 for our experiments), randomly
drop one of them from S , resulting in a smaller set of input
systems S ′. Then proceed to fuse S ′ using A.

If |S| = k, our brute-force implementation of dependence
filtering performs O(k2) similarity comparisons between in-
put systems, and each similarity comparison takes O(nq)
time for q queries each with n documents. However, the ac-
tual similarity comparisons need only be done once per data
set. In other words, we pre-compute the similarity between
every pair of input systems in each data set, and, when fus-
ing, we need only look up the O(k2) values. This has not
been prohibitively expensive for us since we never fuse more
than k ≈ 100 input systems at once.

Also note that dependence filtering requires no training
data in the form of relevance judgments; the similarity as-
sessments are made based on the ranked lists alone. To get
an average similarity, dependence filtering does require sev-
eral ranked lists from each system in response to the same
set of queries, but this is generally easy to obtain.

Figure 5 shows the results of two variants of Condorcet-
fuse: with performance weights, and after dependence filter-
ing. Both improve performance significantly: weights help
especially in the random-sets experiment (except over the
Vogt data set, where all of the systems have similar perfor-
mance), while dependence filtering essentially eliminates the
performance dips in the best-to-worst experiment.

5. CONCLUSION
We have defined a new model for the metasearch prob-

lem, the Condorcet model, adapted from majoritarian vot-
ing from the field of Social Choice Theory. We have pre-
sented an efficient algorithm, Condorcet-fuse, which permits
a simple, sorting-based implementation of the model. When
document relevance scores are not available, Condorcet-fuse
consistently outperforms the standard CombMNZ. Even when
relevance scores are available (which Condorcet-fuse can-
not take advantage of), Condorcet-fuse still outperforms
CombMNZ on three of the four TREC data sets that we
tested. Finally, Condorcet-fuse easily outperforms Borda-
fuse, a previously-proposed, voting-based fusion technique.

num
sys’s

Best input
system

CombMNZ rCombMNZ Borda-fuse Weighted
Condorcet-fuse

Dependence-filtered
Condorcet-fuse

TREC 3
2 − 0.4438 − 0.0024* + 0.0000* + 0.0170* + 0.1292 − 0.0000*
4 + 0.0002* − 0.0000* + 0.0000* + 0.0000* + 0.1613 − 0.0170*
6 + 0.0000* − 0.0000* + 0.0000* + 0.0000* − 0.0239* − 0.2399
8 + 0.0001* − 0.0000* + 0.0000* + 0.0000* − 0.0085* + 0.5000
10 + 0.0002* − 0.0000* + 0.0000* + 0.0000* − 0.0015* − 0.2399
12 + 0.0601 − 0.0000* + 0.0000* + 0.0000* − 0.0000* − 0.2860

TREC 5
2 + 0.1292 − 0.2860 + 0.0000* + 0.0000* − 0.3358 − 0.0000*
4 + 0.0331* + 0.0000* + 0.0000* + 0.0000* − 0.0000* + 0.1613
6 + 0.0601 + 0.0008* + 0.0000* + 0.0000* − 0.0000* + 0.1014
8 + 0.2399 + 0.0002* + 0.0000* + 0.0000* − 0.0000* − 0.3887
10 + 0.0002* + 0.0085* + 0.0000* + 0.0000* − 0.0000* − 0.3887
12 + 0.0121* + 0.3358 + 0.0000* + 0.0000* − 0.0000* − 0.0239*

TREC 9
2 − 0.0057* − 0.0038* + 0.0000* + 0.0000* − 0.0000* − 0.0000*
4 − 0.0449* + 0.0000* + 0.0000* + 0.0000* − 0.0000* − 0.0788
6 + 0.2399 + 0.0000* + 0.0000* + 0.0000* − 0.0000* − 0.0057*
8 + 0.0331* + 0.0000* + 0.0000* + 0.0000* − 0.0000* − 0.1613
10 + 0.1984 + 0.0000* + 0.0000* + 0.0000* − 0.0000* − 0.1613
12 + 0.2860 + 0.0000* + 0.0000* + 0.0000* − 0.0000* − 0.0085*

Vogt
2 + 0.0000* + 0.0011* + 0.0000* + 0.0000* + 0.0000* − 0.0000*
4 + 0.0000* + 0.0000* + 0.0000* + 0.0000* + 0.0000* − 0.0239*
6 + 0.0000* + 0.0000* + 0.0000* + 0.0000* + 0.0000* + 0.0601
8 + 0.0000* + 0.0000* + 0.0000* + 0.0000* + 0.0000* − 0.2283
10 na na na na na na

Table 2: Statistical significance results for the random-sets experiment, as calculated by the sign test. A “+”
indicates that Condorcet-fuse outperforms the given method. Entries with a “*” are significant above the
%95 level. No meaningful significance can be computed when combining all 10 systems for the Vogt data set.

6. REFERENCES
[1] J. A. Aslam and M. Montague. Models for

metasearch. In Croft et al. [7], pages 276–284.

[2] B. T. Bartell. Optimizing Ranking Functions: A
Connectionist Approach to Adaptive Information
Retrieval. PhD thesis, University of California, San
Diego, 1994.

[3] B. T. Bartell, G. W. Cottrell, and R. K. Belew.
Automatic combination of multiple ranked retrieval
systems. In W. B. Croft and C. van Rijsbergen,
editors, SIGIR’94, Proceedings of the 17th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
173–181, Dublin, Ireland, July 1994. Springer-Verlag,
London.

[4] N. Belkin, P. Kantor, C. Cool, and R. Quatrain.
Combining evidence for information retrieval. In
Harman [15], pages 35–43.

[5] N. Craswell, D. Hawking, and P. Thistlewaite.
Merging results from isolated search engines. In
Proceedings of the Tenth Australasian Database
Conference, Aukland, New Zealand, Jan. 1999.
Springer-Verlag.

[6] W. B. Croft. Combining approaches to information
retrieval. In W. B. Croft, editor, Advances in
Information Retrieval: Recent Research from the
Center for Intelligent Information Retrieval, The

Kluwer International Series on Information Retrieval,
chapter 1. Kluwer Academic Publishers, 2000.

[7] W. B. Croft, D. J. Harper, D. H. Kraft, and J. Zobel,
editors. SIGIR’01, Proceedings of the 24th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, New
Orleans, Louisiana, USA, Sept. 2001. ACM Press,
New York.

[8] J. C. de Borda. Mémoire sur les élections au scrutin.
In Histoire de l’Academie Royale des Sciences. Paris,
1781.

[9] M. de Condorcet. Essai sur l’application de l’analyse à
la probabilité des decisions rendues à la pluralité des
voix, 1785.

[10] H. L. Fisher and D. R. Elchesen. Effectiveness of
combining title words and index terms in machine
retrieval searches. Nature, 238:109–110, July 1972.

[11] E. Fox, P. Ingwersen, and R. Fidel, editors. SIGIR’95,
Proceedings of the 18th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, Seattle, Washington, July 1995.
ACM Press, New York.

[12] E. A. Fox, M. P. Koushik, J. Shaw, R. Modlin, and
D. Rao. Combining evidence from multiple searches.
In D. Harman, editor, The First Text REtrieval
Conference (TREC-1), pages 319–328, Gaithersburg,
MD, USA, Mar. 1993. U.S. Government Printing

0.32

0.34

0.36

0.38

0.4

0.42

2 4 6 8 10 12

M
ea

n
av

g
pr

ec
is

io
n

Number of randomly chosen input systems

TREC 3: combining 200 random sets of systems (max err: 0.007).

Condorcet-fuse
Weighted Condorcet-fuse

Dependence-filtered Condorcet-fuse
The best input system

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n
av

g
pr

ec
is

io
n

Input retrieval systems sorted best to worst

TREC 3: Combining the top i systems in order.

Condorcet-fuse
Weighted Condorcet-fuse

Dependence-filtered Condorcet-fuse
input system i

0.22

0.24

0.26

0.28

0.3

0.32

2 4 6 8 10 12

M
ea

n
av

g
pr

ec
is

io
n

Number of randomly chosen input systems

TREC 5: combining 200 random sets of systems (max err: 0.006).

Condorcet-fuse
Weighted Condorcet-fuse

Dependence-filtered Condorcet-fuse
The best input system

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n
av

g
pr

ec
is

io
n

Input retrieval systems sorted best to worst

TREC 5: Combining the top i systems in order.

Condorcet-fuse
Weighted Condorcet-fuse

Dependence-filtered Condorcet-fuse
input system i

0.18

0.2

0.22

0.24

0.26

0.28

2 4 6 8 10 12

M
ea

n
av

g
pr

ec
is

io
n

Number of randomly chosen input systems

TREC 9: combining 200 random sets of systems (max err: 0.008).

Condorcet-fuse
Weighted Condorcet-fuse

Dependence-filtered Condorcet-fuse
The best input system

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n
av

g
pr

ec
is

io
n

Input retrieval systems sorted best to worst

TREC 9: Combining the top i systems in order.

Condorcet-fuse
Weighted Condorcet-fuse

Dependence-filtered Condorcet-fuse
input system i

0.35

0.4

0.45

0.5

0.55

2 4 6 8 10 12

M
ea

n
av

g
pr

ec
is

io
n

Number of randomly chosen input systems

Vogt: combining 1-200 random sets of systems (max err: 0.012).

Condorcet-fuse
Weighted Condorcet-fuse

Dependence-filtered Condorcet-fuse
The best input system

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5 6 7 8 9 10

M
ea

n
av

g
pr

ec
is

io
n

Input retrieval systems sorted best to worst

Vogt: Combining the top i systems in order.

Condorcet-fuse
Weighted Condorcet-fuse

Dependence-filtered Condorcet-fuse
input system i

Figure 5: Weighted Condorcet-fuse and dependence-filtered Condorcet-fuse. Performance weights usually
improve performance, and filtering out dependent input systems is crucial in the best-to-worst experiment.

Office, Washington D.C.

[13] E. A. Fox and J. A. Shaw. Combination of multiple
searches. In Harman [15], pages 243–249.

[14] K. L. Fox, O. Frieder, M. Knepper, and E. Snowberg.
SENTINEL: A multiple engine information retrieval
and visualization system. Journal of the ASIS, 50(7),
May 1999.

[15] D. Harman, editor. The Second Text REtrieval
Conference (TREC-2), Gaithersburg, MD, USA, Mar.
1994. U.S. Government Printing Office, Washington
D.C.

[16] D. A. Hull, J. O. Pedersen, and H. Schütze. Method
combination for document filtering. In H.-P. Frei,
D. Harman, P. Schäuble, and R. Wilkinson, editors,
SIGIR’96, Proceedings of the 19th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
279–287, Zurich, Switzerland, Aug. 1996. ACM Press,
New York.

[17] J. S. Kelly. Social Choice Theory: An Introduction.
Springer-Verlag, 1988.

[18] J. H. Lee. Combining multiple evidence from different
properties of weighting schemes. In Fox et al. [11],
pages 180–188.

[19] J. H. Lee. Analyses of multiple evidence combination.
In N. J. Belkin, A. D. Narasimhalu, and P. Willett,
editors, SIGIR’97, Proceedings of the 20th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
267–275, Philadelphia, Pennsylvania, USA, July 1997.
ACM Press, New York.

[20] M. Montague and J. A. Aslam. Metasearch
consistency. In Croft et al. [7], pages 386–387.

[21] H. Moulin. Axioms of Cooperative Decision Making.
Cambridge University Press, 1988.

[22] K. B. Ng. An Investigation of the Conditions for
Effective Data Fusion in Information Retrieval. PhD
thesis, School of Communication, Information, and
Library Studies, Rutgers University, 1998.

[23] K. B. Ng and P. B. Kantor. An investigation of the
preconditions for effective data fusion in IR: A pilot
study. In Proceedings of the 61th Annual Meeting of
the American Society for Information Science, 1998.

[24] K. B. Ng, D. Loewenstern, C. Basu, H. Hirsh, and
P. B. Kantor. Data fusion of machine-learning
methods for the TREC5 routing task (and other
work). In Voorhees and Harman [35], pages 477–487.

[25] W. H. Riker. Liberalism Against Populism. Waveland
Press, 1982.

[26] E. W. Selberg. Towards Comprehensive Web Search.
PhD thesis, University of Washington, 1999.

[27] J. A. Shaw and E. A. Fox. Combination of multiple
searches. In D. Harman, editor, Overview of the Third
Text REtrieval Conference (TREC-3), pages 105–108,
Gaithersburg, MD, USA, Apr. 1995. U.S. Government
Printing Office, Washington D.C.

[28] B. Shu and S. Kak. A neural network-based intelligent
metasearch engine. Information Sciences, 120:1–11,
1999.

[29] P. Thompson. A combination of expert opinion
approach to probabilistic information retrieval, part 1:
the conceptual model. Information Processing and
Management, 26(3):371–382, 1990.

[30] P. Thompson. A combination of expert opinion
approach to probabilistic information retrieval, part 2:
mathematical treatment of CEO model 3. Information
Processing and Management, 26(3):383–394, 1990.

[31] C. C. Vogt. Adaptive Combination of Evidence for
Information Retrieval. PhD thesis, University of
California, San Diego, 1999.

[32] C. C. Vogt. How much more is better? Characterizing
the effects of adding more IR systems to a
combination. In Content-Based Multimedia
Information Access (RIAO), pages 457–475, Paris,
France, Apr. 2000.

[33] C. C. Vogt and G. W. Cottrell. Fusion via a linear
combination of scores. Information Retrieval,
1(3):151–173, Oct. 1999.

[34] C. C. Vogt, G. W. Cottrell, R. K. Belew, and B. T.
Bartell. Using relevance to train a linear mixture of
experts. In Voorhees and Harman [35], pages 503–515.

[35] E. Voorhees and D. Harman, editors. The Fifth Text
REtrieval Conference (TREC-5), Gaithersburg, MD,
USA, 1997. U.S. Government Printing Office,
Washington D.C.

[36] E. M. Voorhees, N. K. Gupta, and B. Johnson-Laird.
Learning collection fusion strategies. In Fox et al. [11],
pages 172–179.

