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what iIs a retrieval model?

e Model is an idealization or abstraction of an actual process

e Mathematical models are used to study the properties of the
process, draw conclusions, make predictions

e Conclusions derived from a model depend on whether the
model is a good approximation of the actual situation

e Statistical models represent repetitive processes, make
predictions about frequencies of interesting events

e Retrieval models can describe the computational
process

- e.g. how documents are ranked
— Note that how documents or indexes are stored is implementation

e Retrieval models can attempt to describe the human

process
- e.g. the information need, interaction
— Few do so meaningfully

e Retrieval models have an explicit or implicit definition of
relevance




retrieval models

boolean

vector space

latent semnatic indexing
statistical language
inference network
hyperlink based
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linear algebra
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Fig. 1.3. The column picture: linear combination of columns cquals b.




subspaces

w
A

plane 2u+v +w=>5

plane 4u — 6v = -2

(1, 1, 2) = point of intersection
with third plane

///’) B

line of intersection




\linear independence, base,
dimension, rank

e vector T is linear dependent of vectors 31,%>, ..., U
if there exists real numbers cq,co,...,cy Such
that

T = c1Y1 + c2y2 + ...t

e base of a vectorial space = maximal set of

linear independent vectors. All bases of a given
space have the same dimmension (dimmension
of the space)

e rank(A) = maximum number of raws/columns
linear independent

e rank(A) = dimenion of the subspacespanned
by A




matrix multiplication

(AB)3;, = a31by5 + a3;b5, + az3bs; + dzabas.
3 by 4 matrix 4 by 2 matrix 3 by 2 matrix
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dot product, norm

e dot product of 2 same dimension arrays is
simply the matrix product with result a real
number

& T — (331,332, 737?7«)1 Yy — (y17y27 7yn) then
<z y>=zxyl =Y 2y,

o Lo norm : |lz||=v<z-z>

e normalization: T = ﬂ%ﬂ; |Z|| =1



cosine




cosine computation

O

cos(f)

~ lallp
cos(f) = cos(f — a) = cos(B) cos(ar) + sin(B) sin(«)




orthogonality

perpendicular
to plane

column space




projections

column | =

column 2 =




A—=LDU factorization

e FOor any mxn matrix A, there exists a permu-
tation matrix P, a lower triangular matrix L
with unit diagonal and an mxn echelon matrix

U such that PA = LU (®  *
0| ®
0
0

0
0
0O 0 0 0 0 O

e FOor any nxn matrix A, there exists L, U lower
and upper triunghiula with unit diagonals, D a
diagonal matrix of pivots and P a permutation
matrix such that PA = LDU

o If A is symmetric (A = A!) then there is no
need for Pand U=L! : A=LDL?Y
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0 eigenvalues, eigenvectors

e )\ iS an eigenvalue for matrix A iff

det(A— X)) =20

e every eigenvalue has a correspondent non-
zero eigenvector x that satisfies

(A—MX)x =0 or Az = Az

in other words Ax and x have same direction
e sum of eigenvalues = trace(A) = sum of di-
agonal

e product of eigenvalues = det(A)

e cigenvalues of a upper/lower triangular ma-
trix are the diagonal entries




matrix diagonal form

o if Ahaslineary independent eigenvectors y1,yo, ..., Yr
| and S is the matrix having those as columns,

S = [y1yo...yn], then S is invertible and
By g

A2

S—1lAS =N = the diagonal

An

matrix of eigen_values of A.
o A= SAS 1

e NO repeated eigenval = indep. eigenvect

e A symetric AT = A = S orthogonal: STs =1
e S is not unique

e AS = SA holdsiff S has eigenvect as columns
e Not all matrices are diagonalizable




0 singular value decomposition

o if Ais m x n,m > n real matrix then it can
be decomposed as
A =UDV! where

e UismXxn, D,V aren Xn

e U,V are orthogonal : UTU = VIV = 1,4,

e D is diagonal, its entries are the squre roots
of eigenvalues of AT A
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vector space

! o represent documents and queries as
vectors in the term space
— issue : find the right coefficients

e Use a geometric similarity measure, often
angle-related
- issue: normallization




mapping to vectors

! « terms: an axis for each term
— vectors corresponding to terms are canonical

e document = sum of vectors
corresponding to terms contained in doc

e queries treated the same as documents




coefficients

e The coefficients (vector lengths, term weights)

represent term presence, importance, or “aboutness”
— Magnitude along each dimension

e Model gives no guidance on how to set term weights

e Some common choices:
— Binary: 1 = term is present, 0 = term not present in document
— tf: The frequency of the term in the document
— tf o idf: idf indicates the discriminatory power of the term

o Tf-idf is far and away the most common
— Numerous variations...




raw tf weights

ecat

ecat cat

ecat cat cat

ecat lion

elion cat

ecat lion dog

ecat cat lion dog dog




tf = term frequency

i o raw-tf (tf)=count of ‘term’ in document

tf
e Robertson tf (okapi tf) ¢f + k4 ¢. —doclen

avg.doclen

— based on a set of simple criteria loosely
connected to 2-Poisson model

— popular k=0.5; c=1.5
— basic formula is tf /(k+tf)
- document length = verbosity factor

e Mmany variants




Robertson tf

—— t1/(tf+0.35)

—o— tf/(tf+1)
tf/(tf+2)

—— tf/(tf+10)
tf/(tf+100)




IDF weights

Inverse Document Frequency

Used to weight terms based on frequency
in the corpus

Fixed, it can be precomputed for each term

N

basic formula IDF(t) = 10g(ﬁ)
— N= # of docs '

— Nt= #of docs containing term t




tf-idf

o tf * idf
- the weight on every term is tf(t,d)>idf(t)

e sometimes variants on tf, IDF

e no satisfactory model behind these
combinations




outline

review: geometry, linear algebra
vector space model

vector selection

similarity

weighting schemes

latent semantic indexing




jlcommon similarity measures

Sim(X,Y) Binary Term Vectors Weighted Term Vectors
Inner product

[ X AT 2%,

D 2| X Y| 2) %Y,
coefficient X [+|7] le_z +Zyi2

Cosine | X NY| > x,.y,

coefficient VX WY \/inz-zyf

X AY] D%y,
| X|+|Y|-|XY] DX+ Y =D X,

Jaccard
coefficient




vector similarity: cosine
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similarity, normalized

; >\same nteréecton area

but different fraction of sets

intersection
set; |-set;]

stmilarity =

e the size of intersection alone is meaningless
e Often divided by sizes of sets

e Same for vectors, using norm
- by normalizing vectors, cosine does not change




0 cosine similarity: example

D1 =(0.5T1 + 0.8T2 + 0.3T3) Q = (1.5T1 + 1T2 + 0Ts)

(0.5x1.5)+(0.8x1)
J00.5% +0.8 +0.3%f1.5> +1)

Sim(D1,Q) =

1.55
J98%3.25

8368



ocosine example, normalized

Dy = (0.5T7 + 0.8T5 + 0.375) Q= (1.5T] + 175 F 073)

= (0.571 + 0.875 4+ 0.373)/V0.98 Q' = (1.57y + 175+ 073)/V3.25
~ 0.5177 + 0.8275 + 0.3173 ~ 0.8371 + 0.5557>

Sim(D1,Q) = Sim(D},Q)
(0.51 x 0.83) 4 (0.82 x 0.555)

/(0.512 4 0.822 + 0.312)(0.832 4 0.5552)
(0.51 x 0.83) + (0.82 x 0.555)

0.878
round-off error,
should be the same '\ ~ \ 0.868 (from earlier slide)

\




similarity example

D1=3 cat +1 dog + 4 lion
D2 = 8 cat + 2 dog + 6 lion

\ D1=(3T1+ 1T2 + 4T3)
D2= (8T2+ 2T2 + 6T3)

Correlated Terms

Q = 2dog

< Q =(0T1+ 2T2+ 0T3)

Orthogonal Terms

lion
0.50
-0.40
1.00

dog
-0.20
1.00
-0.40

cat
1.00
-0.20
0.50

Term
cat
dog
lion

lion
0.00
0.00
1.00

dog
0.00
1.00
0.00

cat

1.00
0.00
0.00

Term
cat
dog
lion

Sim(D1,Q) = (3T1 + 1T2 + 4T3) * (2T2)
= 6T1°T2+ 2T20T2+ 8T3°T2
=6¢02+21 -804
=-1.2 +2 - 3.2

2.4

Sim(D1,Q) =320 + 12 + 4¢0
=2




tf-idf base similarity formula

; (T Fquery(t) 1D Fquery(t))'(-r Fdoc(t) 1D Fdoc(t))
|doc||-|lqueryl]

many options for TF_., and

- raw tf, Robertson tf, Lucene etc
- try to come up with yours

some options for IDF .

IDF ey SOMetimes not considered

normalization is critical




Lucene comparison

User-specified boost
tf-idf from document

Proportion of query matched
Length-normalized

query weight Term normalization is square

root of number of tokens in d
that are in the same field as ¢




complicated formulas

tfd,t - log (N/dft —+ 1)
vnumber of tokens in d in the same field as ¢

Wt d —
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e Variant of the vector space model

e Use Singular Value Decomposition (a dimensionality
reduction technique) to identify uncorrelated,

significant basis vectors or factors
— Rather than non-independent terms

e Replace original words with a subset of the new
factors (say 100) in both documents and queries

e Compute similarities in this new space

e Computationally expensive, uncertain effectiveness




0 dimensionality reduction

! « when the representation space is rich
e but data is lying in a small subspace

e that is when some eigenvalues are zero

— non-exact: ignore smallest eigenvalues, even
if they are not zero




documents

X = To S
e To, Do orthogonal with unit length columns
— TO b S TOT =1
e So = diagonal matrix of eigenvalues
e m = rank of X




LSI: example

cl:
c2:
c3:
c4:
c3:

ml:
m2:
m3:
m4;

Terms

human
interface

system
response
time
EPS
survey
trees
graph
minors

Human machine interface for Lab ABC computer applications
A survey of user opinion of computer system response time
The EPS user interface management system

System and human system engineering testing of EPS

Relation of user-perceived response time to error measurement

The generation of random, binary, unordered trees

The intersection graph of paths in trees

Graph minors IV: Widths of frees and well-quasi-ordering
Graph minors: A survey

Documents
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LSI: example

0.22 —=0.11 0.29 —0.41 —0.11 —0.34 0.52 —0.06 —0.4]
0.20 -0.07 0.14 —-0.55 0.28 0.50 -0.07 -0.01 —0.11
0.24 0.04 —0.16 —0.59 —0.11 —0.25 —0.30 0.06 0.49
040 006 —0.34 0.10 033 038 000 0.00 0.0l
0.64 —0.17 036 0.33 —-0.16 -0.21 -0.17 0.03 0.27
0.27 0.11 -043 0.07 0.08 —0,17 0.28 -0.02 -0.05
0.27 0.11 —0.43 007 0.08 —-0.17 0.28 —-0.02 -0.05
0.30 —-0.14 033 0.19 011 027 003 -0.02 —0.17
0.2 0.27 —0.18 —0.03 -0.54 0.08 —0.47 —0.04 —0.58
001 049 023 0.03 0.59 -0.39 —-0.29 0.25 -0.23
0.04 0.62 022 000 -007 0.11 0.16 —0.68 023
0.03 045 0.14 —-0.01 -0.30 028 0.34 068 0.18

Dy
0.20 —0.06 0.11 —0.95 0.05 -0.08 0.18 —0.01 —0.06
0.61 0.17 —0.50 —0.03 ~0.21 —0.26 —0.43 0.05 0.24
0.46 —0.03 0.21 0.04 038 0.72 -0.24 0.01 0.02
0.54 —023 0.57 0.27 —-0.21 -0.37 0.26 —0.02 —0.08
0.28 0.11 —0.51 0.i15 0.33 0.03 0.67 —0.06 —0.26
0.00 0.19 0.10 0.02 039 —0.30 -0.34 0.45 -0.62
001 044 0.19 0.02 035 -0.21 -0.15 —=0.76 0.02
002 062 025 001 015 000 025 045 052
008 0.53 0.08 —0.03 -0.60 0.36 —0.04 -0.07 —0.45




documents

A

X = T S

oJjhasoﬂhogonalunn4engthcolCT*TT::]J
e D has orthogonalunit-lengthcol (DxD1 = 1)
e S diagonal matrix of eigen values

m is the rank of X

t = # of rows in X

d = # of columnsin X

k = chosen number of dimensions of reduced

model




using LSI

A) D’

-0.11 3.34 0.20 061 046 054 028 000 002 0.02 0.08
-0.07 2.54 —0.06 0.17 —0.13 -0.23 0.11 0.19 0.44 0.62 0.53
0.04
0.06
-0.17
0.11
0.11
-0.14
0.27
0.49
0.62
0.45
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example

0.40
0.37
0.51
0.84
1.23
0.58
0.58
0.55
0.53

0.38
0.33
0.36
0.61
1.05
0.38
0.38
0.51
0.23

0.47
0.40
0.41
0.70
1.27
0.42
0.42
0.63
0.21

0.23 -0.14 -0.27
0.34 —0.15 —0.30
0.25 —0.10 —0.21

0.18 —0.05 —0.12 —0.16 —-0.09
0.16 —0.03 —0.07 —0.10 —0.04
0.24 0.02 0.06 0.09 0.12
0.39 003 0.08 0.12 0.19
0.56 —0.07 —0.15 —0.21 -0.05
0.28 0.06 0.13 0.19 0.22
0.28 0.06 0.13 0.19 0.22
0.24 —0.07 —-0.14 —0.20 —0.11
0.27 0.14 031 044 042
0.14 0.24 0.55 0.77 0.66
0.20 0.31 0.69 098 0.85
0.15 022 050 071 0.62

46



minors

original vs LSI
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human
interface
computer
user
system
response
time
EPS
survey
trees
graph
minors

0.06 0.09
0.08 0.12
-0.15 —-0.21
0.13 0.19
0.13 0.19
-0.14 —0.20




using LSI

A D’

-0.11 3.34 0.20 061 046 054 028 000 002 0.02 0.08

—0.07
0.04
0.06

—0.17
0.11
0.11

-0.14
0.27
0.49
0.62
0.45

2.54 —0.06 0.17 —=0.13 -0.23 0.11 0.19 0.4 062 0.53

e D is new doc vectors (k dimensions)

T provides term vectors
Given Q=q,d,...d; want to compare to docs

Convert Q from t dimensions to Kk
/I — T —1
Q' = Q1 * Tixk * Spk
Can now compare to doc vectors

e Same basic approach can be used to add
new docs to the database




LSI : does it work 7

e Decomposes language into “basis vectors”
- In a sense, is looking for core concepts

e In theory, this means that system will retrieve

documents using synonyms of your query words
— The “magic” that appeals to people

e From a demo at Isi.research.telcordia.com
— They hold the patent on LSI




0 vector space: summary

e Standard vector space
— Each dimension corresponds to a term in the vocabulary
- Vector elements are real-valued, reflecting term importance
— Any vector (document,query, ...) can be compared to any other
— Cosine correlation is the similarity metric used most often

e Latent Semantic Indexing (LSI)
— Each dimension corresponds to a “basic concept”
— Documents and queries mapped into basic concepts
— Same as standard vector space after that
— Whether it's good depends on what you want




Qvector Space : disadvantages

e Assumed independence relationship among terms
— Though this is a very common retrieval model assumption

e Lack of justification for some vector operations
— e.g. choice of similarity function
— e.g., choice of term weights

e Barely a retrieval model
— Doesn’t explicitly model relevance, a person’s information
need, language models, etc.

e Assumes a query and a document can be treated
the same (symmetric)




0 vector space: advantages

e Simplicity

e Ability to incorporate term weights
— Any type of term weights can be added
— No model that has to justify the use of a weight

e Ability to handle “distributed” term representations
- e.g., LSI

e Can measure similarities between almost anything:
- documents and queries
— documents and documents
— queries and queries
- sentences and sentences
- etc.




