
1
many slides courtesy James Allan@umass Amherst
some slides courtesy Christopher Manning and Prabhakar Raghavan @ Stanford

language models
for retrieval

2

• Model is an idealization or abstraction of an actual process
• Mathematical models are used to study the properties of the
process, draw conclusions, make predictions
• Conclusions derived from a model depend on whether the
model is a good approximation of the actual situation
• Statistical models represent repetitive processes, make
predictions about frequencies of interesting events
• Retrieval models can describe the computational
process
 – e.g. how documents are ranked
 – Note that how documents or indexes are stored is implementation
• Retrieval models can attempt to describe the human
process

 – e.g. the information need, interaction
 – Few do so meaningfully

• Retrieval models have an explicit or implicit definition of
relevance

what is a retrieval model?

3

today

retrieval models

• boolean
• vector space
• latent semnatic indexing
• statistical language
• inference network
• hyperlink based

4

1. J. M. Ponte and W. B. Croft. A language modeling approach to information
retrieval. Proceedings of ACM-SIGIR 1998, pages 275-281.
2. J. M. Ponte. A language modeling approach to information retrieval. Phd
dissertation, University of Massachusets, Amherst, MA, September 1998.
3. D. Hiemstra. Using Language Models for Information Retrieval. PhD
dissertation, University of Twente, Enschede, The Netherlands, January 2001.
4. D. R. H. Miller, T. Leek, and R. M. Schwartz. A hidden Markov model
information retrieval system. Proceedings of ACM-SIGIR 1999, pages 214-221.
5. F. Song and W. B. Croft. A general language model for information retrieval. In
Proceedings of Eighth International Conference on Information and Knowledge
Management (CIKM 1999)
6. S. F. Chen and J. T. Goodman. An empirical study of smoothing techniques for
language modeling. In Proceedings of the 34th Annual Meeting of the ACL,
1996.
7. C. Zhai and J. Lafferty. A study of smoothing methods for language models
applied to ad hoc information retrieval. Proceedings of the ACM-SIGIR 2001,
pages 334-342.
8. V. Lavrenko and W. B. Croft. Relevance-based language models. Proceedings
of the ACM SIGIR 2001, pages 120-127.
9. V. Lavrenko and W. B. Croft, Relevance Models in Information Retrieval, in
Language Modeling for Information Retrieval, W. Bruce Croft and John Lafferty,
ed., Kluwer Academic Publishers, chapter 2.

language models not in MIR

5

outline

• review: probabilities
• language model
• similarity, ranking in LM
• probability estimation
• smoothing methods
• examples

6

probabilities

• sample space
• probability
• independent events
• cond. probability
• Bayes theorem
• distributions

7

information theory,
coding

• entropy
• joint entropy
• cond. entropy
• relative entropy
• convexity, Jensen ineq.
• optimal coding
• Fano’s ineq.

8

outline

• review: probabilities
• language model
• similarity, ranking in LM
• probability estimation
• smoothing methods
• examples

9

• Probability distribution over strings of text
– how likely is a given string (observation) in a given “language”
– for example, consider probability for the following four strings

p1 = P(“a quick brown dog”)
p2 = P(“dog quick a brown”)
p3 = P(“быстрая brown dog”)
p4 = P(“быстрая собака”)

– English: p1 > p2 > p3 > p4

• … depends on what “language” we are modeling
– In most of IR, assume that p1 == p2

what is a language model ?

10

• Every document in a collection defines a “language”
– consider all possible sentences (strings) that author could have
written down when creating some given document
– some are perhaps more likely to occur than others

• subject to topic, writing style, language …
– P(s|MD) = probability that author would write down string “s”

• think of writing a billion variations of a document
and counting how many time we get “s”

• Now suppose “Q” is the user’s query
– what is the probability that author would write down “q” ?

• Rank documents D in the collection by P(Q|MD)
– probability of observing “Q” during random sampling from the
language model of document D

lang modeling for IR

11

language models

• estimate probabilities of certain ”events”
in the text

• based on these probabilities, use
likelihood as similarity

• language model based on
– letters?
– words?
– phrases?

12

statistical text generation

13

14

• What kind of language model should
we use?

– Unigram or higher-order models?
– Multinomial or multiple-Bernoulli?

• How can we estimate model
parameters?

– Basic models
– Translation models
– Aspect models
– non-parametric models

• How can we use the model for
ranking?

– Query-likelihood
– Document-likelihood
– Likelihood Ratio
– Divergence of query and document models

LM choices

15

unigram LM

• words are sampled independently, with
replacement

• order of the words is lost (no phrases)

16

higher-order LM
• Unigram model assumes word independence

– cannot capture surface form: P(“brown dog”) == P(“dog
brown”)

• Higher-order models
– n-gram: condition on preceding words

– cache: condition on a window (cache)

– grammar: condition on parse tree

• Are they useful?
– no improvements from n-gram, grammar-based models
– some research on cache-like models (proximity, passages, etc.)
– parameter estimation is prohibitively expensive

17

outline

• review: probabilities
• language model
• similarity, ranking in LM
• probability estimation
• smoothing methods
• examples

18

• Predominant model

• Fundamental event:
what is the identity of the i’th query token?

• observation is a sequence of events, one for
each query token

multinomial similarity

19

• Original model

• fundamental event: does the word w occur in the query?

• observation is a vector of binary events, one for each
possible word

multiple-Bernoulli similarity

20

•what is the probability to generate the given
query, given a language model?

•what is the probability to generate the given
document, given a language model?

•how ”close” are 2 statistical models?

score, ranking in LM

21

• Standard approach: query-likelihood
– estimate a language model MD for every document D in the
collection
– rank docs by the probability of “generating” the query

• Drawbacks:
– no notion of relevance in the model: everything is random sampling
– user feedback / query expansion not part of the model
-examples of relevant documents cannot help us improve the language
model MD
– does not directly allow weighted or structured queries

score: query likelihood

22

• Flip the direction of the query-likelihood approach
– estimate a language model MQ for the query Q
– rank docs D by the likelihood of being a random sample from MQ
– MQ expected to “predict” a typical relevant document

• Problems:
– different doc lengths, probabilities not comparable
– favors documents that contain frequent (low content) words

score: document likelihood

23

• Try to fix document likelihood:
– Bayes’ likelihood that Mq was the source, given that we
observed D
– related to Probability Ranking Principle: P(D|R) / P (D|N)
– allows relevance feedback, query expansion, etc.
– can benefit from complex estimation of the query model MQ

score: likelihood ratio

24

• Combine advantages of two ranking methods
– estimate a model of both the query MQ and the document MD
– directly compare similarity of the two models
– natural measure of similarity is cross-entropy (others exist):

– number of bits we would need to “encode” MQ using MD
– equivalent to Kullback-Leibler divergence
– equivalent to query-likelihood if MQ is simply counts of words in Q

• Cross-entropy is not symmetric: use H (MQ || MD)
– reverse works consistently worse, favors different document
– use reverse if ranking multiple queries w.r.t. one document

score: model comparison

25

Models of Text Generation

Query Model Query

Doc Model Doc

Searcher

Writer

Is this the same model?

26

Retrieval with Language Models

Query ModelQuery

Doc ModelDoc

Retrieval: Query likelihood (1)
 Document likelihood (2)
 Model comparison (3)

1

2

3

27

• Use Unigram models
– no consistent benefit from using higher order models
– estimation is much more complex (e.g. bi-gram from a 3-word
query)

• Use Multinomial models
– well-studied, consistent with other fields that use LMs
– extend multiple-Bernoulli model to non-binary events?

• Use Model Comparison for ranking
– allows feedback, expansion, etc. through estimation of MQ and MD
– use KL(MQ || MD) for ranking multiple documents against a query

• Estimation of MQ and MD is a crucial step
– very significant impact on performance (more than other choices)
– key to cross-language, cross-media and other applications

LM: popular choices

28

outline

• review: probabilities
• language model
• similarity, ranking in LM
• probability estimation
• smoothing methods
• examples

29

• Want to estimate MQ and/or MD from Q and/or D

• General problem:
– given a string of text S (= Q or D), estimate its language model MS
– S is commonly assumed to be an i.i.d. random sample from MS

• Independent and identically distributed

• Basic Language Models
– maximum-likelihood estimator and the zero frequency problem
– discounting, interpolation techniques
– Bayesian estimation

estimation

30

• count relative frequencies of words in S
• maximum-likelihood property:

– assigns highest possible likelihood to the observation
• unbiased estimator:

– if we repeat estimation an infinite number of times with
different starting points S, we will get correct probabilities (on
average)
– this is not very useful…

maximum likelihood

31

• Suppose some event not in our observation S
– Model will assign zero probability to that event
– And to any set of events involving the unseen event

• Happens very frequently with language

• It is incorrect to infer zero probabilities
– especially when creating a model from short samples

zero-frequency problem

32

Laplace smoothing

!"

!"#$"%& '())*+,-.

! %)/-* &0&-*' ,-)1'&20&3 3"*"

! "33 4 *) &0&25 %)/-*

! 2&-)2("$,6& *))1*",- #2)1"1,$,*,&'

! ,* %)22&'#)-3' *) /-,7)2(#2,)2'

! ,7 &0&-* %)/-*' "2& 8!4"!9" ###"!$: ;,*+
!
% !% <

& *+&-
("= $,&$,+))3 &'*,("*&' "2& 8!4

&
" !9

&
" ###" !$

&
:

$"#$"%& &'*,("*&' "2& 8!4>4
&>$

" !9>4
&>$

" ###" !$>4
&>$

:

33

discounting methods

• Laplace smoothing

• Lindstone correction
– add εto all count,

renormalize

• absolute discounting
– substract ε, redistribute

probab mass

34

• Held-out estimation
– Divide data into training and held-out sections
– In training data, count Nr, the number of words occurring r times
– In held-out data, count Tr, the number of times those words occur
– r* = Tr/Nr is adjusted count (equals r if training matches held-out)
– Use r*/N as estimate for words that occur r times

• Deleted estimation (cross-validation)
– Same idea, but break data into K sections
- Use each in turn as held-out data, to calculate Tr(k) and Nr(k)
– Estimate for words that occur r times is average of each

• Good-Turing estimation
– From previous, P(w|M) = r* / N if word w occurs r times in sample
– In Good-Turing, steal total probability mass from next most frequent
word
– Provides probability mass for words that occur r=0 times
- Take what’s leftover from r>0 to ensure adds to one

discounting methods

35

• Problem with all discounting methods:
– discounting treats unseen words equally (add or subtract ε)
– some words are more frequent than others

• Idea: use background probabilities
– “interpolate” ML estimates with General English expectations
(computed as relative frequency of a word in a large collection)
– reflects expected frequency of events

interpolation methods

ML estimate background probability

final estimate =

36

• Correctly setting λ is very important

• Start simple
– set λ to be a constant, independent of document, query

• Tune to optimize retrieval performance
– optimal value of λ varies with different databases, query
sets, etc.

Jelinek Mercer smoothing

37

• Problem with Jelinek-Mercer:
– longer documents provide better estimates
– could get by with less smoothing

• Make smoothing depend on sample size

• N is length of sample = document length
• µ is a constant

Dirichlet smoothing

38

• A step further:
– condition smoothing on “redundancy” of the example
– long, redundant example requires little smoothing
– short, sparse example requires a lot of smoothing

• Derived by considering the proportion of new events
as we walk through example

– N is total number of events = document length
– V is number of unique events = number of unique terms in doc

Witten-Bell smoothing

39

• Two possible approaches to smoothing

• Interpolation:
– Adjust probabilities for all events, both seen and
unseen

• Back-off:
– Adjust probabilities only for unseen events
– Leave non-zero probabilities as they are
– Rescale everything to sum to one: rescales “seen”
probabilities by a constant

• Interpolation tends to work better
 – And has a cleaner probabilistic interpretation

interpolation vs back-off

40

Two-stage smoothing

Query = “the algorithms for data mining”

d1: 0.04 0.001 0.02 0.002 0.003
d2: 0.02 0.001 0.01 0.003 0.004

40

Two-stage smoothing

Query = “the algorithms for data mining”

d1: 0.04 0.001 0.02 0.002 0.003
d2: 0.02 0.001 0.01 0.003 0.004

p(“algorithms”|d1) = p(“algorithm”|d2)
p(“data”|d1) < p(“data”|d2)

p(“mining”|d1) < p(“mining”|d2)

But p(q|d1)>p(q|d2)!

40

Two-stage smoothing

Query = “the algorithms for data mining”

d1: 0.04 0.001 0.02 0.002 0.003
d2: 0.02 0.001 0.01 0.003 0.004

p(“algorithms”|d1) = p(“algorithm”|d2)
p(“data”|d1) < p(“data”|d2)

p(“mining”|d1) < p(“mining”|d2)

But p(q|d1)>p(q|d2)!

We should make p(“the”) and p(“for”) less different for all docs.

41

c(w,d)

|d|
P(w|d) =

Two-stage smoothing

41

c(w,d)

|d|
P(w|d) =

+µp(w|C)

+µ

Stage-1

-Explain unseen words
-Dirichlet prior(Bayesian)

µ

Two-stage smoothing

41

c(w,d)

|d|
P(w|d) =

+µp(w|C)

+µ

Stage-1

-Explain unseen words
-Dirichlet prior(Bayesian)

µ

(1-λ) + λp(w|U)

Stage-2

-Explain noise in query
-2-component mixture

λ

Two-stage smoothing

42

Translation model (Berger
and Lafferty)

• Basic LMs do not address issues of synonymy.
– Or any deviation in expression of information need

from language of documents

• A translation model lets you generate query
words not in document via “translation” to
synonyms etc.
– Or to do cross-language IR, or multimedia IR

 Basic LM Translation

– Need to learn a translation model (using a dictionary or
via statistical machine translation)

43

• How do we determine if a given model is a LM?
• LM is generative

– at some level, a language model can be used to generate text
– explicitly computes probability of observing a string of text
– Ex: probability of observing a query string from a document model
probability of observing an answer from a question model
– model an entire population

• Discriminative approaches
– model just the decision boundary
– Ex: is this document relevant?
does it belong to class X or Y

– have a lot of advantages,
- but these are not generative approaches

LM are generative techniques

44

• Goal: estimate a model M from a sample text S

• Use maximum-likelihood estimator
– count the number of times each word occurs in S, divide by length

• Smoothing to avoid zero frequencies
– discounting methods: add or subtract a constant, redistribute mass
– better: interpolate with background probability of a word
– smoothing has a role similar to IDF in classical models

• Smoothing parameters very important
– Dirichlet works well for short queries (need to tune the parameter)
– Jelinek-Mercer works well for longer queries (also needs tuning)
– Lots of other ideas being worked on

LM: summary

45

Language models: pro & con

• Novel way of looking at the problem of text
retrieval based on probabilistic language
modeling

• Conceptually simple and explanatory
• Formal mathematical model
• Natural use of collection statistics, not heuristics

(almost⋯)

• LMs provide effective retrieval and can be
improved to the extent that the following
conditions can be met

• Our language models are accurate representations
of the data.

• Users have some sense of term distribution.

46

Comparison With Vector Space

• There’s some relation to traditional tf.idf
models:
– (unscaled) term frequency is directly in model

– the probabilities do length normalization of term
frequencies

– the effect of doing a mixture with overall collection
frequencies is a little like idf: terms rare in the general
collection but common in some documents will have a
greater influence on the ranking

47

• Similar in some ways
– Term weights based on frequency

– Terms often used as if they were independent

– Inverse document/collection frequency used

– Some form of length normalization useful

• Different in others
– Based on probability rather than similarity

• Intuitions are probabilistic rather than geometric

– Details of use of document length and term, document,
and collection frequency differ

Comparison With Vector Space

