Evaluation of IR systems

some slides courtesy James Allan@umass

evaluation of IR systems

- many things to evaluate
- test collections
- relevance
- system effectiveness
- significance tests
- TREC conference
- comments

evaluations

- IR system often component of larger system
- Might evaluate several aspects
 - Assistance in formulating queries
 - Speed of retrieval
 - Resources required
 - Presentation of documents
 - Ability to find relevant documents
 - Appealing to users (market evaluation)
- Evaluation generally comparative
 - System A vs. B
- Cost-benefit analysis possible
- Most common evaluation: retrieval effectiveness

test collections

- Compare retrieval performance using a test collection
 - set of documents
 - set of queries
 - set of relevance judgments (which docs relevant to each query)
- To compare the performance of two techniques:
 - each technique used to evaluate test queries
 - results (set or ranked list) compared using some performance measure
 - most common measures precision and recall
- Usually use multiple measures to get different views of performance
- Usually test with multiple collections performance is collection dependent

test collections

Collection	Cranfield	CACM	ISI	West	TREC2
Characteristics					
Collection size (docs)	1,400	3,204	1,460	11,953	742,611
Collection size (Mb)	1.5	2.3	2.2	254	2,162
Year created	1968	1983	1983	1990	1991
Unique stems	8,226	5,493	5,448	196,707	1,040,415
Stem occurrences	123,200	117,578	98,304	21,798,833	243,800,000
Max within document		27	27	1,309	
frequency					
Mean document length	88	36.7	67.3	1,823	328
(words)					
Number of queries	225	50	35	44	100

- TREC includes five disks, so has numerous subsets
- The TDT corpora are also well-known (though small)
 - In English, Arabic, and Chinese
 - Both text, television audio, and radio audio

About 60K stories

relevance

•difficult to define

- relevant doc =judged "useful" in the context of a query
 who judges ?
 - •humans not very consistent
 - •judgments depend on more than doc and query
- •with real collections, never know full set of relevant documents
- retrieval model incorporates some notion of relevance
- individuals may disagree occasionally but they agree on average

eval	luat	tion
	luu	

Web

12. CIKM 2003: New Orleans, Louisiana, USA

12. CIKM 2003: New Orleans, Louisiana, USA. Proceedings of the 2003 ACM CIKM International Conference on Information and Knowledge Management, New Orleans, ... www.informatik.uni-trier.de/ ~ley/db/conf/cikm/cikm2003.html - 56k - Cached - Similar pages

CIKM

Proceedings of the 2003 ACM CIKM International Conference on Information and Knowledge Management, New Orleans, Louisiana, USA, November 2-8, 2003. ... www.informatik.uni-trier.de/~ley/db/conf/cikm/ - 10k - Jun 25, 2005 - Cached - Similar pages

Web Images Groups News Froogle Local

CIKM'2003 review

CIKM/2003 highlights, 12th ACM International Conference on Information and Knowledge Management, 3-8 November, New Orleans ... smi.ucd.ie/~rinat/papers/cikm03_rep.html - 22k - Cached - Similar pages

Collaborative Filtering Mailing List Archive: [collab@sims] CFP

ACM CIKM 2003 Call For Papers. 12th International Conference on Information and Knowledge ... caliber papers submitted to CIKM 2003 will be accepted. ... www.pdesigner.net/1996/0697.html - 17k - Cached - Similar pages

TOC

Proceedings of the twelfth international conference on Information and knowledge management citation. 2003, New Orleans, LA, USA November 03 - 08, 2003 ... portal.acm.org/toc.cfm?id=956863&type=proceeding - Similar pages

[Asis-I] CIKM 2003

[Asis-I] CIKM 2003. Padmini Srinivasan padmini@lakshmi.info-science.uiowa.edu Mon, 29 Sep 2003 12:59:36 -0500. Previous message: [Asis-I] Re: ... mail.asis.org/pipermail/ asis-I/2003-September/001024.html - 17k - Cached - Similar pages

[PDF] CIKM 2003

File Format: PDF/Adobe Acrobat - View as HTML CIKM 2003. Jacob Kogan. Charles Nicholas. Marc Teboulle. – means and beyond – p.1/53. Page 2. Outline of the talk. how to build a partition ... www.csee.umbc.edu/~nicholas/clustering/jacob.pdf - Similar pages

Tutorial on Document Clustering

CIKM 2003 Tutorial. Clustering Large and High-Dimensional Data ... Katya Pelekhov and Daniela Rus,"Using Star Clusters for Filtering", CIKM 2000, (pdf) ... www.csee.umbc.edu/~nicholas/clustering/ - 9k - Cached - Similar pages

Conference on Information and Knowledge Management (CIKM)

CIKM has a strong tradition of workshops devoted to emerging areas of database ... The CIKM 2004 web page; The CIKM 2003 Web Page; The CIKM 2002 Web Page ... www.cikm.org/ - 7k - Cached - Similar pages

CIKM 2003, New Orleans, USA, November 2003

Home, CIKM 2003, New Orleans, USA, November 2003, << Bild 6 | Bild 7/80 | Bild 8 >>. Miniaturansicht. www.torsten-priebe.de/showpics.php?folder=2003-11a_cikm03&picture=7 - 2k - Cached - Similar pages

Scholar more »

Advanced Search

Preferences

Search

R

find/judge relevant docs

did the system find all relevant docs ?
 need complete judgments

- •i.e. a "R" or "N" for all query-doc pairs
- for large collections that is not practical
 millions of documents x tens of queries
- partial set of judgments
 - pooling
 - •judge top n documents from each system
 - use judgments across systems (union)
 sampling
 - possibly estimate size of relevant set
 - design sampling technique from measure
 search based
 - •use manually guided search
 - •until convinced all relevance found

issues

- fairness
- accuracy
- how to treat unjudged documents ?

8

evaluation of IR systems

- many things to evaluate
- test collections
- relevance
- system effectiveness
- significance tests
- TREC conference
- comments

ranked lists

- with respect to a given query
- R = number of relevant documents in the entire corpus (collection)
- •treat A as a set
- •how many relevant documents ?
- •at what rate ?

precision and recall

- Precision
 - Proportion of a retrieved set that is relevant
 - Precision = |relevant ∩ retrieved| ÷ |retrieved|
 - = P(relevant | retrieved)

- Recall
 - proportion of all relevant documents in the collection included in the retrieved set
 - Recall = |relevant \circle retrieved| ÷ |relevant|
 - = P(retrieved | relevant)
- Precision and recall are well-defined for sets
- For ranked retrieval
 - Compute a P/R point for each relevant document
 - Compute value at fixed recall points (e.g., precision at 20% recall)
 - Compute value at fixed rank cutoffs (e.g., precision at rank 20)

precision at cutoff (PC)

- -high cutoff: "I am feeling lucky"
- -P10 motivated by web search
- -low cutoff: comprehensive search

- -breakeven point
 -at cutoff R prec = recall
- -empirically shown to be effective
- -related with average precision

precision-recall curves

average precision (AP)

- one number that reflects the quality of entire list
- average precisions at relevant ranks
- divide by R when average

Recall0.20.40.40.60.60.60.81.0AvgPrec= 62.2%Precis.1.00.50.670.50.40.50.430.380.440.5

AvgPrec= 52.0%

interpolation

- as a trend, precision decreases
- and recall increases
- but it is not always so
- how to handle recall zero
- how to average graphs

interpolated AP

• average precision at standard recall points

• for a given query, compute P/R point for every relevant doc.

- interpolate precision at standard recall levels
 - 11-pt is usually 100%, 90, 80, ..., 10, 0% (yes, 0% recall)
 - 3-pt is usually 75%, 50%, 25%
- average over all queries to get average precision at each recall level
- average interpolated recall levels to get single result

 -called "interpolated average precision"
 -not used much anymore; "mean average precision" more common
 -values at specific interpolated points still commonly used

trec-eval demo

14:17>> bin/Buckley/trec_eval trec8/qrels/qrel.trec8 trec8/input/input.READWARE

Queryid (Num):	50			
Total number of de	ocuments over all queries			
Retrieved:	3060			
Relevant:	4728			
Rel ret:	2019			
Interpolated Reca	ll - Precision Averages:			
at 0.00	0.9528			
at 0.10	0.8255			
at 0.20	0.7527			
at 0.30	0.6307			
at 0.40	0.4919			
at 0.50	0.2905			
at 0.60	0.2652			
at 0.70	0.1772			
at 0.80	0.1351			
at 0.90	0.0731			
at 1.00	0.0175			
Average precision	(non-interpolated) for all rel docs(averaged over queries)			
	0.4001			
Precision:				
At 5 docs:	0.8400			
At 10 docs:	0.7740			
At 15 docs:	0.7427			
At 20 docs:	0.6840			
At 30 docs:	0.6100			
At 100 docs:	0.3474			
At 200 docs:	0.2016			
At 500 docs:	0.0808			
At 1000 docs:	0.0404			
R-Precision (precision after R (= num_rel for a query) docs retrieved):				
Exact:	0.4481			

E measure

• p=recision, r= recall

•
$$E = 1 - \frac{1}{\alpha \frac{1}{p} + (1 - \alpha) \frac{1}{r}}$$

- good results mean small values of E
- E is a set measure
- $\alpha =$ parameter to enphasize p or r
- use $\alpha = \frac{1}{\beta^2 + 1}$, then $E = 1 \frac{(\beta^2 + 1)pr}{\beta^2 p + r}$
- related to set symmetric difference

F measure

•
$$F = 1 - E = \frac{(\beta^2 + 1)pr}{\beta^2 p + r}$$

- good results mean large values of E
- F also is a set measure
- F1 measure is popular : F with $\beta = 1$ F1 = $\frac{2pr}{p+r}$
- F1 is in fact the harmonic mean of p and r
- \bullet heavily penalizes low values of p or r

b-pref
bpref =
$$\frac{1}{R} \sum_{r} 1 - \frac{|n \text{ ranked higher than } r|}{R}$$

bpref-10 = $\frac{1}{R} \sum_{r} 1 - \frac{|n \text{ ranked higher than } r|}{10 + R}$

http://www.itl.nist.gov/iad/IADpapers/2004/p102-buckley.pdf

evaluation of IR systems

- many things to evaluate
- test collections
- relevance
- system effectiveness
- significance tests
- TREC conference
- comments

significance tests

- System A beats System B on one query
 - Is it just a lucky query for System A?
 - Maybe System B does better on some other query
 - Need as many queries as possible
- Empirical research suggests 25 is minimum needed
- TREC tracks generally aim for at least 50 queries
- System A and B identical on all but one query

 If System A beats System B by enough on that one query, average will make A look better than B
- As above, could just be a lucky break for System A
 Need A to beat B frequently to believe it is really better
- System A is only 0.00001% better than System B - Even if it's true on every query, does it mean much?

significance tests

- Are observed differences statistically different?
- Generally can't make assumptions about underlying distribution
 - Most significance tests do make such assumptions
- \bullet Single-valued measures are easier to use, but R/P is possible
- Sign test or Wilcoxon signed-ranks test are typical
 - Do not require that data be normally distributed
 - Sign test answers how often
 - Wilcoxon answers how much
 - Sign test is crudest but most convincing
- Are observed differences detectable by users?

sign test

• For techniques A and B, compare average precision for each pair of results generated by queries in test collection

 \bullet If difference is large enough, count as + or -, otherwise ignore

• Use number of +'s and the number of significant differences to determine significance level

- For example, for 40 queries...
 - Technique A produced a better result than B 12 times
 - B was better than A 3 times
 - And 25 were "the same"...
 - p < 0.035 and technique A is significantly better than B at the 5% level
 - If A<B 18 times and B>A 9 times...
 - p < 0.122 and A is not significantly better than B at the 5% level

Wilcoxon test

compute diff

- rank diff by absolute value
- sum separately +ranks and -ranks
- two tailed test
 - T=min(+ranks,-ranks)
 - reject null hypothesis if

Т<Т0

where T0 is found in a table

А	В	DIFF	RANK	SIGNED RANK
97	96	-1	1.5	-1.5
88	86	-2	3	-3
75	79	4	4	4
90	89	-1	1.5	-1.5
85	91	6	6.5	6.5
94	89	-5	5	-5
77	86	9	8	8
89	99	10	9	9
82	94	12	10	10
90	96	6	6.5	6.5

+ranks = 44 -ranks = 11 T=11 $T_0=8$ (from table) conclusion : not significant

TREC conference

- <u>Text REtrieval</u> <u>Conference</u>
- Established in 1992 to evaluate large-scale IR
 Retrieving documents from a gigabyte collection
- Run by NIST's Information Access Division
 - Initially sponsored by DARPA as part of Tipster program
 - Now supported by many, including DARPA, ARDA, and NIST
- Probably most well known IR evaluation setting
 - Started with 25 participating organizations in 1992 evaluation
 - In 2003, there were 93 groups from 22 different countries
- Proceedings available on-line (http://trec.nist.gov)

 Overview of TREC 2003 at http://trec.nist.gov/pubs/trec12/papers/OVERVIEW.12.pdf

TREC conference

• TREC consists of IR research tracks

- Ad-hoc retrieval, routing, cross-language, scanned documents, speech recognition, query, video, filtering, Spanish, question answering, novelty, Chinese, high precision, interactive, Web, database merging, NLP, ...

• Each track works on roughly the same model

- November: track approved by TREC community
- Winter: track's members finalize format for track
- Spring: researchers train system based on specification
- Summer: researchers carry out formal evaluation
 - Usually a "blind" evaluation: researchers do not know answer
- Fall: NIST carries out evaluation
- November: Group meeting (TREC) to find out:
 - How well your site did
 - How others tackled the problem
- Many tracks are run by volunteers outside of NIST (e.g., Web)
- "Coopetition" model of evaluation
 - Successful approaches generally adopted in next cycle