
1

distributed IR

many slides courtesy James Allan@umass

2

distributed IR

• IR is usually viewed as searching a single collection of
documents
• What is a collection?

– A single source, e.g., Wall Street Journal? (What time period?)
– A single location, e.g., the UMass Physical Sciences Library?
– A set of libraries, e.g., all UMass Amherst libraries?

• Distributed IR: searching when there is more than one
collection

– Local environments, e.g., a large collection is partitioned
– Wide-area environments, e.g., corporate network, Internet

3

distributed IR

• Partition large collections across processors
– To increase speed
– Because of political or administrative requirements

• Networks, with hundreds or thousands of collections
– Consider number of collections indexed on the Web

• Heterogeneous environments, many IR systems

• Economic costs of searching everything at a site

• Economic costs of searching everything on a network

4

issues
• Site description

– Contents, search engine, services, etc

• Collection selection
– Deciding which collection(s) to search
– ranking collections for a query
– selecting the best subset from a ranked list

• Searching
– Interoperability, cooperativeness

• Result merging: Merging a set of document rankings
– different underlying corpus statistics
– different search engines with different output information

• Metrics:
– Generality, effectiveness, efficiency, consistency of results, amount of
manual effort, etc

5

collection selection approaches

• Single Site / LAN / Few Sites
– Select everything
– Group manually (and select manually)
– Rule-based selection
– Relevant document distribution (RDD)
– Query Clustering
– Query Probing

• Many Sites / WAN / Internet
– Content-based collection ranking (and selection)

6

collection selection: select all

• Found in LANs, e.g. where a large collection is
partitioned
• Works well with the unranked Boolean model

– Result set is the union of all search results

• Can work with statistical models
– Merge-sort all search results, to obtain merged ranked list
– But, scores from different databases aren’t comparable,
due to different corpus statistics, e.g., idf, avg_doclen
– Scores can be made comparable by imposing one set of corpus
statistics on all databases, e.g., global statistics, first database

• Ignores costs of searching collections
– e.g., time, money

• Does not scale to WAN / Internet
• Some parallelism by distributing search

7

collection selection : manually

• Collections are organized into groups with a common theme
– e.g., financial, technology, appellate court decisions

• User selects which group to search

• Found in commercial service providers
– e.g., Dialog, West

• Groupings determined manually
– time consuming, inconsistent groupings, coarse groupings, not good for
unusual information needs

• Groupings determined automatically
– Broker agents maintain a centralized cluster index by periodically
querying collections on each subject
– automatic creation, better consistency, coarse groupings
– not good for unusual information needs

8

collection selection : rule-based

• The contents of each collection are described in a
knowledge-base

– few details provided by authors of such systems

• A rule-based system selects the collections for a query
– few details provided by authors of how this works

• CONIT, a research system, never deployed widely
– tested on static and homogeneous collections
– time consuming to create
– inconsistent selection if rules change
– coarse groupings so not good for unusual information needs

9

collection selection: RDD
• RDD=relevant document distribution
• Build a database of queries and the distribution of
relevant documents for each query in each collection
(somehow)
• For a new query

– Find the k nearest neighbors in the database (similar past queries)
– Average the k relevant document distributions for each collection C,
to get an estimate of how relevant documents are distributed
– Use a maximization procedure over the |C| relevant document
distributions to decide how much to retrieve from each collection

10

collection selection: RDD

• The estimated RDD is the average of the RDDs for
the k most similar queries

• Note: Effectiveness depends on training queries
being similar to expected queries

11

collection selection: query clustering

• Build a database of queries with relevance judgments for each
query in each collection (somehow)

• Cluster the training queries for each collection, based on the
total number of documents retrieved in common (not just
relevant docs)

• Determine the average number of relevant documents in the
top L retrieved for each query cluster in each collection

• For a new query
– find the nearest query cluster centroid q in each collection c
– the estimated utility of c is the average number of relevant retrieved by q
– retrieve documents from c in proportion to estimated utility

• This method is designed for environments where there is little
variety in queries and new collections are not added often

12

collection selection: query probing

• Send a lightweight probe query to each collection
– each collection responds with term frequency information
• e.g., collection size, df for proximity, df for co-occurrence,
df for individual terms
– client ranks collections, selects top n

• Assumptions:
– processing tiny probes is considerably cheaper than full
queries
• e.g., because probe is shorter
• e.g., because probe does no ranking
– client can estimate collection utility based on a few terms
– probe bandwidth and latency is low

13

many collections

• Assumptions:
– It is too expensive to search every collection
• there may be hundreds or thousands
• they may be dispersed widely
• it may cost money to search some collections
– Collections are managed independently
• can’t depend upon a collection to describe itself well
– Collections are homogeneous and heterogeneous
– Queries are heterogeneous

• Solution:
– Search a centralized resource
– Represent each collection by its vocabulary

14

many collections

• Search a centralized resource
• Represent each collection by its
vocabulary

15

statistical profile of collection

16

statistical profile of collection

17

collection selection :
rank and select (GIOSS)

• GIOSS = Glossary-Of-Servers Server
• Estimate the number of potentially relevant
documents in collection C for Boolean AND query
Q as:

df t = number of documents in C containing term t
|C| = number of documents in C

• Requires that each collection C have an entry in a
centralized index

– centralized index is small, easy to maintain

• Automatic creation, consistent, dynamic grouping,
good for most information needs

18

collection selection: rank and select

gGIOSS = generalized GIOSS

•Extends the GlOSS approach to the vector space
model
• Each collection is represented by its centroid vector
• Standard inner product similarity measure of query
to
each collection
• Rank collections accordingly

19

collection selection: rank and select

hGIOSS = hierarchical GIOSS

•Extends the gGlOSS approach to sets of
gGlOSS indexes
• Each gGlOSS index is represented by its
centroid vector

20

collection selection: inference nets

21

Estimating p(Ri|Cj)
• For documents, p(Ri|Dj):
– ntf = tf / (tf + 0.5 + 1.5 * dl / avg_dl)
– idf = 0.4 + 0.6 * log ((D + 0.5) / df) / log (D + 1)
• Mapping:

Documents Collections
term frequency (tf) document frequency (df)
document frequency (df) collection frequency (cf)
document length (dl) collection length (cl)
number of documents (D) number of collections (C)

• For collections, p(Ri|Cj):
– ntf = df / (df + 150 + 50 * cl / avg_cl)
– icf = 0.4 + 0.6 * log((C + 0.5) / cf) / log (C + 1)

22

collection ranking

23

collection ranking

24

which collections to search

• Numerous options
– Top n
– Top group (clustering)
– Cost-based selection

• Not discussed further

25

result merging

• Round-robin, and weighted round-robin
• Recompute scores at client

– each collection sends back statistics with documents
• e.g., tf, doclen, maxtf, df, etc

– client computes a consistent global document score
– simple, consistent, effective
– ignores special indexing done in collection (if any)
– patented by InfoSeek (now defunct)

• Heuristic reranking at client
– client estimates a global document score, using local
document score and information about its collection

26

data fusion

• Weighted_s [Callan, SIGIR 1995]
– Cj = C * (Cj – avgC) / avgC
– Di′ = Di + Cj
– No probabilistic interpretation
– Collection scores were too similar
– Sensitive to the number of collections ranked

• Weighted_n
– Cj = (Cj - Cj_min) / (Cj_max - Cj_min)
– Di′ = (Di + 0.4 * Di * Cj) / 1.4

• No Doc Score:
– Di = 0.4 + 0.6 * (1 + MaxRankj - Ri) / MaxRankj
– Di′ = (Di + 0.4 * Di * Cj) / 1.4

27

data fusion

28

data fusion

29

data fusion

30

data fusion

31

result merging: RDD

• Recall RDD method for selecting collections
– Based on clusters of past queries

• Determine cutoff λi for collections to maximize
expected performance (based on RRDs)

• At rank r, select a collection randomly, based on
number of documents remaining to be merged

• Assign to rank r the highest unselected document in
that collection, and remove it from consideration

– Weighted round-robin

• Advantages:
– Respects original ranking within each collection
– Merges based on estimated relevance of each collection (if number
retrieved from each really reflects estimated relevance)
– Does not use document scores, hence no need to normalize

32

distrib IR - state of art
• Representing collections by terms and frequencies is
effective.

• Controlled vocabularies and schemas are not necessary.

• Collections and documents can be ranked with one
algorithm
(using different statistics).

– e.g., GlOSS, inference networks

• Rankings from different collections can be merged
efficiently:

– with precisely normalized scores (Infoseek’s method), or
– without precisely normalized document scores,
– with only minimal effort, and
– with only minimal communication between client and server.

• Large scale distributed retrieval can be accomplished
now.

33

distrib IR - state of art
• Most error occurs in ranking collections, not merging

• Not clear that inverse collection frequency (icf) helps
– but maybe we just don’t have enough collections yet

• State of the art is about 100 collections
– UMass has developed a 921 collection testbed
– CMU is pushing this to thousands of collections
– the major problem is relevance judgements, not data

• Significant improvements possible when fewer
collections are searched, i.e. don’t search Federal
Register in TREC

– Counter-intuitive at first blush (better results by ignoring data)

• Many open problems

• Language modeling approaches recently developed

34

• Multiple representations
– stemming, stopwords, query processing, indexing
– cheating / spamming

• Multiple retrieval algorithms
– varying accuracy in rankings

• Thousands (millions?) of collections

• Effectiveness with 2-3 word queries

• How to integrate
– relevance feedback
– query expansion
– browsing

