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In this Letter we present a very general method for extracting information from a generic string of
characters, e.g., a text, a DNA sequence, or a time series. Based on data-compression techniques, its
key point is the computation of a suitable measure of the remoteness of two bodies of knowledge. We
present the implementation of the method to linguistic motivated problems, featuring highly accurate
results for language recognition, authorship attribution, and language classification.
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Many systems and phenomena in nature are often rep-
resented in terms of sequences or strings of characters. In
experimental investigations of physical processes, for in-
stance, one typically has access to the system only through
a measuring device which produces a time record of a cer-
tain observable, i.e., a sequence of data. On the other hand,
other systems are intrinsically described by a string of char-
acters, e.g., DNA and protein sequences, language.

When analyzing a string of characters the main ques-
tion is to extract the information it brings. For a DNA
sequence this would correspond to the identification of the
subsequences codifying the genes and their specific func-
tions. On the other hand, for a written text one is interested
in understanding it, i.e., recognizing the language in which
the text is written, its author, the subject treated, and even-
tually the historical background.

The problem being cast in such a way, one would be
tempted to approach it from a very interesting point of
view: that of information theory [1,2]. In this context the
word information acquires a very precise meaning, namely
that of the entropy of the string, a measure of the surprise
the source emitting the sequences can reserve to us.

As is evident, the word information is used with dif-
ferent meanings in different contexts. Suppose now for a
while having the ability to measure the entropy of a given
sequence (e.g., a text). Is it possible to obtain from this
measure the information (in the semantic sense) we were
trying to extract from the sequence? This is the question
we address in this paper.

In particular, we define in a very general way a concept
of remoteness (or similarity) between pairs of sequences
based on their relative informational content. We devise,
without loss of generality with respect to the nature of
the strings of characters, a method to measure this dis-
tance based on data-compression techniques. The specific
question we address is whether this informational distance
between pairs of sequences is representative of the real
semantic difference between the sequences. It turns out
that the answer is yes, at least in the framework of the ex-
amples on which we have implemented the method. We
have chosen for our tests some textual corpora and we have
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evaluated our method on the basis of the results obtained
on some linguistic motivated problems. Is it possible to
automatically recognize the language in which a given text
is written? Is it possible to automatically guess the author
of a given text? Last but not the least, is it possible to iden-
tify the subject treated in a text in a way that permits its
automatic classification among many other texts in a given
corpus? In all the cases the answer is positive as we shall
give evidence of in the following.

Before discussing the details of our method let us briefly
recall the definition of entropy which is closely related to
a very old problem, that of transmitting a message with-
out losing information, i.e., the problem of the efficient
encoding [3].

The problem of the optimal coding for a text (or an
image or any other kind of information) has been enor-
mously studied in the last century. In particular Shannon
[1] discovered that there is a limit to the possibility of en-
coding a given sequence. This limit is the entropy of the
sequence. There are many equivalent definitions of en-
tropy, but probably the best definition in this context is
the Chaitin—Kolmogorov entropy [4—7]: the entropy of a
string of characters is the length (in bits) of the smallest
program which produces as output the string. This defini-
tion is really abstract. In particular it is impossible, even
in principle, to find such a program. Nevertheless there
are algorithms explicitly conceived to approach this theo-
retical limit. These are the file compressors or zippers. A
zipper takes a file and tries to transform it in the shortest
possible file. Obviously this is not the best way to encode
the file but it represents a good approximation of it. One
of the first compression algorithms is the Lempel and Ziv
algorithm (LZ77) [8,9] (used for instance by gzip, zip, and
Stacker). It is interesting to briefly recall how it works.
The LZ77 algorithm finds duplicated strings in the input
data. More precisely it looks for the longest match with
the beginning of the lookahead buffer and outputs a pointer
to that match given by two numbers: a distance, represent-
ing how far back the match starts, and a length, represent-
ing the number of matching characters. For example, the
match of the sequence o ... o, will be represented by the
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pointer (d, n), where d is the distance at which the match
starts. The matching sequence will then be encoded with a
number of bits equal to log,(d) + log,(n): i.e., the num-
ber of bits necessary to encode d and n. Roughly speaking
the average distance between two consecutive o ... 0, is
of the order of the inverse of its occurrence probability.
Therefore the zipper will encode more frequent sequences
with few bytes and will spend more bytes only for rare se-
quences. The LZ77 zipper has the following remarkable
property: if it encodes a sequence of length L emitted by
an ergodic source whose entropy per character is s, then
the length of the zipped file divided by the length of the
original file tends to s when the length of the text tends
to o (see [8,10], and references therein). In other words, it
does not encode the file in the best way but it does it better
and better as the length of the file increases.

The compression algorithms provide then a powerful
tool for the measure of the entropy and the fields of appli-
cations are innumerous ranging from theory of dynamical
systems [11] to linguistics and genetics [12]. Therefore
the first conclusion one can draw is about the possibility
of measuring the entropy of a sequence simply by zipping
it. In this paper we exploit this kind of algorithm to define
a concept of remoteness between pairs of sequences.

An easy way to understand where our definitions come
from is to recall the notion of relative entropy whose
essence can be easily grasped with the following example.
Let us consider two ergodic sources A and B emitting se-
quences of 0 and 1: A emits a 0 with probability p and 1
with probability 1 — p, while B emits 0 with probability
q and 1 with probability 1 — g. As already described,
the compression algorithm applied to a sequence emitted
by A will be able to encode the sequence almost op-
timally, i.e., coding a 0 with —log,p bits and a 1 with
—log,(1 — p) bits. This optimal coding will not be the
optimal one for the sequence emitted by B. In particu-
lar the entropy per character of the sequence emitted
by B in the coding optimal for A will be —glog,p —
(1 — g)log,(1 — p) while the entropy per character
of the sequence emitted by B in its optimal coding is
—qglog,q — (I — g)log,(1 — g). The number of bits
per character wasted to encode the sequence emitted by
B with the coding optimal for ‘A is the relative en-
tropy (see Kullback-Leibler [13]) of A and B, Sap =
—qlogzg -1 - q)logzllfg.

There exist several ways to measure the relative entropy
(see, for instance, [10,14]). One possibility is of course
to follow the recipe described in the previous example:
using the optimal coding for a given source to encode the
messages of another source. The path we follow is along
this stream. In order to define the relative entropy between
two sources A and B we extract a long sequence A from
the source A and a long sequence B as well as a small
sequence b from the source B. We create a new sequence
A + b by simply appending b after A. The sequence
A + b is now zipped, for example using gzip, and the
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measure of the length of b in the coding optimized for A
will be Agp = La+p — Ly, where Ly indicates the length
in bits of the zipped file X. The relative entropy S a per
character between A and B will be estimated by

Sag = (Aap — App)/Ib], (1)

where |b| is the number of characters of the sequence b
and A, /bl = (Lg+» — Lp)/|b| is an estimate of the en-
tropy of the source B.

Translated in a linguistic framework, if A and B are
texts written in different languages, A4, is a measure of
the difficulty for a generic person of mother tongue A
to understand the text written in the language B. Let us
consider a concrete example where A and B are two texts
written for instance in English and Italian. We take a long
English text and we append to it an Italian text. The
zipper begins reading the file starting from the English
text. So after a while it is able to encode optimally the
English file. When the Italian part begins, the zipper starts
encoding it in a way which is optimal for the English, i.e.,
it finds most of the matches in the English part. So the
first part of the Italian file is encoded with the English
code. After a while the zipper “learns” Italian, i.e., it tends
progressively to find most of the matches in the Italian
part with respect to the English one, and changes its rules.
Therefore if the length of the Italian file is ““small enough”
[15], i.e., if most of the matches occur in the English
part, the expression (1) will give a measure of the relative
entropy. We have checked this method on sequences for
which the relative entropy is known, obtaining an excellent
agreement between the theoretical value of the relative
entropy and the computed value [15]. The results of our
experiments on linguistic corpora turned out to be very
robust with respect to large variations on the size of the
file b [typically 1-15 kilobytes (kbyte) for a typical size
of file A of the order of 32—64 kbyte].

These considerations open the way to many possible
applications. Though our method is very general [16], in
this paper we focus in particular on sequences of characters
representing texts, and we shall discuss in particular two
problems of computational linguistics: context recognition
and the classification of sequences corpora.

Language recognition.— Suppose we are interested in
the automatic recognition of the language in which a given
text X is written. The procedure we use considers a
collection of long texts (a corpus) in as many different
(known) languages as possible: English, French, Italian,
Tagalog, .... We simply consider all the possible files ob-
tained appending a portion x of the unknown file X to all
the possible other files A; and we measure the differences
Ly, +x — La,. The file for which this difference is mini-
mal will select the language closest to the one of the X
file, or exactly its language, if the collection of languages
contained this language. We have considered in particular
a corpus of texts in 10 official languages of the European
Union (UE) [17]: Danish, Dutch, English, Finnish, French,
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German, Italian, Portuguese, Spanish, and Swedish. Each
text of the corpus played in turn the role of the text X and
all the others the role of the A;. Using in particular 10 texts
per language (giving a total corpus of 100 texts) we have
obtained that for any single text the method has recognized
the language: this means that for any text X the text A;
for which the difference L4, +xr — L4, was minimum was
a text written in the same language. Moreover it turned
out that, ranking for each X all the texts A; as a function
of the difference L4+ — Ly,, all the texts written in the
same language were in the first positions. The recognition
of the language works quite well for length of the X file as
small as 20 characters.

Authorship attribution.— Suppose in this case we are
interested in the automatic recognition of the author of a
given text X. We shall consider as before a collection,
as large as possible, of texts of several (known) authors
all written in the same language of the unknown text and
we shall look for the text A; for which the difference
L4,+x — L, is minimum. In order to collect a certain sta-
tistics we have performed the experiment using a corpus
of 90 different texts [18], using for each run one of the
texts in the corpus as unknown text. The results, shown in
Table I, feature a rate of success of 93.3%. This rate is the
ratio between the number of texts whose author has been
recognized (another text of the same author was ranked as
first) and the total number of texts considered.

The rate of success increases by considering more re-
fined procedures (performing, for instance, weighted aver-
ages over the first m ranked texts of a given text). There
are, of course, fluctuations in the success rate for each
author and this has to be expected since the writing style
is something difficult to grasp and define; moreover, it can
vary a lot in the production of a single author.

Classification of sequences.—Suppose we have a col-
lection of texts, for instance a corpus containing several

TABLE 1. Authorship attribution: For each author depicted
we report the number of different texts considered and two mea-
sures of success. Number of successes 1 and 2 are the numbers
of times another text of the same author was ranked in the first
position or in one of the first two positions, respectively.

No. of No. of No. of
Author texts successes 1 successes 2
Alighieri 8 8 8
D’ Annunzio 4 4 4
Deledda 15 15 15
Fogazzaro 5 4 5
Guicciardini 6 5 6
Macchiavelli 12 12 12
Manzoni 4 3 4
Pirandello 11 11 11
Salgari 11 10 10
Svevo 5 5 5
Verga 9 7 9
Total 90 84 89
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versions of the same text in different languages, and that
we are interested in a classification of this corpus.

One has to face two kinds of problems: the availability
of large collections of long texts in many different lan-
guages and, related to it, the need of a uniform coding for
the characters in different languages. In order to solve the
second problem we used, for all the texts, the UNICODE [19]
standard coding. In order to have the largest possible cor-
pus of texts in different languages we used “The Universal
Declaration of Human Rights” [20], which is considered
to be the most often translated document in the world; see
[21]. Our method, mutuated by the phylogenetic analysis
of biological sequences [22—24], considers the construc-
tion of a distance matrix, i.e., a matrix whose elements are
the distances between pairs of texts. We define the dis-
tance by

Sas = (Aap — App)/Apy + (Aps — Aua)/Daa,s
2)

where A and B are indices running on the corpus elements
and the normalization factors are chosen in order to be in-
dependent of the coding of the original files. Moreover,
since the relative entropy is not a distance in the mathe-
matical sense, we make the matrix elements satisfying the
triangular inequality. It is important to remark that a rig-
orous definition of distance between two bodies of knowl-
edge has been proposed by Li and Vitdnyi [12]. Starting
from the distance matrix one can build a tree representa-
tion: phylogenetic trees [24], spanning trees, etc. In our
example, we have used the Fitch-Margoliash method [25]
of the package PhylIP (phylogeny inference package) [26]
which basically constructs a tree by minimizing the net
disagreement between the matrix pairwise distances and
the distances measured on the tree. Similar results have
been obtained with the neighbor algorithm [26]. In Fig. 1
we show the results for over 50 languages widespread on
the Euro-Asiatic continent. We can notice that essentially
all the main linguistic groups (Ethnologue source [27])
are recognized: Romance, Celtic, Germanic, Ugro-Finnic,
Slavic, Baltic, Altaic. On the other hand, one has isolated
languages such as the Maltese, which is typically consid-
ered an Afro-Asiatic language, and the Basque, which is
classified as a non-Indo-European language and whose ori-
gins and relationships with other languages are uncertain.

Needless to say, a careful investigation of specific lin-
guistics features is not our purpose. In this framework
we are interested only in presenting the potentiality of the
method for several disciplines.

In conclusion, we have presented here a general method
to recognize and classify automatically sequences of char-
acters. We have discussed in particular the application to
textual corpora in several languages. We have shown how
a suitable definition of remoteness between texts, based
on the concept of relative entropy, allows us to extract
from a text much important information: the language in
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Romani Balkan [East Europe]
OccitanAuvergnat [France] —
Walloon [Belgique]

Corsican [France]

Italian [ltaly]

Sammarinese [ltaly]

Rhaeto Romance [Switzerland]
Friulian [Italy]

French [France]

Catalan [Spain]

Occitan [France]

Asturian [Spain]

Spanish [Spain]

Galician [Spain]
Portuguese [Portugal]
Sardinian [ltaly]

Romanian [Romania]
Romani Vlach [Macedonia]
English [UK]

Maltese [Malta]

Welsh [UK]

Irish Gaelic [Eire]

Scottish Gaelic [UK]

Breton [France]

Faroese [Denmark]
Icelandic [Iceland]

Swedish [Sweden]

Danish [Denmark]
Norwegian Bokmal [Norway]
Norwegian Nynorsk [Norway]
Luxembourgish [Luxembourg]
German [Germany]

Frisian [Netherlands]
Afrikaans

Dutch [Netherlands] —————

Fii h [Finland

Evtonian (Esons) —— UGROFINNIC
Turkish [Turk

Usbex [Uizberatan — 3 ALTAIC
Hungarian [Hungary]

Basque [Spain]

Slovak [Slovakia]
Czech [Czech Rep.]

ROMANCE

CELTIC

GERMANIC

Bosnian [Bosnia]
Serbian [Serbia]
Croatian [Croatia]
Slovenian [Slovenia]
Polish [Poland]
Sorbian [Germany] ——————
Lithuanian [Lithuania]

Lavvian Latvia] — 1 BALTIC
Albanian [Albany]

SLAVIC

FIG. 1. Language Tree: This figure illustrates the
phylogenetic-like tree constructed on the basis of more than
50 different versions of “The Universal Declaration of Human
Rights.” The tree is obtained using the Fitch-Margoliash
method applied to a distance matrix whose elements are com-
puted in terms of the relative entropy between pairs of texts.
The tree features essentially all the main linguistic groups of
the Euro-Asiatic continent (Romance, Celtic, Germanic, Ugro-
Finnic, Slavic, Baltic, Altaic), as well as a few isolated lan-
guages such as the Maltese, typically considered an Afro-Asiatic
language, and the Basque, classified as a non-Indo-European
language, and whose origins and relationships with other lan-
guages are uncertain. Notice that the tree is unrooted, i.e., it
does not require any hypothesis about common ancestors for the
languages. What is important is the relative positions between
pairs of languages. The branch lengths do not correspond to
the actual distances in the distance matrix.

which it is written, the subject treated as well as its au-
thor; on the other hand, the method allows us to classify
sets of sequences (a corpus) on the basis of the relative dis-
tances among the elements of the corpus itself and orga-
nize them in a hierarchical structure (graph, tree, etc.). The
method is highly versatile and general. It applies to any
kind of corpora of character strings independently of the
type of coding behind them: time sequences, language, ge-
netic sequences (DNA, proteins, etc.). It does not require
any a priori knowledge of the corpus under investiga-
tion (alphabet, grammar, syntax) nor about its statistics.
These features are potentially very important for fields
where the human intuition can fail: DNA and protein se-
quences, geological time series, stock market data, medical
monitoring, etc.
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