vector space retrieval
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vihat IS a retrieval model?

e Model is an idealization or abstraction of an actual process
* Mathematical models are used to study the properties of the
process, draw conclusions, make predictions

 Conclusions derived from a model depend on whether the
model is a good approximation of the actual situation

* Statistical models represent repetitive processes, make
predictions about frequencies of interesting events

 Retrieval models can describe the computational

process

— e.g. how documents are ranked
— Note that how documents or indexes are stored is implementation

« Retrieval models can attempt to describe the human

process
— e.g. the information need, interaction
— Few do so meaningfully

 Retrieval models have an explicit or implicit definition of
relevance




retrieval models

e boolean

tOday vector space

latent semnatic indexing
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Fig. 1.3. The column picture: linear combination of columns cquals b.




subspaces
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plane 4u — 6v = -2

(1, 1, 2) = point of intersection
with third plane
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linear independence, base,

0 dimmension, rank

e vector T is linear dependent of vectors 51,72, ..., Ut
If there exists real numbers cq,co,...,cy Such
that

T = c1Y1 + Y2 + -..Cili

e base of a vectorial space = maximal set of
linear independent vectors. All bases of a given
space have the same dimmension (dimmension
of the space)

e rank(A) = maximum number of raws/columns
linear independent

e rank(A) = dimenion of the subspacespanned
by A



matrix multiplication
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dot product, norm

e dot product of 2 same dimension arrays is
simply the matrix product with result a real
number

® T — (xlaa:Qv ,Cl?n), Yy — (ylny, 7y’n) then
<z y>=zxryl =0 7y,

o Lo norm : |lz||=v<z-z>

e normalization: £ = ﬁ;
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cosine computation

b=(b,,b,)

a:(al,az)

» X

0 | 0

cos(f) = cos(B—a) = cos(B) cos(a)+sin(B) sin(«a) y



orthogonality

perpendicular
to plane

column space
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projections

column
space

column | =

column 2 =
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vector space

e represent documents and queries as vectors
in the term space

e issue: find the right coefficients (many vari-
ants)

e USe a geometric similarity measure, often
angle-related

e ISsue: normalization
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mapping to vectors

terms: an axis for every term
-vectors coresponding to terms are canonical vectors

documents: sum of the vectors corresponding to terms in
the doc

equeries: treated the same as documents
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coefficients

 The coefficients (vector lengths, term weights)

represent term presence, importance, or “aboutness”
— Magnitude along each dimension

« Model gives no guidance on how to set term
weights

« Some common choices:
— Binary: 1 = term is present, O = term not present in
document
— tf. The frequency of the term in the document
— tre idf. idfindicates the discriminatory power of the term

« Tfidf is far and away the most common
— Numerous variations...
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example: raw tf weights

ecat cat

ecat lion
elion cat

. llon

dog
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0

tf = term frequency

e raw tf (called tf) = count of 'term’ in doc-
ument

. : . e tf
e robinsontf (okapi tf): okapi tf {7751 15_dodlen

. . . avgdoclen
- Based on a set of simple criteria loosely connected to

the 2-Poisson model

- Basic formula is tf/(k4tf) where k is a constant (ap-
prox. 1-2)

- Document length introduced as a verbosity factor

e Many variants
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Robertson tf
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0.6

0.5
0.4

0.3
0.2

0.1

—— tf/(tf+0.5)

—o— tf/(tf+1)
tf/(tf+2)
tf/(tf+10)
tf/(tf+100)
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IDF weights

e Inverse Document Frequency

e Used to weight terms based on frequency in
the corpus (or language)

e fixed, it can be precomputed for every term
e (basic) IDF(t) = Iog(%) where

N= # of docs

Ny = # of docs containing term ¢

21



TFIDF

e in fact tf*idf

e the weight on every term is tf(t,d)*idf(t)
Often : IDF= log(N/df) + 1 where N is the number of
documentsin the collection, df is the number of docu-
ments the term occurs in

IDF = log%, wher p is the term probability

sometimes normalized when in TF.IDF combination
e.g. for INQUERY: I:;?E\,%g)

e TF and IDF combined using multiplication
e NO satisfactay model behind these combi-

nations

22
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\ similarity, normalized

same intersection area
but different fraction of sets

intersection

|Set1|-|Set2|
« the size of intersection alone is meaningless
« often divided by sizes of sets

« same for vectors, using norm
— by normalizing vectors, cosine does not change

stmilarity =

24



0 common similarity measures

Sim(X,Y) Binary Term Vectors Weighted Term Vectors
Inner product

| X Y| fo.yf
che o 2|me| szi')}i
coefficient X [+|Y] fo +zyi2
Cosine | XY D X,
coefficient VXY \/ZX?ny
Jaccard Ay 2%,

| X [+]Y -] XY DX Y= X,

coefficient



similarity: weighted features

I, T, 14
D1 =3 cat +1 dog + 4 lion Q= 2dog
D2 = 8 cat + 2 dog + 6 lion C
K D1= (3T1+ 1T2 + 4T3) Q = (0T1+ 2T2+ 0T3)
D2= (8T2+ 2T2 + 6T3)
Correlated Terms Orthogonal Terms
Term  cat dog lion Term  cat dog lion
T, |cat 1.00 -0.20 0.50 cat 1.00 0.00 0.00
I, [dog -0.20 1.00 -0.40 dog 0.00 1.00 0.00
T; | lion 0.50 -0.40 1.00 lion 0.00 0.00 1.00
Sim(D1,Q) = (B3T1 + 1T2 + 4T3) » (2T2) Sim(D1,Q) =30 + 12 + 40
= 6T1eT2+ 2T2¢T2+ 8Tz T2 =2
=602+t2e1 -804
=-1.2 + 2 - 3.2

=-24



vector similarity: cosine

Docl

Term?2

_________________
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cosine, normalizationr
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0 cosine similarity: example

D1 = (0.5T1 + 0.8T2 + 0.3T5) Q = (15Tt + 1T2+ 0T53)

(0.5%1.5)+(0.8x1)
J00.52+0.8%+0.32)1.5% +1°)

Sim(D1,Q) =

1.55
\J.98x3.25

= .368
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0 cosine example normalized

Dy = (0.577 + 0.875 + 0.3753) Q= (1.57 F 115 F 073)

D7 = (0.571 +0.875>+ 0.373)/v0.98 Q' = (157 + 175+ 073)/v3.25
~ 0.5177 + 0.8275 + 0.317% ~ 0.837y + 0.5557%

Sim(D}, Q")

(0.51 x 0.83) + (0.82 x 0.555)
/(0.512 4 0.822 4 0.312)(0.832 4 0.5552)
(0.51 x 0.83) + (0.82 x 0.555)

— 0.878

ﬁ
round-off error, —",\ 9.868 (from earlier slide)
should be the same  ~ 30

Slm(Dl9Q)




0 tf-idf base similarity formula

; (T Fquery (t) 1D Fquery(t))'(_r Fdoc(t) ID Fdoc(t))

e many options for TF

doc| |-

query

query

and TF

doc

—raw tf, Robertson tf, Lucene etc

—try to come up with yours
e some options for IDF

doc

e IDF sometimes not considered

query

e normalization is critical
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\ Lucene comparison

User-specified boost

overla pm

q /
7/ — R 7_/
Proportion of query matched

Length-normalized
query weight

tf-idf from document

Term normalization is square
root of number of tokens in d
that are in the same field as ¢

32



0 other term weighting schemes

e Lucene
tfd,i - log (N/dft + 1)
vnumber of tokens in d in the same field as ¢

Wt d —

e augmented tf-idf cosine

1 ;1 tft,d _ N
(2 | 2max(tf*,d)) log

0.5
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more linear algebra
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\ A = LDU factorization

e For any mxn matrix A, there exists a permu-
tation matrix P, a lower triangular matrix L
with unit diagonal and an mxn echelon matrix

U such that PA = LU (® x  x % % % x % %]
O | ® * % % % % =% =x

U=]10 0 0| ® *x * x x =%

0O 0 0 O 0 0 0 0|®

O 0 0 0 0 0 0 0 0

e For any nxn matrix A, there exists L, U lower
and upper triunghiula with unit diagonals, D a
diagonal matrix of pivots and P a permutation
matrix such that PA= LDU

o If A is symmetric (A = A!) then there is no
need for PandU=1I1L1 : A=LDL?
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0 eigenvalues and eigenvectors

e )\ iS an eigenvalue for matrix A iff
det(A—XI) =0

e every eigenvalue has a correspondent non-
zero eigenvector x that satisfies

(A—X)x =0 or Ax = A\x

in other words Ax and x have same direction
e sum of eigenvalues = trace(A4) = sum of di-
agonal

e product of eigenvalues = det(A)

e eigenvalues of a upper/lower triangular ma-
trix are the diagonal entries
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matrix diagonal form

e if A haslineary independent eigenvectors y1, yo, ...

and S is the matrix having those as columns,
S = [y1y2...yn], then S is invertible and

By

S—1AS = A = A2

matrix of eigenvalues of A.
e A=SNAS1

An

, the diagonal

e NO repeated eigenval = indep. eigenvect
e A symetric AL = A = S orthogonal: ST =1

e S isS not unique

e AS = SA holdsiff S has eigenvect as columns
e Not all matrices are diagonalizable

y Yn
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0 singular value decomposition

o if Ais m xn,m > n real matrix then it can
be decomposed as
A =UDV! where

eUismxmn, D,V aren xn

e U,V are orthogonal : UTU = VIV = 1,,«n

e D is diagonal, its entries are the squre roots
of eigenvalues of A1 A

39



0 latent semantic indexing

 Variant of the vector space model
» Uses Singular Value Decomposition (a dimensionality

reduction technique) to identify uncorrelated,

significant basis vectors or factors
— Rather than non-independent terms

* Replace original words with a subset of the new
factors (say 100) in both documents and queries

e Compute similarities in this new space

« Computationally expensive, uncertain effectiveness

40



\ dimensionality reduction

when the representation space is rich
but the data is lying in a small-dimension subspace
that’'s when some eigenvalues are zero

‘non-exact: ignore smallest eigenvalues, even if they
are not zero

41



0 latent semantic indexing

terms

documents

X - T, Sg Do
m x m m x d
txd txm
X = Ty Sg Dy

e T1pH,Dg orthogonal matrices with unit length
columns (To * Td = 1)

e Sp diagonal matrix of eigen values

e m IS the rank of X 42




LSI: example

cl: Human machine interface for Lab ABC computer applications

c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system

c4: System and human system engineering testing of EPS

cd: Relation of user-perceived response time to error measurement

ml: The generation of random, binary, unordered trees

m2: The intersection graph of paths in trees

m3: Graph minors [V: Widths of trees and well-quasi-ordering

m4: Graph minors. A survey

Terms Documents

cl c3 c5 ml m?2 m3 m4

human 0 0 I 0 0 0 0
interface 0 H 0 0 0 0 0
computer, i 0 0 0 0 0 0
user 1 1 0 0 0 0 0
system | 1 2 0 0 0 0
response | 0 0 0 0 0 0
time 1 0 0 0 0 0 0
EPS 0 1 1 0 0 0 0
survey 0 9 ; ) §

trees 0 0 1 1
graph 0 0 1 1
minors 0 0 0 1

43



LSI: example

0.22 =0.11
0.20 —-0.07
0.24 0.04
0.40 0.06
0.64 —0.17
0.27 (.11
0.27 0.1}
0.30 -0.14
0.21 0.27
0.01 049
0.04 0.62
0.03 043

0.29 —0.41 -0.11 —0.34
0.14 -0.55 0.28 0.50
-0.16 —0.59 -0.11 —-0.25
-0.3¢ 0.10 033 038
0.36  0.33 -0.16 —-0.2]
-043 0.07 0.08 -0.17
-0.43 007 008 —0.17
033 019 0.1 0.27
—0.18 =0.03 -0.54 0.08
0.23 003 0.59 —0.39
0.22 000 -0.07 0.11
0.14 -0.01 -0.30 0.28

0.52
-0.07
—0.30

0.00
-0.17

0.28

0.28

0.03
—0.47
—0.29

0.16

0.34

-0.06 —0.41
—=0.11

—-0.01
0.06
0.00
0.03

-0.02

—-0.02

-0.02

—0.04
0.25

—0.68
0.68

0.49
0.01
0.27

-0.05
—0.05
—0.17
—0.58
—0.23

0.23
(.18

&
I

334

2.54
2.35

0.20 —0.06 0.11 —0.95 0.05

0.61

0.46 —
0.54 —

0.28
0.00
0.01]
0.02
.08

0.17 —0.50
0.03 0.21
0.23 0.57
0.11 —0.51
0.19 0.10
044 0.19
0.62 0.25
0.53 Q.08

—-0.03 ~0.21

0.04 0.38
0.27 -0.21
0.15 0.33
0.02 0.39
0.02 035
0.01 0.15

—0.03 —0.60

-0.08
—0.26
0.72
-0.37
0.03
-0.30
-0.21
0.00
0.36

1.50

0.18
—0.43
—0.24

0.26

0.67
—0.34
~0.15

0.25
—0.04

1.31

—-0.01
(.05
0.01

-0.02

—0.06
0.45

—0.76
0.45

-0.07

0.85

—-0.06
D.24
0.02

—0.08

—0.26

—0.62
0.02
(.52

—0.45

0.56

0.36



LS|

documents
’,
X = T 5 D
terms
kxk koxd
twd txk
-~
X = T S (0

e 7' has orthogonal unit-length col (T*TT =1)
e D has orthogonalunit-length col (D*DT =1)
e S diagonal matrix of eigen values

e m is the rank of X

ot = # of rows in X

e d = # of columnsin X

e k = chosen number of dimensionsof reduced
model
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0.22
0.20
0.24
0.40
0.64
0.27
0.27
0.30
0.21
0.01
0.04
0.03

T S

-0.11 3.34
—0.07
0.04
0.06
-0.17
0.11
0.11
—0.14
0.27
0.49
0.62
0.45

2.54

Dl

0.20 0.6t 046 054 028 000 002 0.02 0.08

—-0.06 0.17 =0.13 -0.23 0.11

0.19 0.44 0.62 0.53
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LSI: example
X =
016 0.40 038 0.47 0.18 —0.05 —0.12 —0.16 —-0.09
014 037 033 040 0.16 —0.03 -0.07 -0.10 —0.04
015 051 036 041 024 002 0.06 0.09 0.12
02 08 061 070 039 0.03 0.08 0.12 0.19
0.45 1.23 1.05 1.27 0.56 —0.07 —0.15 —0.21 -0.05
016 0.58 038 042 028 0.06 0.13 0.19 0.22
0.16 0.58 038 042 028 0.06 0.13 0.19 0.22
0722 055 051 063 024 —0.07 —0.14 —0.20 —0.11
0.10 0.53 023 021 027 0.14 031 0.44 0.42
—0.06 023 —0.14 -0.27 0.14 0.24 0.55 0.77 0.66
—006 034 —0.15 —-0.30 0.20 031 0.69 0.98 0.85
—-0.04 0.25 —0.10 —0.21 0.15 0.22 0.50 0.71 0.62
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\ original vs LSI

—
—'
-
E—

—_—— O D oD O S D

minors 0 Q 0 0
uman . . . . n.18 —0.05 —0.12 —0.16 —-0.09

interface : . . N —0.03 -0.07 —-0.10 —0.04
computer 0.06 009 0.12
user 0.08 0.12 0.19
svstem -0.15 —0.21 -0.05
response 0.13 0.19 0.22
fime 0.13 0.19 0.22
EPS -0.14 —0.20 —0.11
survey . : . 31 :

trees -0.06 0.23 —-0.14 —-0.27 0.24 055 0.77 0.6

0.69 (.98
0.50 0.71

graph  —0.06 0.34 —0.15 —0.30
miners —0.04 0.25 —0.10 —0.21




using LSI

0.22
0.20
0.24
0.40
0.64
0.27
0.27
0.30
0.21
0.01
0.04
0.03

T S D’
-0.11 3.34 020 0.6t 046 054 028 0.00 002 0.02 0.08
—0.07 254 —0.06 0.17 —0.13 —0.23 0.11 0.19 0.44 062 0.53
0.04 _ _ _
0.06 e D is new doc vectors (k dimensions)
—0.17 .
o.11 e T provides term vectors
0.11 _
e * Given Q=q,0d,...9, want to compare to docs
0.27 _ .
0.49 e Convert Q from ¢t dimensions to k
0.62 I AT 1
0.45 Q _Q1><t*Tt><k*Sk><k
« Can now compare to doc vectors
« Same basic approach can be used to add
new docs to the database
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LSI: does it work?

e Decomposes language into “basis vectors”
— In a sense, is looking for core concepts

* In theory, this means that system will retrieve

documents using synonyms of your query words
— The “magic” that appeals to people

* From a demo at Isi.research.telcordia.com
— They hold the patent on LSI

50



0 vector space retrieval: summary

e Standard vector space
— Each dimension corresponds to a term in the vocabulary
— Vector elements are real-valued, reflecting term importance
— Any vector (document,query, ...) can be compared to any
other
— Cosine correlation is the similarity metric used most often

« Latent Semantic Indexing (LSI)
— Each dimension corresponds to a “basic concept”
— Documents and queries mapped into basic concepts
— Same as standard vector space after that
— Whether it’s good depends on what you want
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0 vector space model: disadvantages

e Assumed independence relationship among terms
— Though this is a very common retrieval model assumption

 Lack of justification for some vector operations
— e.g. choice of similarity function
— e.g., choice of term weights

 Barely a retrieval model
— Doesn’t explicitly model relevance, a person’s information
need, language models, etc.

« Assumes a query and a document can be treated
the same (symmetric)
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0

vector space model: advantages

e Simplicity

* Ability to incorporate term weights
— Any type of term weights can be added
— No model that has to justify the use of a weight

« Ability to handle “distributed” term representations
— e.g., LSI

« Can measure similarities between almost anything:
— documents and queries
— documents and documents
— queries and queries
— sentences and sentences
— etc.
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