boolean retrieval

some slides courtesy James Allan@umass
what is a retrieval model?

• Model is an idealization or abstraction of an actual process
• Mathematical models are used to study the properties of the process, draw conclusions, make predictions
• Conclusions derived from a model depend on whether the model is a good approximation of the actual situation
• Statistical models represent repetitive processes, make predictions about frequencies of interesting events
• Retrieval models can describe the computational process
 – e.g. how documents are ranked
 – Note that how documents or indexes are *stored* is implementation
• Retrieval models can attempt to describe the human process
 – e.g. the information need, interaction
 – Few do so meaningfully
• Retrieval models have an explicit or implicit definition of relevance
retrieval models

today

- boolean
- vector space
- latent semantic indexing
- statistical language
- inference network
exact vs. best match

- Exact-match
 - query specifies precise retrieval criteria
 - every document either matches or fails to match query
 - result is a set of documents
 - Unordered in pure exact match

- Best-match
 - Query describes good or “best” matching document
 - Every document matches query to some degree
 - Result is ranked list of documents

- Popular approaches often provide some of each
 - E.g., some type of ranking of result set (best of both worlds)
 - E.g., best-match query language that incorporates exact-match operators
exact match retrieval

- Advantages of exact match
 - Can be very efficiently implemented
 - Predictable, easy to explain
 - Structured queries for pinpointing precise documents
 - Work well when you know exactly (or roughly) what the collection contains and what you’re looking for

- Disadvantages of exact match
 - Query formulation difficult for most users
 - Difficulty increases with collection size
 - Indexing vocabulary same as query vocabulary
 - Acceptable precision generally means unacceptable recall
 - Ranking models consistently shown to be better
- Hard to compare best- and exact-match in principled way (why?)
best match retrieval

• Retrieving documents that satisfy a Boolean expression constitutes the Boolean exact match retrieval model

• Best-match or ranking models are now more common

• Advantages:
 – Significantly more effective than exact match
 – Uncertainty is a better model than certainty
 – Easier to use (supports full text queries)
 – Similar efficiency (based on inverted file implementations)

• Disadvantages:
 – More difficult to convey an appropriate cognitive model (“control”)
 – Full text does not mean natural language understanding (no “magic”)
 – Efficiency is always less than exact match (cannot reject documents early)

• Boolean or structured queries can be part of a best-match retrieval model
boolean retrieval

• Boolean model is most common exact-match model
 – queries are logic expressions with document features as operands
 – In pure Boolean model, retrieved documents are not ranked

• Most implementations provide some sort of ranking
 – query formulation difficult for novice users

• Boolean queries
 – Used by Boolean model
 – and in other models (Boolean query ≠ Boolean model)

• “Pure” Boolean operators: AND, OR, AND-NOT

• Most systems have proximity operators

• Most systems support simple regular expressions as search terms to match spelling variants
Boolean Query Languages

- Many users prefer Boolean
 - Especially professional searchers
 - Many WESTLAW, DIALOG searches still use Boolean
 - “Control”
 - Understandability

- For some queries or collections, Boolean often works better (e.g., using AND on the Web)

- Boolean and free text find different documents

- Need retrieval models that support both
 - “Extended Boolean” vector space
 - Probabilistic inference network

- Need interfaces that provide good cognitive models for ranking
example

<table>
<thead>
<tr>
<th></th>
<th>nuclear</th>
<th>nonproliferation</th>
<th>treaty</th>
<th>Iran</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

query :
\[(\text{nuclear} \ \text{AND} \ \text{treaty}) \ \text{OR} \ ((\text{NOT} \ \text{treaty}) \ \text{AND} \ (\text{nonproliferation} \ \text{OR} \ \text{Iran}))\]

retrieved docs :
D7
D5
D2