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Abstract

A new class of metrics appropriate for measuring effective
similarity relations between sequences, say one type of simi-
larity per metric, is studied. We propose a new “normalized
information distance”, based on the noncomputable notion
of Kolmogorov complexity, and show that it minorizes every
metric in the class (that is, it is universal in that it discovers
all effective similarities). We demonstrate that it too is a
metric and takes values in [0, 1]; hence it may be called the
similarity metric. This is a theory foundation for a new gen-
eral practical tool. We give two distinctive applications in
widely divergent areas (the experiments by necessity use just
computable approximations to the target notions). First,
we computationally compare whole mitochondrial genomes
and infer their evolutionary history. This results in a first
completely automatic computed whole mitochondrial phy-
logeny tree. Secondly, we give fully automatically computed
language tree of 52 different language based on translated
versions of the “Universal Declaration of Human Rights”.

1 Introduction

How do we measure similarity—for example to determine
an evolutionary distance—between two sequences, such as
internet documents, different language text corpora in the
same language, among different languages based on example
text corpora, computer programs, or chain letters? How do
we detect plagiarism of student source code in assignments?
The fast advance of worldwide genome sequencing projects
has raised the following fundamental question to prominence
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in contemporary biological science: how do we compare two
genomes [21, 38]?

Our aim here is not to define a similarity measure for
each application field; we develop a general mathematical
theory of similarity. To obtain evidence that the theory sig-
nificantly addresses the question (and is not only theoreti-
cally satisfactory), we test it on real-world applications in
a wide range of fields. Thus, we first present a new theo-
retical approach to a wide class of similarity metrics; show
that the “normalized information distance” (possibly not
in the class) is a metric, and prove that it is universal in
the sense that this single metric uncovers all similarities si-
multaneously that the metrics in the class uncover a single
similarity apiece. It is well-known that when a pure math-
ematical theory is applied to the real world, for example
in hydrodynamics or in physics in general, we can in ap-
plications only approximate the theoretical ideal. But the
theory gives a framework for the applied science. With this
in mind, we demonstrate that the new universal similarity
metric works well on concrete examples in very different ap-
plication fields—the first completely automatic construction
of the phylogeny tree based on whole mitochondrial genomes,
and a completely automatic construction of a language tree
for over 50 Euro-Asian languages. Other applications we
have performed, not reported here, are detecting plagiarism
in student programming assignments [34], and phylogeny of
chain letters in [5].

Related Work: Preliminary applications of the cur-
rent approach were tentatively reported to the biological
community [22]—using an initial and partially improper
metric. That work, and the present paper, is based on in-
formation distance [4], a single metric that captures in an
appropriate sense every effective metric: effective versions
of Hamming distance, Euclidean distance, edit distances,
Lempel-Ziv distance, and the sophisticated distances intro-
duced in [10, 27]. Subsequent work in the linguistics setting,
[2, 3], used compression-based methods to infer a language
tree from different-language text corpora, as well as to au-
thorship attribution on basis of text corpora. Their methods
approximate a certain type of empirical relative entropy—
entropy à la Shannon is always zero since they deal with in-
dividual objects only. Even though the authors refer to the
information distance in [25], the actual method is essentially
ad-hoc without supporting theory, and based on “distances”
violating metric requirements like symmetry and triangle in-
equality. The information distance studied in [24, 25, 4, 22],
and subsequently investigated in [23, 17, 28, 30, 36], is “uni-
versal” and has other nice properties. This distance essen-
tially says that the distance between two objects is the length



of the shortest program (or amount of energy) that is needed
to transform the two objects into each other. But this dis-
tance is not proper to measure evolutionary sequence dis-
tance. For example, H. influenza and E. coli are two closely
related sister species. The former has about 1,856,000 base
pairs and the latter has about 4,772,000 base pairs. How-
ever, using the information distance of [4], one would easily
classify H. influenza with a short (of comparable length) but
irrelevant species simply because of length, instead of with
E. coli. The information distance of [4] does not deal with
relative distance. This is important because species may lose
genes (by deletion) or gain genes (by duplication or insertion
from external sources), relatively easily. Instead, deletion
and insertion cost energy (proportional to the Kolmogorov
complexity of deleted or inserted sequence) in the informa-
tion distance of [4]. The paper [35] defined transformation
distance between two species, and [16] defined compression
distance. Both of these measures are essentially K(x|y).
Other than being asymmetric, they also suffer similar prob-
lems as the information distance of [4] as show in the above
example. As far as the authors know, the idea of normalized
metric is, surprisingly, not well studied. An exception is [39],
which investigates normalized Euclidean metric and normal-
ized symmetric-set-difference metric to account for relative
distances rather than absolute ones, and it does so for much
the same reasons as in the present work.

This Work: We develop a new general tool for phy-
logeny analysis and other applications: a general mathemat-
ical theory of similarity based on a special type of normal-
ized metrics, and construct a universal normalized metric
(the normalized information distance). This normalized in-
formation distance is the first universal effective similarity
measure, and is an objective recursively invariant notion
by the Church-Turing thesis. To evidence the significance
of this theory, we apply it computationally in widely di-
verse real-world areas. (In the application, of course, we
cannot compute the theoretical normalized information dis-
tance precisely, we have to do with approximations we can
achieve.) In order to demonstrate universal applicability in
an experimental setting, we use the diverse areas of (i) bio-
molecular evolution studies, and (ii) natural language evo-
lution. In area (i): In recent years, as the complete genomes
of various species become available, it has become possible
to do whole genome phylogeny (this overcomes the prob-
lem that different genes may give different trees). How-
ever, traditional phylogenetic methods on individual genes
depended on multiple alignment of the related proteins and
on the model of evolution of individual amino acids. Nei-
ther of these is practically applicable to the genome level.
In absence of such models, a method which can compute the
shared information between two sequences is useful because
biological sequences encode information, and the occurrence
of evolutionary events (such as insertions, deletions, point
mutations, rearrangements, and inversions) separating two
sequences sharing a common ancestor will result in the loss
of their shared information. Our theoretical approach is used
experimentally to create a fully automated and reasonably
accurate software tool based on such a distance to compare

two genomes. We demonstrate that a whole mitochondrial
genome phylogeny of the Eutherians which confirms [8], can
be reconstructed automatically from unaligned complete mi-
tochondrial genomes by use of our software implementing
(an approximation of) our theory. These experimental con-
firmations of the effacity of our comprehensive approach con-
trasts with recent more specialized approaches such as [37]
that have (and perhaps can) only be tested on small num-
bers of genes. They have not been experimentally tried on
whole mitochondrial genomes that are, apparently, already
numerically out of computational range. In area (ii) we fully
automatically construct the language tree of 52 primarily
Indo-European languages from translations of the “Univer-
sal Declaration of Human Rights”—leading to a grouping
of language families largely consistent with current linguis-
tic viewpoints. The main technical concepts in this work,
distance metric, Kolmogorov complexity [25], information
distance as in [4], are summarized below.

2 Preliminaries

Metric: Without loss of generality, a distance only needs to
operate on sequences of 0’s and 1’s since any sequence can
be represented by a binary sequence. Formally, a distance
function D with nonnegative real values, defined on the
Cartesian product X ×X of a set X is called a metric on X
if for every x, y, z ∈ X:

• D(x, y) = 0 iff x = y (the identity axiom);

• D(x, y) + D(y, z) ≥ D(x, z) (the triangle inequality);

• D(x, y) = D(y, x) (the symmetry axiom).

A set X provided with a metric is called a metric space.
For example, every set X has the trivial discrete metric
D(x, y) = 0 if x = y and D(x, y) = 1 otherwise. All distances
in this paper are defined on the set X = {0, 1}∗ and satisfy
the metric conditions sometimes up to an additive vanishing
constant term. In our search for the proper definition of the
distance between two, not necessarily equal length, binary
strings, a natural choice is the length of the shortest program
that can transform either string into the other one—both
ways. This distance is known as information distance, which
is one of the main concepts in this work and which we will
discuss in detail below. However, such a distance measures
an absolute distance, and we are more interested in a relative
one. For example, if two strings of length 106 have distance
1000, then we are inclined to think that those strings are
relatively more similar than two strings of length 1000 that
have that distance and consequently are 100% different.
Therefore, we want to normalize the information distance
into a normalized distance. We do this by dividing it by
the greater of the two lengths of the shortest programs that
compute the strings concerned from scratch.

Kolmogorov Complexity: An introduction, details,
and proofs of the theory of Kolmogorov complexity can
be found in the text [25]. Here we recall some basic
notation and facts. We write string to mean a finite binary
string. Other finite objects can be encoded into strings
in natural ways. The set of strings is denoted by {0, 1}∗.



The Kolmogorov complexity, or algorithmic entropy, K(x)
of a string x is the length of a shortest binary program to
compute x on an appropriate universal computer—such as
a universal Turing machine. (It is equivalent to consider
the length of the shortest binary program to compute x in
a universal programming language such as LISP or Java.)
The functions K(·) and K(·|·), though defined in terms of
a particular machine model, are machine-independent up to
an additive constant and acquire an asymptotically universal
and absolute character through Church’s thesis, from the
ability of universal machines to simulate one another and
execute any effective process. Intuitively, K(x) represents
the minimal amount of information required to generate x
by an algorithm, [20]. x∗ denotes a shortest program for
x (if there is more than one of them then the first one
in standard enumeration), and hence |x∗| = K(x). The
conditional Kolmogorov complexity K(x | y) of x relative
to y is defined similarly as the length of a shortest program
to compute x if y is furnished as an auxiliary input to the
computation. We use the notation K(x, y) for the length
of a shortest binary program that prints out x and y and a
description how to tell them apart.

Definition 2.1. A real-valued function f(x, y) is upper
semi-computable if there exists a rational-valued recursive
function g(x, y, t) such that (i) g(x, y, t+1) ≤ g(x, y, t), and
(ii) limt→∞ g(x, y, t) = f(x, y). It is lower semi-computable
if −f(x, y) is upper semi-computable, and it is computable
if it is both upper- and lower semi-computable.

It is easy to see that the functions K(x) and K(y | x∗)
(and under the appropriate interpretation also x∗) are upper
semi-computable, and it is easy to prove that they are not
computable. The conditional information contained in x∗ is
equivalent to that in (x, K(x)). The information in y about
x is defined as I(x : y) = K(x) − K(x | y∗). A deep, and
very useful, result [13] shows that, up to additive constant
terms I(x : y) = I(y : x), that is

K(x) + K(y | x∗) = K(y) + K(x | y∗).(2.1)

Information Distance: The information distance, [4],
is the length of a shortest binary program that computes x
from y as well as computing y from x. Being shortest, such a
program should take advantage of any redundancy between
the information required to go from x to y and the informa-
tion required to go from y to x. The program functions in
a catalytic capacity in the sense that it is required to trans-
form the input into the output, but itself remains present
and unchanged throughout the computation. A principal
result of [4] shows that, up to an additive logarithmic term,
the information distance equals

E(x, y) = max{K(y | x), K(x | y)}(2.2)

Because of the upper semi-computability of the conditional
complexities, the information distance is also upper semi-
computable. (It is very important here that the time of
computation is completely ignored: this is why this result
does not contradict the idea of one-way functions.)

3 Normalized Distance

In defining a class of acceptable metrics we want to exclude
unrealistic distance metrics like f(x, y) = 1

2
for every pair

x 6= y, by restricting the number of objects within a given
distance of an object. As in [4] we only consider upper
semi-computable distances D(x, y) satisfying the density
condition

∑

y:y 6=x

2−D(x,y) ≤ 1.(3.3)

As remarked above, large objects (in the sense of long
strings) that differ by a tiny part are intuitively closer than
tiny objects that differ by the same amount. Therefore, we
normalize the distance metric: Let D(x, y) be an upper semi-
computable distance satisfying the density condition (3.3).
Let n be a function such that dn,D(x, y) = n(D, x, y) has
values in [0, 1] and satisfies the normalization condition

∑

y:y 6=x

2−dn,D(x,y)K(x) ≤ 1.(3.4)

Then, with K(x) = k and d ∈ [0, 1], we have

|{y : dn,D(x, y) ≤ d, K(y) ≤ k}| ≤ 2dk.(3.5)

For suppose the contrary: Starting from (3.4) we obtain a
contradiction:

1 ≥
∑

y:y 6=x

2−dn,D(x,y)K(x)

≥
∑

y:y 6=x&dn,D(x,y)≤d&K(y)≤k

2−dk > 2dk2−dk = 1.

Definition 3.1. A normalized distance or similarity dis-
tance is a metric m(x, y) that takes values in [0, 1] (up to an
additive term that vanishes with growing max{K(x), K(y)})
for all x, y, and satisfies the density constraint (3.5).

4 Normalized Information Distance

Clearly, unnormalized information distance (2.2) is not
a proper evolutionary distance measure. Consider three
species: E. coli, H. influenza, and some arbitrary bacte-
ria X of similar length as H. influenza, but not related.
Information distance d would have d(X, H.influenza) <
d(E.coli, H.influenza), simply because of the length factor.
It would put two long and complex sequences that differ only
by a tiny fraction of the total information as dissimilar as
two short sequences that differ by the same absolute amount
and are completely random with respect to one another.

In [22] we considered as first attempt at a normalized
information distance:

Definition 4.1. Given two sequences x and y, define the
function ds(x, y) by

ds(x, y) =
K(x | y∗) + K(y | x∗)

K(x, y)
.(4.6)



Writing it differently, using (2.1),

ds(x, y) = 1−
K(x)−K(x | y∗)

K(x, y)
,

where K(x)−K(x | y∗) is the mutual information I(y : x).
This distance satisfies the triangle inequality, up to a small
error term, and universality (below), but only within a
factor 2. Mathematically more precise and satisfying is the
distance:

Definition 4.2. Given two sequences x and y, define the
function d(x, y) by

d(x, y) =
max{K(x | y∗), K(y | x∗)}

max{K(x), K(y)}
.(4.7)

Remark 4.3. Several natural alternatives for the denomi-
nator turn out to be wrong:

(a) Divide by the length. Then, firstly we do not know
which of the two length involved to divide by, possibly the
sum or maximum, but furthermore the triangle inequality
and the universality (domination) properties are not satis-
fied.

(b) In the d definition divide by K(x, y). Then one has
d(x, y) = 1

2
whenever x and y are random (have maximal

Kolmogorov complexity) relative to one another. This is
improper.

(c) In the ds definition dividing by length does not
satisfy the triangle inequality. ♦

There is a natural interpretation to d(x, y): If K(y) ≥
K(x) then we can rewrite

d(x, y) =
K(y)− I(x : y)

K(y)
,

where I(x : y) is the information in y about x satisfying the
symmetry property I(x : y) = I(y : x) up to a logarithmic
additive error by (2.1). That is, the ratio d(x, y) between x
and y is the number of bits of information that is not shared
between the two strings per bit of information that could be
maximally shared between the two strings.

It is clear that d(x, y) is symmetrical and satisfies the
identity axiom:

d(x, x) = O(1/K(x)).

To show that it is a distance metric it remains to prove the
triangle inequality.

Lemma 4.4. d(x, y) almost satisfies the weak triangle in-
equality, that is, d(x, y) ≤ d(x, z) + d(z, y) up to an additive
error term of O(1/max{K(x), K(y), K(z)}).

Proof. Case 1: Suppose K(z) ≤ max{K(x), K(y)}. In [14],
the following “directed triangle inequality” was proved: For
all x, y, z, up to an additive constant term,

K(x | y∗) ≤ K(x, z | y∗) ≤ K(x | z∗) + K(z | y∗).(4.8)

Dividing both sides of the triangle inequality by
max{K(x), K(y)},

max{K(x | y∗), K(y | x∗)}

max{K(x), K(y)}

≤
max{K(x | z∗), K(z | x∗)}+max{K(z | y∗), K(y | z∗)}

max{K(x), K(y)}
,

up to an additive term O(1/max{K(x), K(y), K(z)}). Re-
placing K(x) or K(y) in the denominator of the first term of
the right-hand side by K(z) can only increase the right-hand
side (again, because of the assumption).

Case 2: Suppose K(z) = max{K(x), K(y), K(z)}.
Further assume that K(x) ≥ K(y) (the remaining case is
symmetrical). Then, using the symmetry of information to
determine the maxima, we also find K(z | x∗) ≥ K(x | z∗)
and K(z | y∗) ≥ K(y | z∗). Then the maxima in the terms
of the equation d(x, y) ≤ d(x, z) + d(y, z) are determined,
and our proof obligation reduces to:

K(x | y∗)

K(x)
≤

K(z | x∗)

K(z)
+

K(z | y∗)

K(z)
,(4.9)

up to an additive term O(1/K(z)). To prove (4.9) we
proceed as follows:

Applying the triangle inequality (4.8) and dividing both
sides by K(x), we have

K(x | y∗)

K(x)
≤

K(x | z∗) + K(z | y∗) + O(1)

K(x)
.

The left-hand side is ≤ 1.
Case 2.1: The right-hand side is ≤ 1. Setting K(z) =

K(x) + ∆, and first adding ∆ = K(z)−K(x) = K(z|x∗)−
K(x|z∗)+O(1) to both the nominator and the denominator
of the first term in the right-hand side, and subsequently
using (2.1) to obtain K(x | z∗) + ∆ = K(z | x∗) + O(1),

K(x | y∗)

K(x)
≤

K(x | z∗) + K(z | y∗) + ∆ + O(1)

K(x) + ∆

=
K(z | x∗) + K(z | y∗) + O(1)

K(z)
,

which was what we had to prove.
Case 2.2: The right-hand side is ≥ 1. We proceed like

in Case 1, and add ∆ to both nominator and denominator.
Although now the right-hand side decreases, it must still be
≥ 1. This proves Case 2.2. •

Clearly, d(x, y) takes values in the range [0, 1 +
O(1/max{K(x), K(y)})]. To show that it is a normalized
distance, it is left to prove the normalization condition:

Lemma 4.5. The function d(x, y) satisfies the normalization
condition (3.5).

Proof. Assume that K(y) ≥ K(x) (the other case is symmet-
rical). Then, by (2.1) we also have K(y | x∗) ≥ K(x | y∗) up
to an additive constant term, and rewriting d(x, y) = K(y |
x∗)/K(y) ≤ d and K(y) ≤ k, we obtain up to an additive
constant term K(y | x∗) ≤ dK(y) ≤ dk That is, there are at



most 2dk binary programs to obtain a y from x∗ (recall that
we assume K(y) ≥ K(x)), and hence at most that many
such y. •

Since we have shown that d(x, y) is a distance metric,
takes values in [0, 1], (up to vanishing additive error terms)
and satisfies the normalization condition, it follows:

Theorem 4.1. The function d(x, y) is a normalized infor-
mation distance.

5 Universality

We now show that d(x, y) is universal in the sense that it
incorporates every remotely computable type of similarity in
the following sense: If two objects are similar in normalized
information in some computable sense, then they are at
least that similar in the d(x, y) sense. We prove this
by demonstrating that d(x, y) is smaller than every other
normalized distance in a wide class—so wide that it will
capture everything that can be remotely of interest. The
function d(x, y) itself, being a ratio between two maxima of
pairs of upper semi-computable functions, is not itself upper
semi-computable. (It is easy to see that this is likely, but a
formal proof is difficult.) In fact, d(x, y) has ostensibly only
a weaker computability property: Call a function f(x, y)
computable in the limit if there exists a rational-valued
recursive function g(x, y, t) such that limt→∞ g(x, y, t) =
f(x, y). Then d(x, y) is in this class. It can be shown (in
the full version) that this is precisely the set of functions
that are Turing-reducible to the halting set. While d(x, y)
is not upper semi-computable, it captures all similarities
represented by the normalized metrics in the class concerned,
which should suffice as a theoretical basis for all practical
purposes.

Theorem 5.1. The normalized information distance d(x, y)
dominates every upper semi-computable normalized distance
f(x, y) up to a vanishing additive term: d(x, y) ≤ f(x, y) +
O((log k)/k), where k = max{K(x), K(y)}.

Proof. Fix a normalized distance f(x, y) and assume
f(x, y) = d. By the normalization condition we have that,
given x, the number of y, such that f(x, y) ≤ d and
max{K(x), K(y)} = k, is upper bounded by 2dk. Hence,
for fixed x∗ and k we can recursively enumerate the y for
which f(x, y) ≤ d and K(y) ≤ k, and every y can be de-
scribed by its index of length ≤ dk in this enumeration.
Since the Kolmogorov complexity is the length of the short-
est effective description, the binary length of the index must
at least be as large as the Kolmogorov complexity, which
yields K(y | x∗, k) = K(y | x, K(x), k) ≤ dk. That is,
since we can provide both k and K(x) in O(log k) bits,
K(y | x∗) ≤ dk + O(log k). Given x and y, assume that
K(y) ≥ K(x) (so K(y) = k). Then, by (2.1), we also have
K(y | x∗) ≥ K(x | y∗), and d(x, y) = K(y | x∗)/K(y).
Substitution gives:

d(x, y) =
K(y | x∗)

K(y)
≤

dk + O(log k)

k
= f(x, y) + O(

log k

k
).

The other case, K(x) > K(y) (so K(x) = k) gives:

d(x, y) =
K(x | y∗)

K(x)
≤

dk + O(log k)

k
= f(x, y) + O(

log k

k
).

•

6 Application to Whole Mitochondrial Genome

Phylogeny

Nothing is more ideal than DNA sequences to test our the-
ory. We will use whole mitochondrial DNA genomes of 20
mammals and the problem of Eutherian orders to make a
comprehensive examination of our measures. The problem
we consider is this: It has been debated in biology which
two of the three main groups of placental mammals are more
closely related: Primates, Ferungulates, and Rodents. This
is because the maximum likelihood method gives (Ferungu-
lates, (Primates, Rodents)) grouping for half of the proteins
in mitochondial genome, and (Rodents, (Ferungulates, Pri-
mates)) for the other half [8]. In [8], Cao et al. aligned 12
concatenated mitochondrial proteins taken from the follow-
ing species: rat (Rattus norvegicus), house mouse (Mus mus-
culus), grey seal (Halichoerus grypus), harbor seal (Phoca
vitulina), cat (Felis catus), white rhino (Ceratotherium si-
mum), horse (Equus caballus), finback whale (Balaenoptera
physalus), blue whale (Balaenoptera musculus), cow (Bos
taurus), gibbon (Hylobates lar), gorilla (Gorilla gorilla), hu-
man (Homo sapiens), chimpanzee (Pan troglodytes), pygmy
chimpanzee (Pan paniscus), orangutan (Pongo pygmaeus),
Sumatran orangutan (Pongo pygmaeus abelii), using opos-
sum (Didelphis virginiana), wallaroo (Macropus robustus)
and platypus (Ornithorhynchus anatinus) as the outgroup,
and built the maximum likelihood tree. The resulting phy-
logeny supports the currently accepted grouping (Rodents,
(Primates, Ferungulates)).

6.1 Alternative Approaches: Before applying our
theory to further confirm this hypothesis, we first examine
the alternative approaches, in addition to that of [8]. The
mitochondrial genomes of the above 20 species were obtained
from GenBank. Each is about 18k bases.

k-mer Statistic: In the early years, researchers exper-
imented on using G+C contents or slightly more general k-
mers (or Shannon block entropy) to classify DNA sequences
(in particular S. Wildman at Stanford). This approach uses
the statistics of length k substrings in a genome and the
phylogeny is constructed accordingly. To re-examine this
approach, we performed simple experiments: Consider all
length k blocks in each mtDNA, for k = 1, 2, . . . , 10. There
are l = (411−1)/3 different sequences (some may not appear
in an mtDNA). We computed their number of occurrences in
each mtDNA, obtaining a vector of length l for each mtDNA.
For two such vectors (representing two mtDNAs) p, q, their

distance is computed as d(p, q) =
√

(p− q)T (p− q). Using
neighbor joining [32], the resulting tree is the one given in
Figure 1. Using the hypercleaning method [7], we obtain
equally absurd results. Similar experiments were repeated
for size k blocks alone (for k = 10, 9, 8, 7, 6), without much
improvement.
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Figure 1: The evolutionary tree built from complete
mammalian mtDNA sequences using frequency of k-
mers.

Gene Order: In [6] the authors propose to use the
order of genes to infer the evolutionary history. This
approach does not work for closely related species such as
our example where all genes are in the same order in the
mitochondrial genomes in all 20 species.

Gene Content: Gene content method, proposed in
[12, 33], compares number of genes two species share divided
by total number of genes. While this approach does not work
here due to the fact that all 20 mammalian mitochondrial
genomes share exactly the same genes, notice the similarity
of gene content formula and our general formula.

Rearrangement Distance: Reversal and rearrange-
ment distances in [19, 18, 29] compare genomes using other
partial genome information such as number of reversals or
translocations. These operations also do not appear in our
mammalian mitochondrial genomes, hence the method again
is not proper for our application.

Transformation Distance or Compression Dis-

tance: The transformation distance proposed in [35] and
compression distance proposed in [16] are essentially defined
as K(x|y) which is asymmetric, and so, is not a distance.
The measure K(x|y) produces a wrong tree with one of the
marsupials mixed up with ferungulates (the tree is not shown
here).

6.2 The Present Approach We have shown that d
(and up to a factor 2 also ds) is universal mong a wide class of
computable normalized information measures. However the
generality of d and ds comes at the price of noncomputabil-
ity: Kolmogorov complexity is not computable but upper
semi-computable, Section 2, and d and ds are (likely to be)
not even that. Nonetheless, we can try to approximate the
spirit of d and ds at various levels of precision. Now it is clear
how to upper semi-compute the unconditional complexities
involved. With respect to the conditional complexities, by

(2.1) we have K(x | y) = K(x, y)−K(y) (up to an additive
constant), and it is easy to see that K(x, y) = K(xy) up to
additive logarithmic precision. (To retrieve (x, y) we need
to encode the separator between the binary programs for x
and y.)

k-mers According to the New Measures: We have
shown that using k-mer statistics alone does not work well.
However, let us now combine the k-mer approach with the
new measures. Consider the length-k substrings of the DNA
sequence as words of the sequence. We denote the number of
distinct, possibly overlapping, k-length words in a sequence
x by N(x). With k large enough, at least loga(n), where a is
the cardinality of the alphabet and n the length of x, we use
N(x) as a rough approximation to K(x). We justify this by
the pragmatic observation that, because the genomes evolve
by duplications, rearrangements and mutations, [31], it can
be argued that it is appropriate to use N(x) to very roughly
estimate for K(x) in case x is a genome.” Define N(x|y) as
N(xy) −N(y). Given two sequences x and y, following the
definition of d, (4.7), the distance between x and y can be
defined as

d′(x, y) =
max{N(x|y), N(y|x)}

max{N(x), N(y)}
.

Similarly, following ds, (4.6) we can also define another
distance using N(x),

d∗(x, y) =
N(x|y) + N(y|x)

N(xy)
.

Using d′ and d∗, we computed the distance matrixes for
the 20 mammal mitochondrial DNAs. Then we used hyper-
Cleaning [7] to construct the phylogenies for the 20 mam-
mals. Using either of d′ and d∗, we were able to construct
the tree correctly when 8 ≤ k ≤ 13, as in Figure 3. A tree
constructed with d′ for k = 7 is given in Figure 2. We note
that the opossum and a few other species are misplaced.
The tree constructed with d∗ for k = 7 is very similar, but
it correctly positioned the opossum.

Spaced k-mers According to the New Measures

In methods for doing DNA homology search, a pair of
identical words, each from a DNA sequence, is called a “hit”.
Hits have been used as “seeds” to generate a longer match
between the two sequences. We note that N(x|y) is the
number of distinct words that are in x and not in y, the
more hits the two sequences have, the smaller the N(x|y)
and N(y|x) are. Therefore, the previous two distances can
also be interpreted as a function of the number of hits,
each of which indicates some mutual information of the two
sequences.

As noticed by the authors of [26], though it is difficult
to get the first hit (of consecutive k letters) in a region,
it only requires one more base match to get a second hit
overlapping the existing one. This makes it inaccurate to
attribute the same amount of information to each of the hits.
For this reason, we also tried to use the “spaced model”
introduced in [26] to compute our distances. A length-L,
weight-k spaced model is a 0-1 string of length L and having
k 1s. We overlap such a model with the DNA sequence at
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Figure 2: The evolutionary tree built from complete
mammalian mtDNA sequences using block size k = 7
and d

′.

each of the positions in the DNA sequence, and take out
the k bases covered by the 1s to form a length-k word. The
number of those distinct words is then used to define the
distances d′ and d∗ in Formula (6.2) and (6.2).

We applied the new defined distances to the 20 mam-
mal data. The performance is slightly bettern than the per-
formance of the distances defined in (6.2) and (6.2). The
modified d′ and d∗ can correctly construct the mammal tree
when 7 ≤ k ≤ 13 and 6 ≤ k ≤ 13, respectively.

Compression: To achieve the best approximation of
Kolmogorov complexity, and hence most confidence in the
approximation of ds and d, we use a new version of the Gen-
Compress program, [9], which achieves the currently best
compression ratios for benchmark DNA sequences. Gen-
Compress finds approximate matches (hence edit distance
becomes a special case), approximate reverse complements,
among other things, with arithmetic encoding when neces-
sary. Online service of GenCompress is at UCSB Bioin-
formatics Lab website: http://cytosine.cs.ucsb.edu:8080/.
We computed d(x, y) between each pair of mtDNA x and
y, using GenCompress to heuristically approximate K(x|y),
K(x), and K(x, y), and constructed a tree (Figure 3) using
the neighbor joining [32] program in the MOLPHY package
[1]. The tree is identical to the maximum likelihood tree of
Cao, et al. [8]. For comparison, we used the hypercleaning
program [7] and obtained the same result. The phylogeny in
Figure 3 re-confirms the hypothesis of (Rodents, (Primates,
Ferungulates)). Using the ds measure gives the same result.

To further assure our results, we have extracted only
the coding regions from the mtDNAs of the above species,
and performed the same computation. This resulted in the
same tree.

Evaluation: This new method for whole genome com-
parison and phylogeny does not require gene identification
nor any human intervention, in fact, it is totally automatic.
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Figure 3: The evolutionary tree built from complete
mammalian mtDNA sequences.

It is mathematically well-founded being based on general in-
formation theoretic concepts. It works when there are no
agreed upon evolutionary models, as further demonstrated
by the successful construction of a chain letter phylogeny [5]
and when individual gene trees do not agree (Cao et al., [8])
as is the case for genomes. Next step would be to apply
this method to larger genomes such as cpDNA and bacteria
genomes.

7 The Language Tree

Normalized information distance is a totally general univer-
sal tool, not restricted to a particular application area. We
show that it can also be used to successfully classify nat-
ural languages. Let us borrow from biology the “nature”
(acquired by genetic mixture) versus “nurture” (acquired in
the life of the individual) terminology. Any language tree
built by only analyzing contemporary natural text corpora is
partially corrupted by historical “nurture” contaminations.
While according to Darwinism the genomes only change by
inheritance (nature), languages acquire their characteristic
by descent but also by interaction (nurture). Thus, while En-
glish is a Germanic Anglo-Saxon language, it has absorbed a
great deal of French-Latin components. Similarly, Hungar-
ian, often considered a Finn-Ugric language, which consen-
sus currently happens to be open to debate in the linguistic
community, is known to have absorbed many Turkish and
Slavic components. Thus, an automatic construction of a
language tree based on contemporary text corpora, exhibits
current linguistic relations (based on both nature and nur-
ture) which do not necessarily coincide completely with the
historic language family tree (based on nature). According
to a linguistic expert, only vocabulary is normally borrowed
between languages, and inflectional morphology is the best
indicator of linguistic descent. This may be the most im-
portant factor distorting the results. The misclassification
of English as Romance language must have something to do
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Figure 4: The language classification tree, built from
“The Universal Declaration of Human Rights” [15]
using approximated normalized information distance,
ds-version (6.2), and neighbor joining. This is a rooted
tree, using Basque [Spain] as outgroup. The branch
lengths are not proportional to the actual distances in
the distance matrix.

with the fact that the English vocabulary in the Universal
Declaration of Human Rights, being nonbasic in large part,
is Latinate in large part. It also accounts for the misclassifi-
cation of Maltese, an Arabic dialect with lots of Italian loan
words, as Romance. Having voiced these caveats, the result
of our automatic experiment in language tree reconstruction
is rather encouraging.

Our method improves the results of [2], using a linguis-
tic corpus of ”The Universal Declaration of Human Rights”
[15] in 52 languages. The previous effort [2] used an asym-
metric measure based on relative entropy, and the full ma-
trix of the pair-wise measures between all 52 languages, to
build a language classification tree. This resulted in some
inconsistensies, such as English being isolated between Ro-
mance and Celtic languages, Romani-balkan and Albanian
being isolated, and Hungarian (possibly a Finn-Ugric lan-
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Figure 5: The language classification tree, built from
“The Universal Declaration of Human Rights” [15]
using approximated normalized information distance, d-
version (4.7), and the Fitch-Margoliash method. This
is a rooted tree using Basque [Spain] as outgroup.
The branch lengths are not proportional to the actual
distances in the distance matrix.

guage) being grouped with Turkish and Uzbek. The (rooted)
trees resulting from our experiments (using Basque as out-
group) seem more correct. We use Basque as outgroup since
linguists regard it as a language unconnected to other lan-
guages. In order to test the potential of normalized informa-
tion distance d in classifying natural languages, a similar ex-
periment was performed. First, transform each UNICODE
character in the language text into an ASCII character by
removing its vowel flag if necessary. Secondly, a LZ-type
algorithm gzip is appropriate to compress these language se-
quences of sizes not exceeding the length of sliding window
gzip use (32 kilobytes), and compression results can be used
to approximate their Kolmogorov complexity. Instead of a
complicated and less rigorous method to approximate rela-
tive entropy used in [2], we simply zip-compress several se-
quences that involve calculating the normalized information
metric (both (6.2) and (4.7)) based on each pair of language



sequences. In the last step, we applied the ds-metric (6.2)
with the neighbor-joining package to obtain Figure 4. Even
better worked applying the d-metric (4.7) with the Fitch-
Margoliash method [11] in the package PHYLIP [1]); the
resulting language classification tree is given in Figure 5.
We note that all the main linguistic groups can be success-
fully recognized, which includes Romance, Celtic, Germanic,
Ugro-Finnic, Slavic, Baltic, Altaic as labeled in the figure.

8 Conclusion

We developed a mathematical theory of similarity distances
and shown that there is a universal similarity distance: the
normalized information distance. This distance uncovers all
computable similarities, and therefore estimates an evolu-
tionary or relation-wise distance on strings. It has been
shown to be applicable to whole genomes, but as well to
chain letters ([5], not included here), to test tudents source
code for plagiarism ([34], not included here), and to built a
large language family tree from text corpora. It is perhaps
useful to point out that the results reported in the figures
were obtained at the very first runs and have not been se-
lected by appropriateness from several trials. From the the-
ory point-of-view we have obtained a general mathematical
theory forming a solid framework spawning practical tools
applicable in many fields. Based on the noncomputable no-
tion of Kolmogorov complexity, the normalized information
distance can only be approximated in an ad hoc manner,
that is, without speed of convergence guarantees. Even so,
the fundamental rightness of the approach is evidenced by
the remarkable success (agreement with known phylogeny
in biology) of the evolutionary trees obtained and the build-
ing of language trees. From the applied side of genomics
our work gives the first fully automatic generation of whole
genome mitochondrial phylogeny; in computational linguis-
tics it presents a fully automatic way to build language trees
and determine language families.
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