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Abstract 

This paper presents a general information-theoretic 
approach for obtaining lower bounds on the num- 
ber of examples needed to PAC learn in the pres- 
ence of noise. This approach deals directly with 
the fundamental information quantities, avoiding 
a Bayesian analysis. The technique is applied to 
several different models, illustrating its generality 
and power. The resulting bounds add logarithmic 
factors to (or improve the constants in) previously 
known lower bounds. 

1 Introduction 

When labeled examples are scarce or expensive, one should 
employ a learning method that requires as few examples as 
possible. In order to determine this minimal number of ex- 
amples, one must not only have good algorithms, but also 
good lower bounds. In this paper we present a unified 
information-theoretic approach for lower bounding the num- 
ber of examples needed to learn in various models with noise. 
Not only does our approach allow the easy derivation of pre- 
viously known bounds, but it also yields additional logarith- 
mic factors in several cases. 

The models we consider are variants of the PAC model 
[341, where a domain of instances and a class of concepts 
(0- 1 valued functions) on the domain are specified as part of 
the learning problem. An adversary (perhaps randomly) se- 
lects a target concept from the class and a distributionon the 
domain. The distribution on the domain is often used to gen- 
erate examples (instances labeled by the target concept) for 
the learner, and the learner’s goal is to find a O-l valued hy- 
pothesis that, withhigh probability, closely approximates the 
target concept. Typically a noise process, which is random 
and/or adversarially controlled, corrupts some of the labeled 
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examples so that the learner can see misleading and possibly 
contradictory examples. 

Our basic approach emphasizes the amount of informa- 
tion that the algorithm must discover about the target con- 
cept. We use the PAC learning criterion to lower bound this 
amount of information. We also upper bound the informa- 
tion about the target contained in the sample as a function of 
the sample size. Since all the information about which con- 
cept from the class is the target comes from the sample, we 
can solve these two bounds to get a bound on the sample size 
required by the algorithm. 

This approach deals directly with the fundamental infor- 
mation quantities, rather than bounding more abstract enti- 
ties such as the Bayes risk. We believe that this directness 
is a major contributor to the clean results, simplicity of the 
proofs, and generality of the approach. Also, since we mea- 
sure only the information learned about the target concept, 
our bounds hold even when the algorithm knows the proba- 
bilistic model. 

We use a definition of learning that explicitly differen- 
tiates between the distribution of examples seen by the al- 
gorithm and the test distribution on which the algorithm’s 
hypothesis is evaluated. This enables us to easily apply our 
techniques to a wide variety of learning models including: 
malicious noise [25], classification noise [4], drifting distri- 
butions [7], and membership queries [l, 21. 

When proving lower bounds, one must make assump- 
tions about the complexity of the concept classes considered. 
Most of the bounds we obtain are of two forms: the first 
form uses a simple 2-concept class over a 2-element domain, 
while the second is based on (restricted) unions of intervals. 
Although bounds of the first form hold for any non-trivial 
concept class, they do not exploit the VC-dimension of the 
class. Bounds of the second form depend on the size of E- 
covers for the concept class. These bounds are better by a 
log l/t factor than previous bounds stated in terms of the 
VC-dimension for any concept class that can embed or sim- 
ulate (restricted) unions of intervals. Some natural classes 
with this property include half spaces and axis-parallel hyper- 
rectangles [23]. 

For the malicious noise model of Keams and Li [251 we 
use the simple 2-concept class to improve the lower bounds 
of Cesa-Bianchi et al. [ 121 by a log l/6 factor (Theorem 4) 
when the noise rate is bounded away from 0. 

In the more benign classification noise model of Angluin 
and Laird [4], we have a bound using unions of intervals that 



improves by a log l/c factor the previous bound proven by 
Simon [30] and Apolloni and Gentile [5] when the noise rate 
is bounded away from zero. Our result shows that the sam- 
ple size required to learn natural classes has different lim- 
iting behavior as E -+ 0 in the noise-free case (where it is 
R(d”c/~) [16]) and when the noise rate is a positive con- 
stant (where it grows as Q( *log;), Theorem 6). 

Another model we consider is a membership query model 
[ 1, 21 augmented with classification noise. Here we obtain a 
new sample size bound for arbitrary concept classes that gen- 
eralizes the results of Tur&n [33] in two ways. First, it adds a 
factor indicating the dependence on the noise rate. Second, 
our bound depends on the size of E-covers rather than the 
VC-dimension. This allows us to add a log l/c factor to the 
bound for many natural concept classes (Theorem 8, part 1). 

The final model we apply our techniques to is a batch 
version of Bartlett’s drifting distributionmodel [7] with clas- 
sification noise. Here we bound the allowable rate of drift in 
the noisy case, generalizing results of Bartlett 171, Aslam and 
Decatur [6], Simon [30] and Apolloni and Gentile [51. The 
drifting and membership query models illustrate the bene- 
fit of explicitly differentiating between the distribution from 
which the examples are drawn and the test distribution. 

It is remarkable that the same basic techniques yield sim- 
ple yet strong sample size bounds for such a wide variety of 
learning models. 

The next section contains the major definitions used 
throughout the paper. Section 3 describes our general 
methodology. Lower bounds on the information required for 
learning are given in Section 4. Section 5 uses upper bounds 
on the information in a sample (combined with the bounds 
in Section 4) to get sample size bounds for various learning 
models. 

2 Preliminary definitions and notation 
This section defines the learning framework, as well as some 
of the notation used throughout the paper. 

When X is a random variable, we use PX to denote its 
distribution (or density) function, and will sometimes drop 
the subscript when X is clear from the surrounding con- 
text. If f is a deterministic and measurable function, then 
Ep, [f(X)] denotes the expected value of f. For two ran- 
dom variables X and Y their joint distributionis denoted by 
PXY, and the conditional distribution of X given Y = y is 
denoted by Pxly. In general we will abuse the notation and 
writeeitherP(z) orPrp(x) (ratherthanPrp((2))). 

For simplicity of exposition, we assume throughout the 
paper that every random variable either takes values in a 
countable set or is continuous (so all densities are w.r.t. the 
counting measure or the Lebesgue measure). 

For a random variable X over a domain K and a random 
variable Y over a domain Y the (Shannon) entropy H(X) of 
X is defined by’ H(X) = Ep, [- log Px (X)] and the joint 
entropy, H(X, Y), of X and Y is defined as H(X, Y) = 
EP,, [- log Pxy (X, Y)]. 

The conditional entropy of X given Y = y is denoted by 
H(X 1 Y = y) and is defined by replacing PX in the defi- 

‘Here and throughout “log” means “log,” while “ln” is the nat- 
ural logarithm. As usual, 0 log 0 = 0 log co = 0. 

nition of H(X) above by the conditional distribution Pxlv. 
AS usual, H(X ) Y) = Ep,[H(X 1 Y = y)]. We define the 
mutual information 1(X; Y) between X and Y by 

. 
(1) 

where the supremum is taken over all finite partitions 
{B1, . . . . B,} of X x Y into Bore1 sets and Bqx, Bily are 
the projections of Bi onto X and Y, respectively [ 141. 

If Z - PZ we denote by 1(X; Y 1 2 = z) the condi- 
tional mutual information of X and Y given 2 = z, defined 
by replacing PXY by PXYI~, PX by PXI, and PY by Pylz 

in(l). Again, I(X;Y ) 2) = Ep,[I(X; Y ( 2 = z)]. 
For a discrete random variable with density (pi, , p,) 

we sometimes denote its entropy by 31 [PI, , pm]. When 
m = 2 we abbreviate 31. [p, 1 - p] by the binary entropy func- 
tion?!(p) = -plogp- (1 -p)log(l -p). 

Throughout X is a fixed set which we assume to be either 
finite, countable, or R” for some n > 1, L? is an algebra of 
Bore1 sets over X, and P is a probability distribution on X. 
We use Xm = (XI, . . . . X,) and Ln = (L1, . . . . Lm) to 
denote an Xm-valued and a (0, l}m-valued random vector, 
respectively. Their realizations will be denoted inlower case, 
as xrn = (xi, . . . . 2,) and 1” = (1i, . . . . I,), respectively. 

A concept c on (X, L?) is an element of a and a con- 
cept class C on (X, L?) is a subset of a. We will also find 
it useful to view a concept as a random variable with dis- 
tribution V over C. In such a case we denote the random 
variable with the small capital “c”. The random variable R 
(with realization r) is a finite sequence of unbiased random 
bits representing the randomization available to the leam- 
ing function described in Definition 1 below. A (ZabeEed) 
example is a pair (x, I) E X x { 0, 1). A (labeled) sam- 
ple SC(xm) for concept c is a pair (zc”, Ly(zcm)) where 
rrn = (21, . . . . 2,) E A?, and (in the absence of noise, see 
below) Lp(P) = (I,(q), . . . . Ic(~m)) E (0, I}” where 
1, is the indicator function for concept c. 

A noise model for the examples mathematically defines 
the way in which a sample $(z”) for a concept c is cor- 
rupted by the noise. This can be viewed as a process that 
takes as input &(z?) and T, and outputs a corrupted sample 
&C(P) = (P, b) where grn = (21, . . . . em) E X” and 
P = (1^1 ) . . . . im) E {O,l}rn. 

A key distribution we will consider is the joint distribu- 
tion between the information seen by the algorithm (the in- 
stances, their labels, and the randomization) and the target 
concept chosen by the adversary. We denote this joint dis- 
tribution as M over Xm x (0, l}m x (0, l}* x C (an m- 
indexing for M is understood), and assume that M factors 
as M(., ., ., c) = V(c)M(., ., 1 c), where M(., ., .Ic) is the 
conditional distribution of the first three arguments, given 
that the target concept is c. Here 2) is the distribution over 
the concept class mentioned above, while M (., , Ic) is the 
conditional distribution induced on the sample and the ran- 
dom bits by the adopted noise model. 

Thus, for every fixed c E C, the noise model induces the 
distribution M (c?~, lfm I TIC) over the set of corrupted sam- 
ples and the random bits. This distribution is generally a 

105 



function of the underlying probabilisticmodel for generating 
the initial sample $.(z~) and the random bits T. Although 
the noise we consider is usually i.i.d., in principle our tech- 
niques could be applied to other kinds of noise models. 

Below we give two relevant examples that we will be 
using in the application section of the paper. 

In the classijcation noise model of Angluinand Laird [4] 
the noise affects only the labels and M(lcm, im, r 1 c) fac- 
tors as M ( zrn, im , r 1 c) = P”(x”) M(i” 1 P, c) M(r), 
where pm denotes the m-fold P-probability product and 
M(i” 1 P, c) describes the i.i.d. noisy labeling process. 
In particular M(k 1 P ,c) = fly=“=, M(& 1 xi, c), where 
M(L(xi) I xi,c) = l- ( 7 no noise) and the label is flipped 
with probability II. 

We will also exhibit an application to learning with 
slowly drifting distributions (Bartlett [7]). Here the under- 
lying marginal distributionM (z?) is a product distribution: 
M ( xrn) = nz”=, Pi (xi) where the Pi ‘s are slowly changing, 
according to a suitable definition of distance between distri- 
butions that will be specified in Section 5.3. 

Let c, h E a. When P is understood from the context we 
say that c is t-close to h if Prp(cAh) < E, where cAh = 
{Z E X : It(g) # Ih(x)}, and c is c-farfrom h otherwise. 

Throughout the remainder of this paper, all functions are 
assumed to be deterministic (w.1.o.g.) and measurable. 

Definition 1 Concept class C on (X, a) is PAC-learnable 
w.r.t. distributions’P and M (Y’, im, r I c) ((P, M)-learnable 
for short) if there exist fknctions for the sample complexity 
m = m( et 6) and number of random bits b = b (c)6) required 
by a learning function2 A : X” x (0, l}n x (0, l}b + .@ 
such that for every E, S > 0 and c E C, 

prM(2~ i- I‘ 1 c) 1 2 ({$(P), r : Prp(cAA($(P),r)) < E}) 

>1-6. 

Here r is a sequence of 6 random bits, c is the target concept 
(or simply the target) and A($ (P) , r) is the actual hypoth- 
esis generated by the learning function A. No assumptions 
are made on this hypothesis (other than its membership in 
a,. 

This definition of learning has some interesting proper- 
ties. In contrast to most PAC models, the learning function 
“knows” (or can be specialized for) the test distribution P 
and the distribution of samples M (3”) k”, r I c). However, 
the learning constraint is for all possible targets c E C. Note 
that an equivalent definition results when the quantification 
“for all c E C” is replaced by “for all 2) over C” and the 
“prM(P,i-,T 1 c) ” is replaced by “Pr,(,, im,T,CJ” (so that c 
is drawn according to Do>. 

For a concept class C on (X, a) and a probability distri- 
bution P on X, the subclass C’ C C is called an c-cover of 
C w.r.t. P if for every c E C there is a c’ E C’ such that c’ 
is c-close to c [lo], [26], [35, pp.149-1511. We denote by 
N(C, t, P) the cardinality of a smallest t-cover of C w.r.t. P. 

‘The learning function A can be considered deterministic once 
its internal randomization has been fixed. We use the term “learning 
function” to emphasize that A need not be computable. 

In Section 5.4 we consider learning with queries. There 
we show that the finite coverability of C w.r.t. ‘P (i.e. 
N(C,t, P) < co for each E > 0) is necessary for the 
(P, M) -learnability of C regardless of the query model M . 

We introduce the following key definition that is tailored 
for our lower bound purposes. 

Definition 2 For a concept class C on (X , B) and a proba- 
bility distribution P on X, the subclass C, g C is an c-well- 
separated subclass of C w.r.t. P if for all h E I3 there is at 
most one c E C, that is t-close to h. We drop “w.r.t. P” when 
P is clear from the context. 

If the concepts in subclass C, are mutually 2t-far from 
each other, then the triangle inequality implies that C, is an 
c-well-separated subclass. Therefore, we can use the follow- 
ing lemma to show the existence of large c-well-separated 
subclasses. 

Lemma 1 [IO], [26] Let C be a concept class on (X, B) 
with N(C, 26, P) = N. Then there exists ajnite subset of C 
of cardinality at least N whose elements are mutually 2c-far. 
0 

Remark 1 Many papers in the lower bound literature, in- 
cluding [lo, 181, use mutual separation (as in the conse- 
quence ofLemma I) rather than ~-well-separated subclasses 
to measure the complexity of a concept class. The cardinality 
of a largest subset C’ C C whose elements are mutually c-far 
is usually called the c-packing number of C w.r.t. P [26]. 
Denote this quantity by M(C, E, P). We point out that if C, 
is e-well-separated then its members are mutually 6-far from 
each other, so IC,I < M(C, 6, P). As indicated above, the 
triangle inequality &plies that if C, is a maximum c-well- 
separated set then M(C, 26, P) 5 I&I. Therefore /C,I is 
sandwiched by two c-packing numbers. 

A simple but relevant example of c-well-separation that 
we will use several times in the subsequent sections is the 
following. For x1, x2 E X, let P be the distribution on X 
defined by P(xl) = 1 - E, P(x2) = E, and P(x) = 0 
elsewhere. Let C be the class on (X, a) defined by C = 
{CI,CZ}, where cl = {z~,Q}, cz = (21). If 1 - c 2 E 
(i.e., E 5 l/Z> then C itself is an c-well-separated subclass 
(however, the concepts in C are not 2t-far). We will refer to 
this pair of C and P as an t-binary pair on (X, B). 

Finally, we define the VC-dimension of a concept class 
C, denoted &c(C), as the cardinality of a largest subset of 
the domain shattered by C (see [l 11, [36, p. 531). 

3 The symmetry of mutual information and 
the method of induced distributions 

The following outlines the method we use for lower bound- 
ing the sample size required for learning. Let C be a con- 
cept class on (X, a) and consider the mutual information 
I( c ; Xrn, Lm, R) between the C-valued random variable 
c and the joint variable (J?, irn, R) formed by the (cor- 
rupted) sample (@ , im) for c and the random bits R. Con- 
sider the distribution M introduced in the last section. We 
recall that (2im, i”, R) - M(ic”, fm, r), the marginal of 

106 



M w.r.t. c. Let H = A(xm, Lm, R) be the value of the 
learning function A for C on arguments *i-m, irn, R. Since 
H is a function of Xm, irn and R, we have 1(c ; H) 5 

I( c ; Xrn, irn, R) (see, e.g., [24]). If c is independent of 
the internal randomization R of A then I( R ; C) = 0. By the 
symmetry and the additivity of 1 we get I( c ; *@, i-, R) = 
I(@,im,R; c)=I(R; c)sI(~~,~~~; c]R).Hence 
we obtain the general inequality 

I(c; H) 5 I(gm,?; cl R), (2) 

which holds for every (P, M)-learning function A for C, no 
matter which distributionD over C is chosen, as long as the 
target c is independent of the random bits3 used by A. 

It is quite instructive to interpret both sides of (2). Given 
the knowledge of C, P and M, the LHS of (2) is roughly 
the number of bits of information required for A to per- 
form the learning task at hand: A must identify a target 
concept inside a known concept class, up to E error with 
confidence 6. The RHS refers to the average information 
content of the corrupted sample seen by the learning func- 
tion. This information content is measured by the mutual 
information I(k’” , irn ; c 1 R) which represents the “de- 
gree of dependence” between target concept c and sample 
( Xm, i-), given the function’s randomization R. When the 
labeled sample is error free this mutual information is al- 
ways a strictly increasing function of m for every 2) (dis- 
regarding degenerate cases). This suggests that, as long as 
the LHS of (2) is finite, a sample of suitable (finite) size 
is sufficient to learn. On the other hand, if the sample is 
corrupted by a noise process then the sample might con- 
tain no information about the actual target. Such a situation 
is desirable when we are designing adversarial noise strate- 
gies to make the learning process as hard as possible. The 
method of induced distributionsintroduced in Keams and Li 
[25] (but see also Angluin and Lair-d [4], Sloan [311, Cesa- 
Bianchi et al. [ 121) can thus be reinterpreted by means of this 
mutual information argument. The adversary tries to make 
I(Ye, Lm ; c 1 R) as small as possible. If the adversary 
can make c and (km , Lm) statistically independent (given 
R), then it can prevent PAC learning, irrespective of the num- 
ber of examples used and the computational resources of the 
learning function. On the other hand, working from inequal- 
ity (2) has the advantage of being able to quantify the hard- 
ness of the learning task as l(im, L” ; c 1 R) t 0. 

To quantify this hardness we need to perform two further 
steps: 

1) Find a suitable lower bound on the LHS of (2) by ex- 
ploiting the fact that A is a learning function for C; 

2) Find a suitable upper bound on the RHS of (2) by ex- 
ploiting the data of the problem, i.e., the concept class C 
and the distribution M induced by the underlying dis- 
tributionlaw over Xm and the actual noise process. 

Both of the above bounds depend on the distribution TD 
over the concept class. Our lower bound (step 1) will not 
depend on the sample size m, while our upper bound (step 

3From now on we assume c and R are independent. 

2) will. Relating these bounds through inequality (2) yields 
a bound on the sample size. Moreover, examining the rela- 
tionship between the two sides can guide the selection of ‘D, 
as we will see later. 

Consider the case when the examples (ki, Li) in the 
sample (2zm, im) have the same distribution and are condi- 
tionally independent given R and conditionally independent 
given both c and R. Thus, once the function’s randomization 
and the target concept are fixed, the examples are i.i.d. Un- 
der these assumptions we can easily describe how the RHS 
of (2) depends on m. In particular l(gim, irn ; c 1 R) fac- 
tors as mI(ki, ~?i ; c 1 R). Solving (2) for m results in a 
lower bound of the form 

4)) L I(C; H) 
I(&, ii ; c 1 R) 

(3) 

that holds for every learning function and every distribution 
V over the concept class. One can compute the supremum 
over all possible distributions 2J of the RHS of (3) to make 
the bound as tight as possible. 

We wish to stress one subtlety: while the testing distri- 
bution P only affects the LHS of (2), which can be bounded 
in terms of the (pseudo)-metric properties of C w.r.t. P (as 
we will see in Section 4), the distribution M governing the 
sample only affects the RI-IS of (2). As a consequence we are 
able to clearly separate the roles of these two distributions. 
Varying the distribution M allows us to treat: several kinds 
of noise models, distributions that change over time, learn- 
ing with membership queries, and various combinations of 
the above. 

The role played by the learning function’s randomization 
R in this argument in quite marginal, since in the LHS of (2) 
R is plugged into H and in the RHS of (2) it is a conditioning 
quantity. If, as is often assumed, the internal randomization 
of A is statistically independent of the relevant quantities that 
A is inferring, then R cannot provide any information about 
them, and we can drop the R-conditioning in all the entropy 
formulas. 

When the observed examples (x;, ii) are i.i.d. given C, 
we could adopt Bayesian terminology and say that ‘D is a 
prior over a parameter space C and that I(c ; grn, Lrn) is 
the Bayes risk of the optimal (Bayesian) on-line estimator 
for the common density of (xi, ii) under log loss. From 
this Bayes risk one can obtain a lower bound on the min- 
imux risk, which is essentially the capacity of the channel 
mapping concepts to samples described by the conditional 
distributions M (2” , Zm 1 c) = l-I:“=, M(zi, Zi ) c). 

There is a large amount of literature related to the prob- 
lem of finding upper and lower bounds on the mutual infor- 
mation I between a parameter and a set of m observations 
(see, e.g., Haussler and Barron [19], Haussler, Keams and 
Schapire [20], Haussler and Opper [22], Yu [37] and the ref- 
erences therein). We emphasize that the present paper has 
a different concern. We do not regard I as a function of 
m; we are instead interested in finding conditions that m 
must satisfy in order to meet the PAC-learnability require- 
ments. Furthermore, the interpretation of 2) as a prior over 
C is somewhat misleading in this paper. We prefer to view it 
as a free parameter to be optimally tuned in order to obtain 
the tightest bounds. Since we are restricting ourselves to the 
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PAC framework, we are able to get practical bounds on m 
which are not asymptotic in nature. 

The idea of using information-theoretic tools to prove 
sample size lower bounds for PAC-learning is taken from 
Apolloni and Gentile [.5]. In that paper the authors adopt an 
Algorithmic Complexity formalism and point out the abil- 
ity of their method to treat the testing distribution P and the 
sampling distributionM (. , , . ]c) as completely unrelated pa- 
rameters of the learning problem. The idea of using the sym- 
metry of the mutual information1 between the target concept 
and the training sample and than to compare the two altema- 
tive expressions for I is stressed in [ 181. The generalization 
of this framework to arbitrary noise models and the method 
of maximizing the ratio of the two expressions for I over the 
V’s is, to the best of our knowledge, a new one. By this 
method we are able to get new meaningful lower bounds in 
a clean and almost automatic way. 

4 Bounding I( c ; H) as a function of 27 
In this section we will fully exploit the existence of large E- 
well-separated subclasses (as defined in Section 2) to bound 
the information I(c ; H) required for learning. Here t is 
intended to be the desired accuracy of the learning function 
under consideration. 

Let C be a concept class on (X, f?) and A be a (P, M)- 
learning function for C. Let N be the cardinality of a largest 
c-well-separated subclass C, = {cl, . . . . CIV) of C and c be a 
random variable with distribution2) = (di, . . . . do) over C,. 
Now, set for brevity H = A(gim, Lm, R). Since C, is c-well- 
separated, for any hypothesis h in the range of A (for some 
choice of its arguments) there exists at most one Ck E C, 
that is c-close to h. On the other hand, since A is a learning 
function for C, for any Ck E C, there exists at least one h in 
the range of A that is c-close to Ck. Let 

Ran(A) = {h : hisintherangeofA}. 

Define 

cl( 1) = (h E Ran(A) : h is c-close to cl or 
v’c,, E c, h is c-far from ck } 

and,fork = 2, . . . . N, 

cl(k) = {h E Ran(A) : h is 6-close to Ck}. 

The family of sets {cl(k), k = 1, . . . . N} partition the hy- 
potheses produced by A, and thus induce a partition of A’s 
arguments, Xm x (0, l}m x (0, 1)‘. Therefore, the family 
of sets 

{&k = cl(k) x {ci}, i, k = 1, . . . . N} 

can be viewed as partitioningXn x (0, l}m x (0, l}b x C,. 
Focus now on I(c ; H). By the definition of mutual in- 

formation in (1) we know that the partitional mutual infor- 
mation r^( c ; H) , defined by 

T(l^(c; H) = e tiM(&) 
PrM (&k) 

i,k=l 
PrM(H E cl(k)) Pr,&)’ 

(4) 

is a lower bound-on I(c ; H). We lower bound 1(c ; H) by 
lower bounding 1( c ; H). 

Two relevant special cases in which we can obtain such 
lower bounds are provided by the following lemmas. 

Lemma 2 If 2) is uniform over Cc, i.e., each di = l/N, then 

I(c ; H) 2 (1 - G)log(N - 1) - 1 

Prooj In the discretized scenario we described thus far we 
apply the classical Fano’s inequality (see, e.g., [13, Theorem 
2.11.21) that lower bounds the partitional mutual information 
I^( c ; H) in terms of the probability of an “error”, 

PrM (eww) = 1 - 5 Prm (C = Ci and H E d(i)). 

i=l 

Since V is uniform over C6, Fano’s inequality yields 

I^(C ; H) >log N - PrM(eWOr) log(N - 1) - 1 
>(l- PrM(error)) log(N - 1) - 1. 

The probability of error, PrM (error), is a lower bound on 
the probability that the learning function produces a hypoth- 
esis that is E-far from the target. Therefore, PrM (error) 5 6 
and 

I^((c ; H) > (1 - 6) log(N - 1) - 1, 

completing the proof. 0 

Lemma 3 i” N = 2, V = (d, 1 - d) and S < l/2 then 

I(c ; H) 2 31((1 - 6)d + 6(1 - d))-‘H(6) 

Proof&etch. We Set for brevity p12 = P~,u (H E d(2) 1 Cl) 
andpal = PrM(H E cl(l) ] cg). We have PTM(H E cl(l)) = 
(1-piz)d+p~l(l-d) and thepartitionalmutualinfonnation 

I^@; H) = 31((1 -plz)d+pn(l - 4) 
-dWm) - (1 - d) R(m). (5) 

Now, a derivative argument shows that for any fixed d and 
pai E [0, 11. ?(c ; H) is non-increasing when pi2 E [0, 1 - 
~211. Similarly, for any fixed d and ~12 E [0, 11, I^(c ; H) 
is non-increasing when pal E [0, 1 - plz]. Since the PAC- 
learning constraints require that both pi2 and pzl < 6 (which 
is less than l/2), we obtain a lower bound on ?(c ; H) by 
substituting 6 for ~12 and ~21 in Equation (5). This yields 
the bound of the lemma. 0 

Remark 2 The preceding lemmas could also have been ob- 
tained through thefollowing more general approach for lower 
bounding r^( C ; H). The di@cuZty is that ?( c ; H) depends not 
only on V, but also on the probabilities&f (H E cZ( k) 1 ci) 
which depend on the Zeamingfinction. In order to get a gen- 
eral bound on I^(c ; H) we must consider how the learning 
function can affect these probabilities. 

setfor brevitypik = ~M(H E cl(k) ( ci), so that in (4) 
R,U(Bik) =Pikdi andPI&(H E cl(k)) = CfLl&kdi. 

Since, with probability 1 - S, the learning function must 
produce a hypothesis that is c-close to the target, we can 
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write C,“-, _ ,kfi pik 5 6. Adding the probability constraints 

that cf=“=, pil, = 1 and pik 1 0 gives us the following mini- 
mization problem. 

m;nr^C ; H) (6) 

Pik 5 6, FPik = 1, pik > 0) 
k=l,k#i k=l 

As the pik values associated with any learning function rep- 
resent a feasible solution, the optimal value of the minimiza- 
tion problem gives a general lower bound on I^( c ; H) as a 
function of V. 

Since ?( C ; H) is convex on fl for any 2) (see, e.g., [13, 
p. 311) and the constraints defining R are linear, a standard 
Kuhn-Tucker analysis (6) can be attempted. Unfortunately, 
the solution to (6) appears to have an easy form only for the 
two cases covered by the above lemmas. 

5 Applications 
This section presents several applications of the method out- 
lined in Section 3. It is aimed at revisiting well-known lower 
bounds as well as at showing new ones. We feel that this sec- 
tion illustrates the main point of the paper: all these sample 
size lower bounds have the same underlying structure. 

5.1 Malicious Noise 

The malicious noise model was introduced by Kearns and Li 
[2.5] as a way to formalize the worst possible kind of noise 
in the examples. This noise model starts with an error-free 
sample SC(P) of the target c, where zm is drawn from the 
underlying distributionPm. For each example in the sample 
an independent coin with probability 17 of heads is tossed. 
If the coin for example (x,1) comes up heads, then (x,1) is 
replaced by a corrupted example (2, i) about which no as- 
sumptions can be made. Otherwise, the example is left un- 
changed. 

In particular, the corrupted examples (2, i) can be ma- 
liciously chosen by an adversary that knows t, 6, c, P, M 
and the internal state of a device computing A 4. Hence 
the factorization of M (V, im, T ] c) depends on the specific 
noise process. As a short-hand, we call this model “(P, M)- 
learning in the malicious noise model”, leaving the details of 
M as a separate issue. 

Results similar to Theorem 4 below have been shown 
by Keams and Li 1251 and by Cesa-Bianchi et al. [12]. In 
the former paper no sample size lower bounds are proved, 
while in the latter paper the authors prove a looser bound by 
a Bayesian argument that involves a subtle study of the prop- 
erties of the binomial distribution (see Fact 3.2 therein). We 

‘?here is a subtlety hem that is worth mentioning: we may dis- 
tinguish whether the action of the adversary for the i’th example 
only depends on the previous i - 1 examples or it is allowed to de- 
pend also on the “future” m - i examples. However the difference 
between the two models seems to be relevant (Cesa-Bianchi et al. 
[12]) only when one is proving lower bounds for special classes 
of learning functions (e.g., disagreement minimization). Thus we 
will not be concerned with this subtlety as we are not restricting the 
behavior of A. 

prove a tighter bound for this model using a more direct mu- 
tual informationargument. Our bound adds a log( l/6) factor 
to the bound of [ 121, and illustrates how the RHS of (3) can 
guide the choice of V. 

Theorem 4 Let C and P be an e-binarypair on (X, f?) (de- 
fined in Section 2). If A is a (P, M)-learning function for 
C in the malicious noise model with rate 0 5 17 < &, 
A = & - n, E 5 l/2 and 6 < l/2, then the following 
relation on m must hold 

m > q( 1 - 26) In y 
- As( 1 + t)2 

= R(-$ In:). 

Proof Since C and P are an t-binary pair, we can assume 
that X = (21, ~2) and P(xl) = 1 - E, so C, = C is 
an c-well-separated set. For any 2) = (d, 1 - d), applying 
Lemma3givesI(c; H) >%((l-6)d+S(l-d))-%(6). 

The malicious adversary behaves as follows [25, 121: if 
noise occurs and c is the target, it replaces the current ex- 
ample (x,1) by (x2, 1 - It(q)). The following induced 
distributionresults: M(gm,l^“Ic,r) = nE, M(&,ii(c, r), 
where (independent of r) 
M(zI, 01~1, r) = 0, M(zl, llcl,r) = (1 - v)(l - 0, 
M(~2,OIw-) = (I- ~16, M(~cz,lIcl,~) = 7, 

M(xI, 01~2, r) = 0, 
M(22,0(~2,7-) = 71, 

M(~I, 11~2,~) = Cl- rl)(l- 61, 

M(~2,llc2,r) = (I- 7))~. 

Al~o,l(T?i,Li ; C(R) = H(Xi,ii ) R)-H(*i,ei I C,R), 
and for the M shown above it is easy to verify that 

H(T&, 2, ( R) = 

and 
H(~~,~iIc,R)=3t[(l-71)(1--),(1--)E,77]. 

The difference, H(zi, ,?i 1 R) - H( &, ii 1 c, R) is the con- 
cern of the following fact, whose proof is in the appendix. 

Factl: If0 < E 5 1,O < 77 < &,andO 5 d < 1 
then 
~[(1-rl)(l--E),d(l-1I)~+(l-d)17,drl+(l--d)(l-~rl)~] 
-X[P - 77)(1 - t), (1 - 17)vl]= 

With these expressions for I(c; H) and I(.$, ii ; c 1 R), 
we can apply (3) to see that m(d) is at least 

3c((l- 6)d+6(1- d))-%(6) 

Note that this bound is a function of d and sup&[O,l] m(d) 
is at least lim&+~+ m(d). Since both the numerator and the 
denominator of (7) vanish as d -+ 0 we use De 1’Hospital’s 
rule to evaluate this limit. Some simple algebra leads to 

dlhF+ m(d) = 
(1 - 2S)lnv 

(E - ~(1 + c))ln+$’ 
(8) 
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Since t - ~(1 + t) = a( 1 + t) and F = 1 + y 
we can use the inequality ln( 1 + z) 5 z to overestimate the 
denominator of (8) with F. This completes the proof. 
cl 

The previous bound is meaningful only when ~7 is close 
to the information-theoretic limit &, but has the advantage 
of diverging as b -+ 0. By selecting d = l/2 (instead of 
d = 0), a completely analogous argument proves the bound 
m > O(s), which does not vanish when n = 0. In fact, 
any choice of d E [0, l] gives a bound on m. 

The same trade-off (a bound that vanishes for Q = 0 but 
diverges as 6 + 0 versus a bound which does not vanish for 
77 = 0 but does not contain a dependence on S) will recur. 
Both Theorem 7 part 2 and Theorem 8 part 2 are phrased to 
emphasize the dependence on 6. For these theorems also, if a 
more moderate value is used for d then the resulting bounds 
are meaningful when ~7 = 0 (but lose their dependence on S). 

5.2 Classification noise 

The classification noise model was introduced by Angluin 
and Laird [4] as a way to model the mildest kind of error 
in the examples. Here each example (z, I) of the error-free 
sample S, (P) is processed by a noise process that inde- 
pendently with probability 1 - n leaves it unchanged, and 
with probability 7 flips the label 1 into i = 1 - 1. As a 
short-hand, we call this “(IP, ‘Pm)-learning in the class@ 
cation noise model”, to be understood as (P, M)-learning 
in which M factors as described in Section 2. 

When n is bounded away from0, say n 2 l/100, thefol- 
lowing theorem adds a logarithmic factor to a bound proved 
in Simon [30] and Apolloni and Gentile [5], by considering a 
very natural family of concept classes over the unit interval. 
In order to prove it we make use of the following technical 
lemma. 

Lemma5 Letf(cr,v) = ?f(v+c~(l- 217)) -Z(n). 
1. Zf a E [0, l/2) and 7 E (0, 1) then 

2a(l - 27)” 
‘(““) ’ (In 2)(1 - 2cx)(l - (1 - 2v)2)’ 

2. Zfn,q > 0 a&r/+ LY 5 l/2 thenf(cu,q) 5 crlog(l/q). 
3. f( a, 0) = 31 (cr) 5 (Y log(e/cy) (where e is the base ofln). 

Proo$ 
1. See [S]. 
2. In appendix. 
3.Easilyderivedfromthefact-(1-o) ln(l-a) <a,for 
all ff E [O, I]. 0 

Theorem 6 Let ck be the class of unions of k 2 1 intervals 
on the unit interval X = [0, l] and P be uniform over X. Zf 
A is a (P, Pm) -1earningbnction for ck in the classijcation 
noise model with rate 77 # l/2, E < l/16 and 6 < 1, then: 
1. If 0 < 710 5 11 < 1 - 170 then 

logs) 
where the hidden constant in this R-expression depends on 
110. 

2.Zflog( l/q) = o(log( l/e) when E + 0 and 17 + 0 then 

m=w( dvc(&) 
t 1% 

3. If 17 = 0 then 

m=Q( dvc (c/c) 
.c ) 

PrOOf. Let us consider the subclass & of ck defined as 
follows. Set 5 T = &. We split [0, l] into k intervals, Ii 
through rk, each of length l/k. We then split each 1i into 
T sub-intervals, Iii through 1ir, of length l/Tk. Thus for 
i = 1, . . . . k and j = 1, . . . . T, interval li = [y , i] and 
sub-interval rij = [ 9 + g, $$ + &]. Define6 

& = {Ilj, u I& u . ..u Ikj, : j,,j,, . . . . ‘j, E (1, . . . . T}} 

so that each c E & is the (disjoint) union of k sub-intervals, 
one from each different interval. We will lower bound the 
cardinality of a largest c-well-separated subclass of ck by un- 
derestimating N(&, 26, P) (Lemma 1). Two concepts in&, 
are 26-close if and only if they share the same sub-intervals 
in more than k/2 of the intervals. For any given CO E &, the 
number of concepts in & that are 2e-close to CO is thus 

[k/21 -1 
(T - 1)” < 2” c T” 2 2kTrk/21 

I=0 

Since I& 1 = T”, every 26-cover of & contains at least 
Tk/2kTrk/21 >_ i(T/4)Lk/2J concepts. Now Lemma 1 im- 
plies Chat the cardinality of a largest e-well-separated sub- 
class &kt of & satisfies 

Let V be uniform over i)kc. Since in this noise model 
Xm, c and R are independent, we have 1(X”, irn ; c ] R) 
= I@” ; c 1 Xm) = H(i” 1 Xm) - H(l? 1 X”, c). 
We overestimate H(L” 1 Xm) by H(im) and note that 
fiyim ) X”, c) = m’?i (7) for the classification noise model. 
Applying (2) and Lemma 2 now results in 

(1 - 6)10g(ltkE] - 1) - 1 5 ff(im) - mx(T)). (lo) 

But H(im) = mX((PTp(& = 1)) = rn’H(v + 4~(1 - 27)) 
for any D, since I+(C) = 4~ for every C E &. 

Combining (lo), (9), the fact that dvc = dvc(Ck) = 
2k, and underestimating the logarithm yields 

(1-d)(!+ l)log(& - 1)-l 5 

mYH(rj + 4t(l- 27)) - m?-l(rl) (11) 

‘In order not to complicate the notation, in this proof we assume 
T is an integer. 

‘?he class c^, is defined as a function of the accuracy t. Since 
ik is a subset of Ck for every e, we are bounding the difficulty of 
learning the larger class Ck by considering, for every value of E, a 
hard subclass of CI, 
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(The assumption e < 1/ 16 prevents a non-positive argument 
in the log.) Part 1 of the theorem now follows from bound 
1 of Lemma 5, after noting that the denominator of bound 
1 is at least a constant. Part 2 follows from (1 l), bound 2 
of Lemma 5, and a comparison of the factors log( l/t) and 
log( l/q) which occur in opposite sides of the inequality. Part 
3 follows from (11) and bound 3 of Lemma 5. 0 

The lower bounds of Theorem 6 actually hold for every 
pair of C and P such that C contains a subclass d of concepts 
each with P-measure O(E) and where log N(e’, 26, P) = 
R(dvc(C)log(l/c)). For instance, by the embedding tech- 
nique’ of Helmbold et al. [23], the same lower bound holds 
for various common geometric concept classes such as axis- 
parallel rectangles in lRn and half-spaces. 

Moreover, we remark that such a lower bound is the 
best possible when 7 is bounded away from 0. Indeed a 
matching information-theoretic upper bound on the sample 
size required to (‘P,‘Y)-leam any concept class C of fi- 
nite VC-dimension dvc in the classification noise model is 
provided by the analysis in Laird [27, p. 1901. This anal- 
ysis of disagreement minimization is valid only for finite 
size classes. Disregarding the dependence on S, the sam- 
ple complexity there is 0 ($$$) . Since we are assum- 
ing that the learning function knows the distribution P, it 
knows in principle a smallest t-cover of C w.r.t. ‘P. Dudley 
contains a proof [ 15, Theorem 9.3.11 that smallest e-covers 
contain at most K ($)O(dvc) elements. Here I< is a con- 
stant that depends on the concept class but neither on P nor 
on E. Using L&d’s analysis of minimizing disagreements 
on a smallest f/2-cover of C, one could obtain the sample 
size bound m = 0 (log “$y~$)log! ) , which matches our 
lower bound as E --+ 0. 

It is natural to expect that the ideas behind Theorem 6 
can lead to a similar improvement in the bounds for learning 
in the malicious noise model of Section 5.1. However, this 
remains an open problem. 

5.3 Classification noise with drifting distributions 

Here we adopt the terminology of the drifting distribution 
model introduced by Bartlett [7] and further explored by 
Bartlett and Helmbold [8] and Barve and Long [9]. Notice, 
however, that we are still considering a batch learning set- 
ting. 

Following Bartlett [7], we define a distance between prob- 
ability distributions P1 and ‘P, on X as follows: 

dist(Pl, Pz) = zi IRP, (A) - BP, (A) I. 

A sequence of probability distributions {Pj}j=l...m is called 
y-admissibZeifdist(‘Pj,iDj+l) 5 +y,forj = l,...,m- 1. In 
the drifting distributionmodel, M factors as 

M(xm,im ,r,c)=fiF’(xJM(i”L Ix”,c)M(r), 
j=l 

7The proof of Theorem 6 requires that the entropy of the ob- 
served labels be small. Therefore, embedding techniques based on 
initial segments (like those of Haussleret al. [21]) are more difficult 
to apply in this context. 

and M(I” 1 z?, c) factors as for the classification noise 
model. For brevity, we call this model “(P, nj ‘Pj)-learning 
in the classijication noise model”. Here we assume that the 
testing distribution P = ‘P, , the last distribution in the se- 
quence. 

The following lower bound has two parts. The first is 
a generalization of results in [7, 30, 51. The second is a 
generalization of a result proved by Aslam and Decatur [61. 
The method we employ provides particularly clean proofs 
and yields far better constants when specialized to (P, Pm)- 
learning in the classification noise model (without distribu- 
tion drift). * 

Theorem 7 
I)LetCbeaconceptclasson(X,B),dvc(C) =dvc 2 86, 
E < l/16 and 6 < l/40. Then for every m there exists a y- 
admissible sequence of distributions { ‘Pj }j = 1.. .m on X, with 

7= 
6402( 1 -X(q)) 

dvc-2 ’ such that (P, , nj Pj) -learning in the 
classijication noise model is impossible. 

2) Let C and P,,, be an c-binary pair on (X, f?), with 
t 5 l/2 and 6 < l/2. Then for every m there exists a y- 
admissible sequence of distributions { Pj }j = 1,. .m on X, with 

y=o(W), such that (P, , nj Pj) -learning in the 

classification noise model is impossible. 

Prooj 1) Let (~1, . . . . zdvc} C X be shattered by C. Define 
{P~}j=l...m to be the following y-admissible sequence of 
distributions on X witht = 40$:;~,,jj : 

1 

0 for i = 1, . . . . dvc - 2; 
Pj (xi) = 1 - 16~ for i = dvc - 1; 

16~ for i = dvc 

j=l,...,m-t, 

w for i = 1, . . ..dvc - 2; 
?‘j(xi) = 

{ 

1 - 16~ for i = dvc - 1; 
-y(m - j) for i = dvc 

j = m-t+l, . . . . m,andPj(z) = Oelsewhere,j = 1, . . . . m. 
w.l.o.g., we restrict ourattentiontox = {xl, . . . . Xdvc} 

and the class C’ = {c E 2{Z1~...1Zdvc) : lc(~dvc- 1) = 
Ic(2dvc) = 0). The sequence {P~}~=l...m is y-admissible 
since the subset of X that has the largest variation in proba- 
bilityis (~1, . . . . zdvc-2 }. Since yt = 16~ the testing distri- 
bution Pm is actually the following: P,(xi) = lBc/(dvc - 
2), i = 1, . ..) dvc - 2, Pm(xdvc-1 ) = 1 - lSf,P,(x) = 
0 elsewhere. Let N = IC: 1 and ‘D be uniform over CL. 
Again we apply (2) and Lemma 2 and remark that for this 
model of noise 1(X”, irn ; c 1 R) = l(im ; c ) Xm) = 
H(i” 1 Xm) -H(im 1 X”, C) = H(i” 1 Xm) -m%(v). 
We get the following necessary condition on m 

(1 - S)log(N - 1) - 1 < H(i” I Xm) - m?f(v) (12) 

‘The bound related to part 1) was proved in [30] by appealing to 
the central limit theorem and in [5] with worse constants and only 
for r) bounded away from 0. Theorem 7, part 1 can also be derived 
by the Bayesian argument in [9, Theorem 181, but the constants 
therein are exceedingly large. 
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From computations which are close to those exhibited in the 
proof of Theorem 6 (for a very similar computation we refer 
to the proof of Corollary 1 in [5]) it follows that log( N- 1) > 
11 dvc - 3) for dvc _ 25 ( > 7 and6 < l/16. 

Set now X” = (Xi, . . . . X,) andlet B” = (Bi, . . . . B,) 
be a bernoullian noise vector where the Bj ‘s are i.i.d - ber- 
noul(rj), in, = (i+ . . . . i,), ij = Ic(Xj) @ Bj, j = 
1, , m and $ is the exclusive-OR. (Note that Bj = 1 means 
that a labeling error has occurred in j-th position.) Define the 
following three random variables: U = number of j’s such 
that Xj = zdvc-i, whenjrangesin{m-t+l,...,m};V 
= number of j’s such that Xj = 2dvc-i and Bj = 1, when 
j ranges in {m - t + 1, . . . . m}; W = number of j’s such 
that Bj = 1, whenj ranges in (1, . . ..m - t}. Obviously 
U - binomiaI(t, 1- 16~), V - binomial(t, (1 - 16~)~) and 
W - binomial(m - t, 7). Given Xm , the cardinality of the 
range of the variable ,?- can in fact be upper bounded in 
termsofU,VandWby 

(mg) .+J .2. (t’) (13) 

Consider indeed the first m - t components of Xm. Since 
L(~dvc-1) = b(~dvc ) = 0, the first m - t components 
of the vector jrn can be set to 1 only by the noise. Hence 
the number of possible values taken by the first m - t com- 
ponents of i- is exactly (“it). On the other hand, among 
the last t components of L”, all components ij such that 
xj = xdvc-1 and Bj = 0 have value 21, while all those 
such that Xj = xdvc - i and Bj = 1 have value 1 - v, where 
vcanbeeitherOor1. 

Now, (see, e.g., [13, p. 2841) for 0 < b < a we have 
(i) 5 2ati(bl”) (for a = 0 consider both terms to be zero). 
In view of (13), no matter how we choose V over C’ this 
yields 

H(im 1 Xm) 5 (m - t)Em[3C(W/(m -t)] + 

t - EM[U] + I+ E~[u%(v/u)]. 

The function f(w) = 31(w/(m - t)) is clearly concave 
over [0, m - t], while, by direct computation of the Hes- 
sian matrix, it can be shown that even the function g ( U, w) = 
~31 (w/u) is concave over the convex set {(u, U) : u E 
[0, m], w E [0, u]} (motivated by continuity we set g(u, U) = 
g ( U, 0) = 0 for u E [0, ml). Therefore by Jensen’s inequality 
EM[%((/(m - t)] < x(EM[[W]/(m - t)) = x(V) and 
EM[u’IFI(V/U)I 5 EM[U]~(EM[Vl/EM[~l) = t(l - 

16cW(71). 
Thus, for every V over C’, a(im 1 Xm) - m%(q) is 

bounded from above by 

(m-t)‘%(~)+t-t(l-16~)+l+t(l-l6~)%,(n)-m3t(~) 

= 16tc(l - R(n)) + 1 

ZZ g(dvc - 2) + 1 

putting together as in (12) implies 

2(1- S)(dvc - 3) - 1 5 i(dvc - 2) + 1 

which, for S 5 l/40 and d vc > 86 is not fulfilled. This 
contradiction and the fact that it holds for every m prove part 
1. 

2) This proof is similar to that of Theorem 4. Thus we 
only give the main steps in a sketchy form. 

For x1, 22 E X, let C be the class C = {cl, CZ}, cl = 
{x1, x2}, ca = {xi}. Let {P~})j=i...,,, be the followingy- 
admissible sequence of distributionson K: Pj(~i) = 1, j = 
1, . . . . m-t,Pj(xl) = l-y(j--m+t),j = m-t+l, . . . . m, 
Pj(z2) = 1 - Pj(xi), j = 1, . . . . m,withyt = E. 

C and P, are an c-binary pair so that we can assume 
C, = {ci, c2}. Let 2) = (d, 1 - d) be adistributionover this 
C,. By the noise model it can be easily verified that 

H(ij 1 Xj) = H(Lj 1 Xj, c) = N(q), j = 1, . . . . m- t, 

while H(Lj ] Xj) equals 

‘WV) + r(.i - m + t)[y((l - rl)d + 41 - 4)-Wv)] 1 

andH(ij IXj,C) =%(q),forallj=m-t$l,...,m. 
Therefore 

I(Xm,Lm;Cpq = I(P;clXm) 

= H(i” ) Xm) - H(i” 1 Xm, c) 
= P[z((l - v)d + 41 - 4)-%)I) 

where p = C5=1 yj = yt(t + 1)/2 = Zj (f + 1). We can 
apply Lemma 3, yielding 

31((1 - 6)d + 6(1 - d))-%(S) < 

P[z((l - VP + ~(1 - 4)-Wd] 

and then (3) on p = P(d) by setting 

P(d) = x((l- V+ SC1 - 4)-W) 
z((l- v)d+ ~(1 - 4)-Wd 

We still have sup&[,,l] P(d) 2 limd.+,+ P(d). We employ 
De 1’HospitaI’s rule to get 

;iy+ P(d) = 
(1 - 2s)lny 

~(1 - 2v)lnq 
(14) 

Since y = 1 + 7 we have ln? = ln(1 + y) 5 
7 the inequality following from ln( 1 + Z) 5 x. Plugging 
the last inequality into the denominator of (14) gets 

p L (1 - 26) 17 In$$ 

(1 - %I2 
(15) 

From@ = $($+ l), and (15) we obtain the claimed bound 
on y holding for every m. 0 

Hence the noise rate 17 affects in a significant way the 
drifting constant y. The specialization to (P, Pm)-learning 
inthe classification noise model (i.e., withy = 0) is obtained 
bysettingt=m,Pj=P,=P,j=l,...,m.InpartlifA 
is a (P, Pm)-learning function for C under these conditions 
then its sample complexity must satisfy (12). In the proof of 
part 1 we showed that its LHS is R(dr/c) and that its RHS 
is O(mc(l - 31(q)) = O(mt(1 - 2~)~). By a more careful 
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analysis of the constants (which is omitted from this paper) 
we can prove the bound 

dvc - 8 
m ’ 386(1 - 31(q)) 

= n( dvc 
c(l - 27)2 

). 

In part 2, under these conditions, we can replace ,O by me 
and from (15) we obtain 

m> (l-WW$ -a 

( 

v 

- - E(1 - 217)2 
1,:). 

E(1 - 2q)2 6 

5.4 Learning with membership queries 

In this section we assume that the learning function A (which 
is now necessarily a learning algorithm) has the additional 
capability of making membership queries, i.e., A can ask the 
label of any instance z in the domain X. The algorithm can 
use an arbitrary (computable) strategy to determine whichin- 
stances are queried. This strategy can depend not only on the 
algorithm’s randomization but also on the results of previous 
queries. We can still adopt the notion of learnability pro- 
vided by Definition 1: by its choice of queries, an algorithm 
induces a distribution over X*, the set of all finite sequences 
on X. As a short-hand we will speak of a “(P, M)-learning 
algorithm that uses membership queries”, where it is under- 
stood that here M depends on the specific behavior of A. 

There is a vast literature related to the problem of PAC 
learning with membership queries. See, for instance, An- 
gluin [l, 21, Maass and Turan [28], Sakakibara [29], Angluin 
et al. [3] and the references in those papers. Perhaps the ref- 
erences closest to our work are Eisenberg and Rivest [17] 
and Turan [33]. But in contrast to the former paper, here we 
are assuming that the learning algorithm knows the distribu- 
tion P. Compared to the latter paper, we emphasize random 
examples and membership queries (as a matter of fact, the 
main theorem of this section can easily be extended to arbi- 
trary Yes/No queries), but we are making more general state- 
ments in a unifying context. We also assume that the labels 
of both the random and the chosen examples are subject to 
classification noise, as described in Section 5.2. 

Since the distribution M depends on which queries the 
algorithm makes, little can be assumed about M if we want 
to obtain a general lower bound. However, we will exploit 
the fact that each query instance is a (deterministic) function 
of the algorithm’s randomization and the past examples. We 
use the term “query model” for those M having the prop- 
erty that every instance Xi can only depend on the target 
c through the past examples (Xi, ii), . . , (Xi-i, ii-i). 
Therefore the query models have the important property that 

l(X~,Cl(X,,i,) ,... (X&l&&R)=O. (16) 

This is equivalent to a “data processing inequality” [13,24]. 

Theorem 8 
1) Let C be a concept class on (X, l?) and P be a distribu- 
tion on X such that C has an e-well-separated subclass of 
cardinality N 2 2. If A is a (P, M) -learning algorithm for 
C that uses membership queries in the classijkation noise 
model with noise rate n # l/2 then 

m > (1 - G)log(N - 1) - 1 
- 1 - Z(v) > 

2) Let C and P be an e-binary pair on (X, B). Zf A is 
a (P, M)-learning algorithm for C, that uses membership 
queries in the classijcation noise model with noise rate n < 
l/2, E 5 l/2 and 6 < l/2 then 

m > (1 - 2s)~ In 9 _ R 1 
- - (1 - 2QJ)2 ( (1 -n242 % . > 

Proo$ 1) Let 2) be the uniform distribution over C,. 
(2) and Lemma 2 we obtain 

(1 - cf)log(N - 1) - 1 < I(Xrn, L”; c ( R). 

We continue by upper bounding 1(X”, irn ; c 1 R). 

Z(X”,P; c 1 R) 
m 

From 

= C( .^.. I( 1 X,,L,, c Xl,il), . . , (Xi-l,L-lL@ 
i=l 
m 

= C(( 1 xi; cl (XlJl),... J&-JJi-l)Jq 
i=l ~ 

+I(/$; c 1 xi, (Xl, Ll), . 1 (Xi-l, L-l), K)) 

The first term is zero by (16), we remove it and expand the 
last mutual information expression. 

l(Xrn) P; c 1 R) 

= 2 (H(Li 1 xi, (Xl, il), . . . , (Xi-l,Ll),~) 
i=l 

The last step uses the facts that H(Li ) . . . ) 5 1 and, for the 
classificationnoisemodel, H(& 1 C, Xi,. . .) = 31(v). This 
concludes the proof of part 1. 

2) We can apply Lemma 3 after setting 2) = (d, 1 - d) 
and recalling that C, = C. Along with the proof of part 1 
above this gives 

31((1 - 6)d + 6(1 - d))-31(J) 

< -&z(ii 1 xi, (Xl,&), , (&l,L-l>,R) 
i=l 

- m%(v). (17) 

We now upper bound each H(,?i ) Xi, (Xl,&), , 
(Xi-i, ii-i), R) by H(.f+ I R) and notice that the weakest 
bound results when each H (ii I R) is as large as possible. 

By averaging over the target and noise (recall that Xi is 
the random variable for the ith instance in the sample), 

PrM(Li = 1Ir) 
=(l-n)dPrM(Xi=xi]ci,r)+ 

(l-Il)d(l-PTM(Xi=211C1,T))+ 

(1-17)(1-d)PTM(Xi=X1lCa,r)+ 

q(1 - d)(l - PrM(xi = 21 IQ, T-)) 

= (1 - 7) d + (1 - d)((l - v)pi + ~(1 - pi,) 

=(l-n)d+~(l-d)+pi(l-d)(l-2rl), 
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wherepi = PrM(& =x1 Ic2,r),i= l,...,mrepresentthe 
probabilistic9 query strategy of the algorithm in this context. 
For any i and for any T, 

H(I$ 1 R = r) 

= 31(Pr~(ii = l/r)) 

= %((l - q)d+ rj(1 -d) +pi(l - d)(l -a??)). 

If d 2 l/2 then both (1 - 11) d + 17 (1 - d) > l/2 and 
(1 - d)( 1 - 2~) 2 0 since r7 5 l/2. Therefore, the argument 
to the entropy is at least l/2 and the entropy is maximized 
when pi = 0. This yields CE”=, H(ii 1 R) < mIH((l - 
q)d + ~(1 - d)). Plugging this bound into (17) and solving 
for m gives 

so 

m(d) = w - 4d + &Cl - 4)-V) 
%((I - rl)d+v(l -4-W+ 

m 2 dlrn- m(d) = 
(1 - 2s)lny > (1 - 26)~ lny 

(1- 2n)ln? - (I- 277)2 

This concludes the proof. 0 [Theorem 81 
Note that one can easily find a concept class C and a dis- 

tributionP where N(C, t, P) = O(lC,() forwhichaleaming 
algorithm can use membership queries to perform a binary 
search in a smallest c-cover of C. One example is the class 
of initial segments of [O,l] with the uniform distribution, as 
mentioned in Eisenberg and Rivest [17]. This shows that, at 
least in the v = 0 case, part 1 of Theorem 8 is in some sense 
the best possible general lower bound. 

The bound (1 - b)log(N - 1) - 1 5 m (1 - %(?I)) in 
the first part of the theorem holds for any query model M. 
By Lemma 1, this implies that if C is not finitely coverable 
w.r.t. P then N is unbounded and C is not (P, M)-learnable, 
regardless of the query model M . 

Part 1 generalizes a lower bound by Turan 133, Theorem 
l] in two directions. 

l It measures the descriptive complexity of C w.r.t. P us- 
ing the size of a largest c-well-separated subclass of C. 
Thus if P is the distribution over dvc shattered points 
mentioned in [16], (so N = L?(dvc), see [51), then 
we immediately obtain the bound m _> SZ(dvc/(l - 
2~)~) which holds for arbitrary C with dvc (C) = dvc. 
On the other hand, the generalization is proper, as ap- 
plying part 1 to the concept class and the distribution 
mentioned in Theorem 6 yields the tighter bound m 2 
f4 (l%;)zlog$). 

l Turan’s result is specifically for the noise-free case, and 
our bound includes a dependence on the noise rate. 

Although the proof of part 1 holds for both membership 
queries and random examples, the information involved es- 
sentially comes only from the membership queries. This is 

‘Actually, since the random bits of A are given, the choices of 
A are deterministic. For the present argument, however, we can 
formally allow PXYM (X, = z 1 1 ~2, r) to be probabilities instead of 
being only 0 or 1. 

reasonable since the learner knows P ahead of time, so does 
not need random examples to learn the testing distribution. 

Part 1 can be extended to the case where the learner can 
make only a bounded number of membership queries and 
any additional information it needs must be provided by ran- 
dom examples. This extension easily follows from the addi- 
tivity of information and we omit the details. 

On the other hand, the lower bound of part 2 is due solely 
to the difficulty of learning with noise, as it takes only a sin- 
gle noise-free query to learn an c-binary pair. 

6 Conclusions and open problems 

We have presented a simple method for obtaining sample 
size lower bounds in various PAC-style learning models. This 
method provides analytical tools that avoid a Bayesian inter- 
pretation of the learning process. In fact, similar results can 
be proved for other noise models, such as the attribute noise 
of Shackelford and Volper 1321. 

There are several directions in which this work can be 
extended. Theorem 6 adds a logl/e factor to the sample size 
bounds for certain concept classes. We would like to see a 
simple characterization of the concept classes for which this 
logl/c factor can be obtained. We would like to generalize 
Theorem 6 to other noise models, such as the malicious noise 
model. Finally, it might be possible to apply our technique to 
prove better bounds for specijc classes of learning functions 
(such as those that minimize disagreements). 
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A Appendix 
Proof of Fact 1 used in Theorem 4 
We exploit a property of the entropy function 7t [pi, . . , pn] 
that for R = 3 reduces to the following 124, p.101: let pl, ~2, 
pa be nonnegative numbers with pa > 0 and pi +p2+p3 = 1. 
Then 

For31[(1-v)(l-c),d(l-n)c+(l-d)n,dn+(l-d)(l--n)t] 
we set 

Pl = (1 - rl)(l - 6) 
PZ = dq + (1 - d)(l - V)E 

p3 = d(l - 7)~ + (1 - d)n 

andforX[(l - n)(l - E), (1 - v)E,~] we set 

Pl = (1 - rl)(l - f) 
P2 = rl 

P3 = (I- ll)c 

Observing that in both cases pa Spa = 77 + (1 - 77)~ we easily 
get the thesis. 0 

Proof of Lemma 5,2. 
lfa,q> Oa.ndrZ+a< 1/2then,sincerl+a(l-2rZ) < 
rZ+(Yrwehave3C(n+cw(l-2n)) < X(n+a). Now,forany 
fixed 7, ?l(n + a) is obviously concave in Q and therefore 
by a first-order Taylor expansion around a = 0 we get 

R(q + a) -31(v) 5 Q log(?) 

which is < (Y log(l/r]), namely the thesis. 0 

115 


