Human-Computer Interaction
Round 7

I6: Heuristic Evaluation
- (Organized) comprehensive list
- Due next week
- Shared with class

T5: Paper Prototyping #2
- Big deal ... Get going!
UI Design

Why is UI Design Hard?

- Infinite possibilities
- Many, many published heuristics, guidelines, rules
- Everything comes together
 - Desired functionality
 - User abilities, knowledge
 - Aesthetics
 - Conventions
 - …

Best solution approach

- Try (& evaluate) lots of stuff

- Parallel design
 - Generate several options at once, by different designers

- Cyclic design
 - Generate, evaluate, repeat
Golden rules and heuristics

- "Broad brush" design rules
- Useful check list for good design
- Better design using these than using nothing!
- Different collections e.g.
 - Nielsen’s 10 Heuristics (see Chapter 9)
 - Shneiderman’s 8 Golden Rules
 - Norman’s 7 Principles

Shneiderman’s 8 Golden Rules

1. Strive for consistency
2. Enable frequent users to use shortcuts
3. Offer informative feedback
4. Design dialogs to yield closure
5. Offer error prevention and simple error handling
6. Permit easy reversal of actions
7. Support internal locus of control
8. Reduce short-term memory load

Norman’s 7 Principles

1. Use both knowledge in the world and knowledge in the head.
2. Simplify the structure of tasks.
4. Get the mappings right.
5. Exploit the power of constraints, both natural and artificial.
6. Design for error.
7. When all else fails, standardize.
HCI design patterns

- An approach to reusing knowledge about successful design solutions
- Originated in architecture: Alexander
- A pattern is an invariant solution to a recurrent problem within a specific context.
- Examples
 - Light on Two Sides of Every Room (architecture)
 - Go back to a safe place (HCI)
- Patterns do not exist in isolation but are linked to other patterns in languages which enable complete designs to be generated

HCI design patterns (cont.)

- Characteristics of patterns
 - capture design practice not theory
 - capture the essential common properties of good examples of design
 - represent design knowledge at varying levels: social, organisational, conceptual, detailed
 - embody values and can express what is humane in interface design
 - are intuitive and readable and can therefore be used for communication between all stakeholders
 - a pattern language should be generative and assist in the development of complete designs.

Expert analysis

- **Cognitive walkthrough**
- **Heuristic evaluation**
- Use of models (Ch 12, e.g. GOMS)
- Previous work
Cognitive walkthrough

- Start with
 - Specifications
 - Task descriptions
 - Actions needed to complete tasks
 - Indication of who users are

 (Similar to what you have been doing)

Cognitive walkthrough

- For each action, step through and "try to tell a believable story" about:
 - Do actions match goal at any point?
 - Will users see action is available?
 - Will users know action is one they need?
 - If action taken, will users understand feedback they get?

Cognitive walkthrough

- Discount technique
 - 5 evaluators find 75% of problems
 - Use Neilson's ten heuristics
 - Note severity of problems
Usability heuristics

- Many to choose from
 - Nielsen's 10 principles
 - Shneiderman's 8 golden rules
 - Tognazzini's 16 principles
 - Norman's rules from Design of Everyday Things
 - Mac, Windows, Gnome, KDE, Java guidelines
- Help designers choose design alternatives
- Help evaluators find problems in interfaces (*heuristic evaluation*)

Some we've already discussed

- User-centered design
 - Know your users
 - Understand their tasks
- Fitts's Law
 - Size and proximity of controls should relate to their importance
 - Tiny controls are hard to hit
 - Screen edges are precious
- Memory
 - Use chunking to simplify information presentation
 - Minimize working memory
 - Rely more on recognition than recall
- Color guidelines
 - Don't depend solely on color distinctions (color blindness)
- Principles of direct manipulation
 - Affordances
 - Feedback
 - Grouping

Nielsen’s Heuristics (some)
1. Match the Real World

- aka “Speak the User’s Language”
- Use common words, not techie jargon
 - But use domain-specific terms where appropriate
- Don’t put limits on user defined names
- Allow aliases/synonyms in command languages
- Metaphors are useful but may mislead
Nielsen’s Heuristics (some)

2. Consistency and Standards
- Principle of Least Surprise
 - Similar things should look and act similar
 - Different things should look different
- Other properties
 - Size, location, color, wording, ordering, …
- Follow platform standards
- Kinds of Consistency
 - Internal
 - External
 - Metaphorical

4. User Control and Freedom
- Provide undo
- Long operations should be cancelable
- All dialogs should have a cancel button

Nielsen’s Heuristics (some)

5. Visibility of System Status
- Keep user informed of system state
 - Cursor change
 - Selection highlight
 - Status bar
- Response time
 - < 0.1 s: seems instantaneous
 - 0.1-1 s: user notices, but no feedback needed
 - 1-5 s: display busy cursor
 - > 1-5 s: display progress bar
Nielsen’s Heuristics (some)

6. Flexibility and Efficiency
- Provide easily-learned shortcuts for frequent operations
 - Keyboard accelerators
 - Command abbreviations
 - Bookmarks
 - History

7. Error Prevention
- Selection is less error-prone than typing
- Disable illegal commands
- Description Error
 - when two actions are too similar
 - e.g., case sensitivity
 - different things should look and act different
- Mode Error
 - Eliminate modes
 - Visibility of mode
 - Spring-loaded or temporary modes

8. Recognition, Not Recall
- Use menus, not command languages
- Use combo boxes, not textboxes
- Use generic commands where possible (Open, Save, Copy Paste)
- All needed information should be visible
Nielsen’s Heuristics (some)
9. Error Reporting, Diagnosis, Recovery
- Be precise; restate user’s input
 - Not “Cannot open file”, but “Cannot open file named paper.doc”
- Give constructive help
 - why error occurred and how to fix it
- Be polite and non-blaming
 - Not “fatal error”, not “illegal”
- Hide technical details (stack trace) until requested

Nielsen’s Heuristics (some)
10. Aesthetic and Minimalist Design
- “Less is More” / KISS
 - Omit extraneous info, graphics, features

Google

Action
- My rule: action oriented
- Buttons = verbs!
Tog’s 16 Principles

- Anticipation
- Autonomy
- Color blindness
- Consistency
- Defaults
- Efficiency
- Explorable interfaces
- Fitts’s Law
- Human interface objects
- Latency reduction
- Learnability
- Metaphors
- Protect users’ work
- Readability
- Track state
- Visible navigation

Some of Tog’s Principles

- **Anticipation**
 - Put all needed information and tools within the user’s easy reach.
 - Why a File Save dialog box needs a way to create a new folder
- **Defaults**
 - Common answers already filled into a form
 - Speeds up learning
 - Increases overall efficiency
 - Make “fragile”
 - Avoid word “default”
- **Explorable interfaces**
 - Support user’s poking around (need undo/cancel)

Schneiderman’s 8 Golden Rules

- Consistency
- Shortcuts
- Feedback
- **Dialog closure**
 - Simple error handling
 - Reversible actions
 - Put user in control
 - Reduce short-term memory load
Additional generic useful design advice

- Use **Organization** to create groups/regions
 - White Space
 - Alignment
 - Borders and Bounding Boxes
 - Containment
- Use **Coding** to show the types and properties of objects
 - Size
 - Shape (or picture/icon)
 - Color
 - Explicit Labeling
 - Tool tips
- **Principle of hierarchy**
 - overview, then zoom for details

User Participation for Evaluation

- “Computer science [students]: they are simply not representative of the intended user population”
- Sample size:
 - Nielsen and Landauer
 - One person (1/3 problems)
 - Little to be gained from 5+
 - Book: recommends at least 10
 - Recent papers ... Even more

Statistical measures

- Look at the data!
 - Intuition
 - Find outliers
 - Normal?
Think Aloud

- Observation not enough
 - Misses decision processes and attitude
- Simple
- Alternative: cooperative evaluation
 - User collaborator in evaluation

Physiological monitoring

- Eye tracking
- HR
- Sweat
- Breathing rate
- Electrical activity in muscle (EMG)
- Electrical activity in brain (EEG)
- fMRI

Overview

- Tables 9.4-9.7 worth a look
Pitfalls of prototyping

- Moving little by little ... but to where
- Blue Hills or Mount Washington?

1. Need a good start point
2. Need to understand what is wrong
3. Need paper napkins not cloth napkins

Tohidi article: Getting the Right Design and the Design Right: Testing Many is Better than One

- Paper prototyping: getting design right
 - Most important: getting the right design
 - Theory: simultaneous exploration of multiple ideas might help
 - Common in traditional design arts

Tohidi article: Getting the Right Design and the Design Right: Testing Many is Better than One

- Problem: Human reluctance to criticize
 - Don't want to be “negative people”
 - Don't want to reflect poorly on own abilities
 - Don't want to hurt the designer’s feelings

- Solution? With multiple options, easier to criticize one; identify best
Tohidi article: Experiment

- 3 paper prototypes of same interface
- Investigate impact of being shown 1 vs 3 ideas on:
 - Design ratings
 - User criticism
 - Number of ideas and suggestions for designs

Tohidi article: Experiment

- Design ratings
 - Faint praise
 - "We have not made up our mind"
 - Criticize without being negative
- User criticism
 - Increased criticism
Tohidi article: Experiment

- Number of ideas and suggestions for designs
 - Did not get more suggestions for improvement with 3 designs
 - Why? Usability testing vs participatory design
 - Making suggestions involves "speculation, and stepping out on a limb for which they had no training, experience, or language"
 - Don't want to risk exposure as naïve relative to expert

Getting the right design

- "Once a design is prototyped and tested, it hardly ever gets rejected by the users"
 - Of 36 participants seeing single design, nobody requested redesign
 - 3 out of 12 in the multiple design condition rejected a design

User Sketches

- Sketching: "reflective" vs "reactive" feedback
 - After paper prototyping exercise, asked to sketch "ideal" design
User Sketches
(Tohidi et al. 06)

- Sketching: “reflective” vs “reactive” feedback
- After paper prototyping exercise, asked to sketch “ideal” design

Advantages

- Look for patterns
- Look for unique components and new ideas
- People will say they have no changes, then make changes
- Forcing people to reflect on their own ideas
- See the bias in your ideas!
Paper Prototyping
- Xueming Wu
- Chen Chu
- Yiyun Ma

Paper Prototyping
- Aida Ehyaei
- Lei Wang
- Nima Attaran Rezaei

T5: Paper Prototyping #2
- Big deal ... Get going!
Research Papers – Health Interfaces #2

- Lee, Kiesler, and Forlizzi, Mining Behavioral Economics to Design Persuasive Technology for Healthy Choices, CHI 2011 (Presenter: Nima Attaran Rezaei)
- Iqbal et all, Hang on a Sec! Effects of Proactive Mediation of Phone Conversations While Driving, CHI 2011 (Presenter: Pulkit Misra)
- Lee and Dey, Reflecting on Pills and Phone Use: Supporting Awareness of Functional Abilities for Older Adults, CHI 2011
- Maitland and Chalmers, Designing for Peer Involvement in Weight Management, CHI 2011

Linehan article

What makes a game?
- Short, medium, long-term goals
- Player must take actions to reach goals
- Immediate, appropriate, specific feedback
- Rewards for achievement
- Teach skills (break into components)
- Demonstrate skills to advance
- Where options, no one action obviously correct

Linehan article

Presenting feedback
- Positive reinforcement (add positive stimulus to make behavior more likely)
- Negative reinforcement (remove aversive stimulus to make behavior more likely)
- Positive punishment (add aversive stimulus to make behavior less likely)
- Negative punishment (remove positive stimulus to make behavior less likely)
To do

- Read
 - Excerpts from Design Basics Index (on Blackboard)
 - Universal design (Dix Ch 10)
 - 4 research papers
- Do Individual Homework I6 - Heuristics
- Do Team Homework T5 - Paper
 Prototyping 2 (due in 2 weeks)