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Technological Innovations Enabling
Automatic, Context-Sensitive
Ecological Momentary Assessment

Stephen S. Intille

Health-related behavior, subjective states, cognitions, and interpersonal experi-
ences are inextricably linked to context. Context includes information about
location, time, past activities, interaction with other people and objects, and
mental, physiological, and emotional states. Most real-time data collection
methodologies require that subjects self-report information about contextual
influences, notwithstanding the difficulty they have identifying the contextual
factors that are influencing their behavior and subjective states. Often these
assessment methodologies ask subjects to report on their activities or thoughts
long after the actual events, thereby relying on retrospective recall and intro-
ducing memory biases. The “gold standard” alternative to these self-report
instruments is direct observation. Direct observation in a laboratory setting,
however, artificially constrains behavior. Direct observation is also typically too
costly and invasive for long-term, large-sample-size studies of people in their
natural environments.

Technological innovations are creating new opportunities to capture accurate,
real-time data with minimal intrusiveness using techniques such as electronic
Ecological Momentary Assessment (EMA). Other chapters in this collection dis-
cuss the benefits, challenges, and versatility of electronic EMA as it is being used
in current research. This chapter, however, looks toward the future.

New technologies will enable two significant extensions to current EMA
methodologies. First, most EMA studies to date have used intermittent collection
of self-report data. New technologies will enable EMA studies that combine con-
tinuous data collection of subject activities and physiological states with intermittent
self-report data collection. Second, new technologies will enable EMA studies
where a computer automatically triggers context-sensitive intermittent self-reports
based upon analysis of the continuous data stream. Intermittent self-reports can
be tied to the observation of particular activities or states that are specified by the
researcher but automatically detected by the computer.
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Technological Innovations Enabling Ecological Momentary Assessment 309

The ability of a computer to continuously analyze sensor data to determine when
and how to prompt a subject in response to that subject’s activities is a significant
extension of the EMA methodology, referred to here as context-sensitive EMA, or
CS-EMA (Intille, Rondoni, Kukla, et al., 2003).1

The CS-EMA methodology for information acquisition is dependent upon the
development of CS-EMA instruments that use sensors to measure and record
contextual information such as a subject’s location, movement, and physiological
states. The sensor data is processed in real time so that the CS-EMA instrument
can automatically respond to subject behavior with context-sensitive and tailored
self-report queries. A diverse set of CS-EMA devices is possible, each exploiting
different sensors, context inference algorithms, and output devices. The query
can be triggered via physiological sensors, social interactions, or image processing.
Self-reports can be obtained at the moment of interest, or data can be collected
to help remind the subject of the key activity of interest and a report can be col-
lected later. In all cases, however, the computer triggers some type of real-time
data collection based upon processing a single or set of incoming data streams
for a particular event. Each of these variations is considered to be an example of
a CS-EMA in the remainder of this chapter.

CS-EMA is a methodological extension to EMA that cannot be achieved with-
out computer instruments that perform the automatic context processing. CS-
EMA may therefore require the development of new data analysis techniques
because the triggering of self-report prompts (and the way prompted questions
are structured) is dependent upon algorithms that automatically process contin-
uous data streams to infer key moments in time that are of interest to the
researcher. CS-EMA instruments must exploit advanced technologies, but within
10 years most of the input and output capabilities required will be built into com-
mon consumer electronic devices, thereby making CS-EMA instruments eco-
nomical to deploy for large-sample-size research.

The Gold Standard Technology: Paper

Paper is a versatile and robust technology for gathering and conveying information
and therefore provides a useful comparison point against which to assess new
alternatives. Paper has many desirable attributes that, until recently, have been
difficult for any other technology that supports real-time data collection to
match. Paper is extremely lightweight and compact and has a flexible form factor
(i.e., physical style that can be easily changed). It is inconspicuous when stored
and used, inexpensive, and easy to replicate and modify without special expert-
ise. Paper is familiar to people and easy for most to use, and it allows for easy cor-
rection if participants make a mistake during a particular recording session or at
a later time. It also allows for subject adaptation when a subject wishes to express
an idea the researcher may not have anticipated. Finally, paper has been vali-
dated: although the content on the paper may be debated, the use of paper as
the medium through which information is collected is rarely questioned.
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310 Future Developments in Real-Time Data Capture

Paper as a real-time data collection technology does have some fundamental
limitations because it is a static, not proactive medium that cannot tailor content
to a subject’s behavior, subjective states, or interpersonal experiences. Paper is
also easy to forget and usually requires manual data entry and coding of informa-
tion written on it. Paper has no automatic time-stamping of entries, and paper
cannot be easily used to ensure that questions are answered in a particular order.
Although paper can be combined with other technologies so that subjects can
report different types of data, paper does not support the passive acquisition of
multimodal data, and paper cannot automatically tailor data acquisition to the
context.

The Emergence of Computerized EMA/ESM Tools

The fundamental problem with paper as a technology for real-time data collection
is that it is a static medium that has no capability to be proactive. Paper is used in
two ways: retrospectively or non-retrospectively. Retrospective instruments using
paper require that a person be able to remember information and record that
information at the end of each day, week, or some other time interval.
Retrospective recall of mundane, regular, or frequent activity, however, is known
to be unreliable (Gorin & Stone, 2001). Non-retrospective paper instruments,
known as diaries, ask subjects to record information at the time of the activity of
interest. Non-retrospective instruments limit recall bias and therefore should be
better at reliably capturing the influence of contextual factors on behavior, sub-
ject states, cognitions, and interpersonal experiences. A recent study by Stone
and colleagues, however, indicated that although subjects reported high compli-
ance with a paper diary instrument, actual compliance was low; “hoarding,”
where subjects faked diary entries using retrospective recall, was common
(Stone, Shiffman, Schwartz, et al., 2002).

One way to improve paper is to combine it with the use of an electronic
beeper to trigger use of the paper technology (Csikszentmihalyi & Larson,
1987). Although such auditory signaling improves subject compliance, the result
is “still unsatisfactory” (Broderick, Schwartz, Shiffman, et al., 2003). A better
solution is to entirely replace the paper technology with an electronic device that
can prompt for data entry and also time-stamp entries so that hoarding is not
possible (Stone et al., 2002). When electronic devices are used as the medium
for conveying and gathering information, diary compliance can be improved
(Hyland, Kenyon, Allen, & Howarth, 1993; Stone et al., 2002). An additional
benefit is that electronic entry devices can reduce researchers’ data entry time
and the likelihood of encoding errors.

Electronic EMA (Stone & Shiffman, 1994), also known as electronic experi-
ence sampling (Barrett & Barrett, 2001), is a technique where a small mobile
computer such as a personal digital assistant (PDA) is programmed to prompt a
subject with an audio or visual reminder on a schedule determined by the
researcher. The other chapters in this collection describe how the electronic
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sampling methodology is being applied in health-related research fields. As
more electronic sampling studies are conducted, recommendations for new
experimental methods (Larson & Delespaul, 1990) and statistical models for
data analysis (Schwartz & Stone, 1998) are being proposed. Electronic sampling
does introduce some new potential problems, such as heightened reactivity,
where the sampling may influence the measurement. Recent results, however,
indicate that the magnitude of reactivity to electronic sampling may be smaller
than previously thought (Hufford, Shields, Shiffman, et al., 2002). The cost of
the enabling technologies is also a problem that is slowing widespread adoption
of the technique.

The New Opportunity: Context-Sensitive Data Collection 
and Intervention

Most electronic sampling for real-time data collection in use today simply replaces
the paper medium with an electronic device. The diary assessment content is
adjusted for display on small screens, and responses are changed to allow for sty-
lus or touch-screen input. The computer operates as an input, output, and time-
stamping storage mechanism. These typical electronic EMA devices may improve
the quality of data collected from paper instruments, but most are not yet fully
exploiting the capabilities of the electronic devices. New technologies will sup-
port three key advances:

● Continuous and passive collection of multimodal data. New instruments
will use emerging electronic devices to comfortably, continuously, and
passively collect data. Sensors worn on the body and placed in the envi-
ronment will record information about a subject’s location, physiological
states, and activities without requiring proactive self-report.

● Context-sensitive prompting at appropriate times and places. Emerging
electronic devices will make context-sensitive prompting possible, where
questions are automatically triggered based on the subject’s behavior,
location, physiological states, past responses, and/or activities.

● Data collection tailored to the individual and to the situation. Emerging
electronic devices will allow an unprecedented amount of longitudinal
data to be collected and stored locally on the sampling device. Algorithms
that analyze this data will be able to tailor questions based upon a subject’s
prior behavior or reported subjective states, cognitions, or interpersonal
experiences.

Each of these opportunities is described in the sections that follow.

An Example: Technology to Support CS-EMA

Technological innovations will support CS-EMA instruments that automatically
compute an appropriate time and place to collect data based on a subject’s past
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and current activity and then tailor the questions asked to the situation (Intille,
Rondoni, Kukla, et al., 2003). Later in this chapter the full potential of CS-EMA
is discussed, based on technologies likely to emerge in the next 10 years.
However, current technologies can be used to create CS-EMA instruments.

First-generation software developed at MIT using present-day mobile computing
devices is being used to test the capabilities of the CS-EMA methodology.
Software written for PocketPC (Microsoft, Seattle, WA) PDA devices implements
the basic functionality commonly found in commercial (e.g., DiaryPRO [invivo-
data, Pittsburgh, PA]) and open-source (Barrett & Barrett, 2001; Brodsky,
Consolvo, & Walker, 2002; Rafaeli, 2003; Weiss & Beal, 2003) EMA programs.
The MIT software, referred to here as CAES, includes options for (1) chaining
complex sequences of questions based on particular question responses, (2)
multiple-choice and multiple-response questions, (3) flexible question recur-
rence patterns (by weeks, days, hours, minutes), and (4) bounded randomization
(min/max time to next query). The researcher “programs” a diary assessment
strategy by entering the questions in a comma-delimited file.

The most important aspect of the MIT CAES software is that it can record and
respond to sensor data, such as a subject’s position (from Global Positioning
System [GPS]), the subject’s posture (from accelerometers), and the subject’s
heart rate (from a wireless chest strap monitor). Typically a researcher using
EMA has three options: (1) sampling on a time-based, regular-interval schedule,
such as every 30 minutes, (2) sampling on a time-based variable random schedule,
such as on average once every 30 minutes or sometime randomly within every 
2-hour window, and (3) event-based sampling in response to subject initiative,
where the subject is told to make a data entry whenever performing a particular
activity (Stone & Shiffman, 1994). Devices with sensors allow a fourth option: trig-
gering self-report based on sensor readings of the context. With such a device,
contextual factors such as a subject’s location, physical activity, proximity to others,
or physiological state can trigger self-report assessments. Further, the assess-
ments can be tailored to the context that has been detected from sensors. Any
contextual situation that the device can automatically detect can be used to trigger,
tailor, or trigger and tailor a self-report.

The MIT CAES software has been developed in a modular fashion that allows
new context-sensing sensors and software to be plugged in. These sensors permit
researchers to use context-sensitive sampling where questions are asked only
when a subject does a specific thing. For example, in one study CAES software
was used to implement a CS-EMA protocol where a subject was prompted to
respond based upon changes in heart rate. Heart rate was monitored using a
wireless chest strap that sent data to a receiver attached to a PDA (Rondoni,
2003). In another study, CAES software was used to implement a CS-EMA proto-
col where a subject was prompted based on changes in posture. Posture was
detected by a CAES software module that analyzed data sent to a receiver
plugged into the PDA from two wireless accelerometers worn on the body (Ho &
Intille, 2004). In a pilot study, the CAES software has been used to implement 
a CS-EMA protocol where self-reports are triggered when someone is near a 
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particular part of the community, as determined by a GPS receiver plugged into
the PDA and a GIS database.

In each of these experiments, the CS-EMA methodology was run using CAES
software on a PDA. The researcher scheduled questions to occur during the time
or just after the activities of most interest occurred, thereby minimizing the inter-
ruption burden of the EMA technique on a subject while maximizing the amount
of data acquired about the target behavior. Figure 16-1 shows screen shots of the
MIT CAES software.

Table 16-1 lists the properties of paper and current mobile computing
devices (e.g., PDAs) that enable real-time data collection. The delivery technol-
ogy dramatically affects the implementation of EMA. For instance, most current
EMA options are implemented on PDA devices. PDAs are getting smaller,
lighter, less expensive, and more convenient to use each year, but paper can still
be carried much more inconspicuously and comfortably. PDAs offer the signifi-
cant advantage of audio prompting with time-stamped and time-sensitive elec-
tronic data entry, but the prompting can become irritating for the participant
in longer experiments or for those with aggressive prompting schedules. The
interruption burden of traditional electronic sampling is one of its primary
drawbacks.

By using new technology to prompt subjects only during activities of interest,
CS-EMA may increase the volume and quality of data acquired about the target
behaviors while minimizing the burden of sampling for the subject. CS-EMA,
however, requires that subjects use computing devices that can receive data from
sensors. Many sensors today are bulky, uncomfortable, and expensive, but this 
situation is about to change.

Driving Trends

There are four trends that will facilitate the creation of new instruments to sup-
port CS-EMA: miniaturization, plummeting costs, ubiquitous wireless networks,
and accurate activity recognition algorithms.

Figure 16-1. Screen shots of MIT CAES software.
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Table 16-1. Properties of paper when used for a diary assessment, current PDAs when
used for EMA, current PDAs with sensors when used for CS-EMA today, and mobile
devices with sensors (in 10 years) when used for CS-EMA

PDA with Mobile device
sensors for with sensors

Paper for PDA for CS-EMA (in 10 years)
Property diary EMA (today) (today) for CS-EMA

Lightweight - -
Compact - -
Inconspicuous -
Inexpensive
Flexible physical
form factor

Easy to replicate
(technology readily
available)
Easy to modify ?
assessment strategies
No special expertise ?
required to implement
Familiar to subject -
Subject can adapt
if desired

Validated ?
Not easy to -
forget/leave behind
Low interruption
burden
Proactive reminders to
enter self-reports
Automatic data entry

Automatic time stamps
Questions can be asked
sequentially based on
prior responses
Multimodal continuous -
data collection
Auto tailor prompts and -
questions to context

A “ ” indicates the author believes the technique satisfies the property, with “ - indicating the prop-
erty is satisfied but to a somewhat lesser degree. A “?” indicates that the author is uncertain.
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Device and Sensor Miniaturization

The computer industry has a phenomenal history of miniaturizing technologies—
a trend expected to continue. Many of the portable phones, PDAs, and music
players on the market today are actually 400-MHz� computers with the capability
to store gigabytes of information and transmit and receive data wirelessly. They
can operate for a full day on a single night’s charge. For output, these devices have
bright, color video displays and audio. For input, the devices have touch screens,
buttons, keyboards, handwriting recognition, and audio. These tiny computers can fit
in a pocket, and they have enough speed and memory to collect, store, and process
data from multiple sensors on wireless networks. The devices are essentially wearable
computers, computing devices with small and ergonomic physical styles that permit
users to comfortably wear or carry them at all times (Starner, 2002). The devices
can perform nonstop data collection, processing, and archiving—functionality that
could be exploited to create a device to implement CS-EMA protocols.

Miniaturization of wireless sensor technologies is also ongoing. Small, low-
power sensors that can be worn on the body or placed in the environment are in
development in labs today. Sophisticated sensors are already migrating into com-
mon consumer devices. New watches, for example, are capable of displaying and
collecting information from wireless sensors worn on other parts of the body,
such as a chest strap heart rate monitor (FitSense Technology, Southborough,
MA). New mobile phones, PDAs, and watches have sensors such as GPS-based
position locators, voice recognizers, fingerprint recognizers, and cameras. In
labs, prototypes of jewelry that measure blood pressure volume, galvanic skin
response, blood oxygen levels, and hand gestures have been created (Asada,
Shaltis, Reisner, et al., 2003; Gandy, Starner, Auxier, & Ashbrook, 2000).

Plummeting Costs

Both the size and the cost of these devices are decreasing, even as their capabili-
ties increase. Two barriers to widespread use of CS-EMA are the cost of the hard-
ware required to collect and analyze sensor data in real time and the cost of
developing, customizing, and maintaining the technology.

Intel, a manufacturer of computer, networking, and communications products,
predicts that Moore’s Law (Moore, 1965)—a doubling of computer power every 2
to 3 years—will hold for another decade. Therefore, the functionality-to-price ratio
of mobile computing devices that can be used for computerized sampling will con-
tinue to improve. Within 10 years, mobile devices such as phones will have the
computational, memory, and networking capacities of today’s desktop computers
but with “anytime, anywhere” access. These devices will have sensors such as minia-
ture cameras, microphones, GPS, and accelerometers built in. They will have local
area networking capabilities such as Bluetooth so that they can collect data such as
heart rate and motion measurement devices from sensors or “sensor jewelry” worn
on the body. Most significantly for researchers, many of the devices will be available
“free” with the purchase of cellular phone contracts. As the technology matures,
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researchers will be able to exploit powerful computing infrastructures that have
been purchased by people for their own entertainment, communication, and
personal health care needs (Intille, Larson, & Kukla, 2002).

The cost of the technology will be spread across the consumer base. For exam-
ple, the FCC has mandated that all new mobile phones must have GPS position-
finding capability that can pinpoint the phone’s position within 300 feet
(Federal Communications Commission, 2004). Phone manufacturers are com-
peting with each other to keep the cost of this technology, initially estimated to
be $15 to $20 a phone, as low as possible. The ability to track a person in his or
her community has benefits in nearly every subfield of preventive health
research, and the capability to determine this information will exist in nearly all
mobile phones in use by 2010.

The more significant barrier to the adoption of technology able to implement
CS-EMA protocols may be the cost of developing, customizing, and maintaining
the technology. Every study is different. Therefore, these costs will not drop
unless tools are created that allow researchers to generate custom-designed EMA
applications. Fortunately, the programming environments for mobile computing
devices are improving. For example, many new mobile phones and PDAs can be
programmed using platform-independent languages such as Java. Creating flexi-
ble tools for researchers so they can take advantage of CS-EMA and other new
opportunities is a worthy and necessary goal toward achieving the vision of the
ultimate mobile computing technology for running CS-EMA protocols described
later in this paper.

Wireless Networks

The third force driving the adoption of CS-EMA will be “anytime, anywhere”
wireless network capabilities. Three types of wireless networks will play a role.
Wide-area wireless networks such as those used by the mobile phone carriers
(e.g., GSM) can be used to send data long distances intermittently. High-speed
local area wireless networks (e.g., 802.11b, or WiFi) that are common in work-
places and homes can be used for fast, low-cost transfer of video, audio, and
other high-bandwidth data streams. On-body personal wireless networks such as
Bluetooth can collect data from miniature, wearable on-body sensors. When
combined, these three networks create new real-time data collection and analysis
possibilities. For example, one lab prototype used a wireless heart rate chest
strap monitor to send data via a personal wireless network to a receiver con-
nected to a common mobile phone; the mobile phone sent the data via the wide-
area network to a computer that processed the signal in real time and sent
messages about heart condition back to the phone (Qi, 2003).

Activity Recognition Algorithms

The fourth trend that will lead to the development of new technologies that can
support CS-EMA protocols is the creation and validation of accurate algorithms
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that use sensor data to automatically detect information, such as the subject’s
activity, about the subject’s context.

The next three sections further discuss the three areas of innovation created
by these technology trends: (1) continuous and passive collection of multimodal
data, (2) context-sensitive prompting at appropriate times and places, and (3)
data collection tailored to the individual and the situation.

Continuous and Passive Collection of Multimodal Data

Technological innovations will create new opportunities for continuous and passive
collection of different types of data from people as they engage in free-living
behavior. Manual data recording of certain data types, such as physiological
states, is known to be difficult and error-prone (Hollenberg, Pirraglia, Williams-
Russo, et al., 1997). Further, the more data that are being collected, the more
burdensome and less practical self-report data collection becomes. The sensors
for passive, multimodal data collection can be classified into two types: those
worn or carried on the body and those placed in the environment.

Sensors Worn on the Body

Sensors worn by a person may passively collect data on three contextual factors: the
person’s motion, physiological states, and the state of the surrounding environment.

MOTION SENSORS

The actigraph may be the most widely used passive sensing device in use for stud-
ies of free-living subjects. An actigraph consists of one to three accelerometers in
a watch-like casing that can be worn for long periods and used to estimate gross
motion and energy expenditure (Melanson & Freedson, 1995). The actigraph
has proven itself to be a useful tool to validate other instruments that measure
physical activity (Welk, 2002). Unfortunately, commercial actigraphs do not per-
mit data to be output in real time to a mobile computing device. They also do
not sample motion data at sufficiently high rates so that the output from the
devices can be used to detect specific activities.

New “real-time” actigraph extensions are being developed in laboratories. Figure
162 shows some “mobile MITes” (MIT environmental sensors): three-axis wireless
accelerometers developed at MIT that transmit data to a PDA. Multiple mobile
MITes can be worn simultaneously on different parts of the body. The PDA can
either save the raw data for later analysis as a traditional actigraph does or process
the multiple streams of acceleration data in real time to automatically infer ambula-
tory activities (e.g., walking, cycling) and the posture (standing, sitting, lying down)
of the person. These motion states can be detected reliably in real time from raw
accelerometer data, particularly when one accelerometer is placed on the upper
body and one on the lower body and correlations between the two are detected
(e.g., see Bao & Intille, 2004). Software on the PDA can then respond to the 
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person’s physical activity with a targeted question during or just after the behavior
of interest. The MITes are designed to operate for a full waking day on a single coin
cell battery. Participants can wear them continuously if they make one battery
change each morning—a burden, but not an unacceptable one for many studies.

In Figure 16-2, mobile MITes transmit three-axis acceleration data in real time to
a nearby PDA with a special sleeve that contains the receiver. The PDA can process
the data to detect activities in real-time activity to support CS-EMA. MITes can be
quickly installed in homes or other environments to detect use of specific devices
and to trigger a context-sensitive self-report. The data, which are used to answer
context-specific questions, can be transmitted to a PDA carried by the subject.

Some wireless motion sensors have already been commercialized. A wireless
FootPod pedometer from FitSense can occasionally send distance traveled and
speed data to a mobile computing device, such as a PDA or watch (FitSense
Technology, Southborough, MA). The device is easy to use and easy to wear and
can even transmit data to some Motorola mobile phones.

Accelerometers are not the only mechanisms that can measure body motion.
Gyroscopes can also provide information about body motion, and they are small
enough to include on the board shown in Figure 16-2. Gyroscopes, particularly
when combined with accelerometers, could provide software running on a PDA
or telephone with the relative orientation of the subject’s limbs. Gyroscopes or
accelerometers placed on both sides of a joint can detect the approximate joint
angle. In laboratories, researchers are experimenting with up to 30 accelerome-
ters placed simultaneously on a single person to determine the best number and
placement for recognition of particular activities (Kern, Schiele, & Schmidt,
2003; Van Laerhoven, Schmidt, & Gellersen, 2002). Activity detection from these
devices could enable CS-EMA protocols with activity-triggered self-reports.

PHYSIOLOGICAL SENSORS

Dramatic improvements in the size, performance, and comfort of on-body phys-
iological sensors for ambulatory monitoring are being made in laboratories, and

Figure 16-2. Mobile MITes.
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these advances are migrating to consumer devices. The HealthWear armband is
worn on the upper arm and continuously collects data on arm movement, skin
temperature, heart rate, and galvanic skin response (BodyMedia, Pittsburgh, PA).
The LifeShirt is a washable shirt that contains embedded sensors that monitor
physiological states such as heart rate, blood pressure, and respiration (VivoMetrics,
Princeton, NJ). Although these devices cannot send data in real time to a CS-EMA
device, emerging technologies will provide new opportunities for context-sensitive
sampling that is triggered by physiological state. For instance, heart rate can be
measured with a commercial wireless heart rate chest strap (Polar Electro Oy,
Kempele, Finland) (Goodie, Larkin, & Schauss, 2000). Monitoring can take place
in real time from a PDA when the appropriate receiver is attached (Rondoni,
2003). Systems that are more comfortable to wear for extended periods are in
development. For instance, the SmartShirt is a prototype shirt that sends EKG,
heart rate, respiration, temperature, and pulse oximetry data wirelessly to a
receiver (Sensatex, Bethesda, MD).

Other sensors enable similar physiological triggering. Galvanic skin response
measures perspiration, which is known to correlate with stress. The galvanic skin
response can be passively measured using a modified biker’s glove (Healey &
Picard, 1998). Blood pressure can be measured with an arm or finger cuff that
automatically inflates at researcher-specified intervals of time (Kario, Yasui, & Yokoi,
2003). Finger touch can be measured without encumbering the fingertip using a
tiny sensor that measures color change in the fingernail (Mascaro & Asada,
2004). A small finger ring can measure blood oxygen levels and wirelessly trans-
mit the signal to a mobile computing device (Asada et al., 2003). “Sensor pills”
(Given Imaging, Yoqneam, Israel) that are swallowed can transmit data wire-
lessly to an on-body receiver, measuring the body’s internal state (Mow, Lo,
Targan, et al., 2004).

Real-time analysis of multiple data streams from diverse sensor types will create
the most powerful context detectors. For example, suppose a researcher wishes
to use CS-EMA to trigger subject self-reports only during situations when the
subject is undergoing psychological stress. A psychological stress detection algo-
rithm could monitor three sensors for the following states: high heart rate, high
galvanic skin response, and low body motion (to rule out excessive physical
activity). Only when all three conditions are met (or just after they subside)
would the subject receive the stress diary assessment.

Unfortunately, some ambulatory monitoring devices are intrusive and not easy
to wear. Blood pressure measurement, for instance, will startle the person because
a cuff must inflate, causing interruption and discomfort. Commercialization of
the technologies, however, is bringing miniaturization (Bonato, 2003). Most of
these sensor devices will soon be wireless and available in physical styles that
permit them to be worn by participants inconspicuously, under clothing, for days
or weeks at a time without discomfort (Pentland, 1996). Some of these sensors
provide continuous streams of data (e.g., motion sensors on the body). Others
provide intermittent signals because of the invasive nature of the sensing itself
(e.g., blood pressure).
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WEARABLE SENSORS THAT MEASURE THE ENVIRONMENT

Wearable sensors can measure not only motion or physiological states but also
properties of the environment. For example, small ultra-violet photodiodes attached
to a wireless transmitter worn on the wrist or neck can be used to send exposure
data to software running on a PDA, allowing for sun-exposure context-sensitive
queries. GPS systems in phones or PDAs can be used to identify a person’s position
outside, and software with a GIS database can trigger context-sensitive questions
tailored to the subject’s movement and the type of environment he or she is in
(e.g. park, business district, or near a particular retail establishment).

Another property of the environment is sound, and mobile computing devices
now contain sufficient amounts of storage to continuously record audio data.
Mehl and colleagues have created the electronically activated recorder (EAR)
(Mehl, Pennebaker, Crow, Dabbs, & Price, 2001). Subjects wear the EAR for 2–4
days during which time it records 30s samples of audio once every 12 minutes.
The audio is then manually transcribed for analysis. Although the EAR records
to tape, new versions of EAR-like devices that use digital devices could not only
save the data but process the audio stream in real-time for important keywords or
background sounds. If particular words or sounds are spotted, context-sensitive
self-report diary assessments could be automatically triggered. In one study,
researchers have used automatic speech recognition to determine how and
when multiple subjects that work in the same physical environment are interact-
ing with one another (Eagle & Pentland, 2003).

Beepers have been given to family members and simultaneously activated to signal
multiple family members to make simultaneous entries on paper diaries (Larson
and Richards, 1994). Radio frequency tags worn by subjects can automatically detect
who is in a particular part of a space and when those people may be interacting with
one another. Similarly, the networking capabilities of some mobile computing devices
(e.g. Bluetooth) can be used to automatically determine when two people carrying
the devices are within a short distance of one another.

Finally, video cameras can now be incorporated into phones or other mobile
computing devices to create time-lapse video snapshots of what a person sees. A
prototype extension for the MIT CS-EMA software has been used to capture such
a record. The subject carries a PDA with a camera plug-in in the front shirt pocket.
The device takes one (low-quality) time-stamped picture every 30 seconds that
shows roughly what the subject sees. The image stream allows a researcher to more
accurately reconstruct the subject’s behavior, subjective states, cognitions, and
interpersonal experiences throughout the day. The CS-EMA software can also
prompt subjects to take pictures of certain objects in the environment. For example,
subjects can be asked to take pictures of everything they eat—a new technique in
nutrition research (Wang, Kogashiwa, Ohta, & Kira, 2002).

Environmental Sensors (Placed by the Researcher)

In addition to asking participants to wear sensors, other sensors can be installed
in their environment. These sensors are also undergoing miniaturization and
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therefore are becoming less of a burden for participants to endure and for
researchers to install. Ubiquitous sensor placement is made possible by reduction
in sensor size and lengthening of battery life. Work is underway in laboratories to
create wireless environmental sensors that are less than a cubic millimeter in size
(Kahn, Katz, & Pister, 1999).

Sensors placed on objects in the environment provide information about
what people in that environment are doing. If the sensors can wirelessly transmit
information to a mobile computer, automatic detection of everyday activities can
trigger context-sensitive sampling. For example, at MIT we are conducting
experiments where MITes (and their earlier versions) are installed in partici-
pants’ homes. The sensors are attached to any object that the person may manip-
ulate: doors, cabinets, light switches, dials, appliances, and even large containers
such as Tupperware (Intille, Munguia Tapia, Rondoni, et al., 2003). The sensors
measure when the objects are moved.

Figure 16-3 shows some early versions of MITes that used magnetic contact
switches “installed” in one participant’s home. The sensors were literally taped to
objects in the home and then used to collect data for 2 weeks. New wireless
MITes dramatically cut installation time by using accelerometers instead of con-
tact switches. Algorithms have been developed that use the data from the sensors
to automatically detect some activities of daily living using statistical models
(Munguia Tapia, Intille, & Larson, 2004).

Other researchers are implementing similar activity-detection algorithms that
use different types of environmental sensors. For example, Philipose and col-
leagues have created a bracelet with an embedded radiofrequency identification
tag (RFID) reader. When a subject wears the bracelet and inexpensive RFID
stickers are placed on objects in the subject’s home, a computer system can
detect when the subject touches each of the tagged objects. Algorithms that rec-
ognize everyday activities (e.g., making tea) can then be detected automatically,
in real time (Philipose, Fishkin, Fox, et al., 2003). In combination with software
on a PDA, such systems could be used for studies where the subject’s behavior is
monitored for specific eating patterns and then context-sensitive questions are
asked during or after particular target behaviors.

Figure 16-3. Early versions of MITes.
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Other sensors such as microphones or video cameras can easily be placed
throughout an environment for research studies. For instance, automatic computer
vision analysis of video streams from inexpensive webcams attached to laptops
can be used to detect when a person is in a particular room and can transmit his
or her location to a PDA running assessment software. The software can imple-
ment a CS-EMA protocol that asks for self-reports depending upon how people
move about the environment. Air quality properties such as carbon monoxide
and dioxide levels, temperature, and even particulate levels can be measured
with sensors and used as CS-EMA triggers.

Not all environmental monitoring must lead to CS-EMA-triggered interruptions
for the participant. For example, image data can be used as a memory trigger
rather than a self-report trigger to minimize the interruption burden of sampling.
We call this technique image-based EMA. In a prototype implemented at MIT, a
computer monitors a video stream for motion events. When significant motion is
detected, a sample is triggered. However, instead of interrupting the subject with
a prompt, a static image of the environment and the person is taken, time-
stamped, and stored. Later, at a convenient time, such as when riding the bus,
waiting in line, or just being idle, the participant can use a PDA device to answer
questions. The image-based EMA program displays previously captured images
and then presents the researcher’s question. In many cases, the image will trigger
the subject’s memory, helping him or her provide more accurate answers to the
assessment questions by providing visual contextual cues about that particular
moment in time (Intille, Kukla, & Ma, 2002).

Environmental Sensors Already in Place

Although in many studies investigators may wish to have participants wear sensors
or may place them in their living environments, researchers may also be able to
exploit the proliferation of sensors in devices and environments. Working with pub-
lic institutions or corporations, researchers may obtain access to valuable data
sources. With appropriate conversion software, it may be possible to send the data
via wireless networks to a device enabling CS-EMA protocols. For example, suppose
a researcher wanted to explore the relationship between sedentary behavior and
television viewing. TiVo (TiVo, Alviso, CA) or another digital recorder company
might provide the researcher access to real-time data on the current television sta-
tion settings. These data could be combined with data from wireless accelerometers
worn by participants in the home and enable real-time context-sensitive question-
ing that is tailored to how people are moving and what content they are watching.

Similarly, suppose a researcher is interested in studying the relationship
between sedentary behavior, driving, and the built environment. An automobile
manufacturer may be able to provide real-time data from the vehicle itself, and
more vehicles have built-in GPS. A PDA will be able to collect data from wireless
accelerometers worn by the person, a GPS system in the car, and GIS information
obtained over the Internet to implement a CS-EMA protocol where questions are
triggered based on driving and walking behavior.
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Obtaining access to data sources from companies or governments can be
challenging because these organizations often wish to protect the privacy of
their patrons, as well as their trade secrets. Furthermore, implementing the tech-
nology required to get access to the data in real time to enable CS-EMA may not
always be possible without substantial investment in technology middleware.
However, as devices such as home theater systems and automobiles improve, the
technologies they use to communicate with other electronic devices are likely to
improve, making possible novel data transfer for real-time health assessment
research.

Other existing data sources installed in the environment that might interest
health researchers are public surveillance cameras, satellite imagery, usage data
from home appliances such as stovetops, and radiofrequency tollbooth payment
trackers.

In summary, researchers using real-time data collection have new tools at their
disposal for passively collecting multimodal data in real time and, most significantly,
triggering additional data collection based on automatic, real-time processing of
the incoming data streams.

Context-Sensitive Prompting at Appropriate Times and Places

The key technological innovation enabling the CS-EMA methodology is the auto-
matic detection of context. In the simplest case, questions can be triggered in
response to a single, prespecified sensor reading—for example, heart rate jumps
above a subject-specific threshold. Alternatively, the computer combines many
sensor readings simultaneously to infer more complex subject states using pattern
recognition algorithms. However a trigger is detected, the key insight is that a sub-
ject’s context and activities can be used to determine when and where self-report
data are collected. Mobile computing devices, including mobile phones, are now
sufficiently powerful to perform this “just-in-time” questioning (Intille, 2002).

Conveying Information at the Appropriate Place

Telephones have been used for many years to deliver and collect health informa-
tion from people in their home settings (Friedman, 1998). More than 95 percent
of U.S. homes have telephone service (U.S. Census Bureau, 1990). Although the
telephone is a ubiquitously available technology, as a technology for real-time
data collection it has two serious limitations. First, it is fixed in the home and
most people spend a significant amount of time in other settings. Second, the
telephone, without additional technologies, has no information available about
when it is opportune to prompt for information. Finally, the technology required
to use the traditional phone system to proactively call people is costly and complex
to maintain.

By comparison, new mobile computing devices are making “anyplace” com-
munication possible at a very low cost. Mobile phones are exploding in usage,
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and many people carry them everywhere they go. There is almost one mobile
phone for every two people in the United States (Trends in Telephone Service,
2003). The percentage of mobile phone owners will grow because many people
are replacing wired telephones with wireless service (Horrigan, 2003). By 2002
in Finland (which the U.S. tends to follow in technology adoption), 86 percent
of the male population and 78 percent of the female population over age 10 had
a mobile phone (Statistics Finland, 2003). As these devices are further miniaturized
and more sensing capability is incorporated into them, they can be exploited by
health researchers to get information to or acquire information from subjects
(Collins, Kashdan, & Gollnisch, 2003). New phones will have built-in GPS posi-
tioning that will automatically provide position information when outdoors.
Wireless networking capability may soon provide information about location
when the devices are inside buildings (Bahl & Padmanabhan, 2000).

Other emerging technologies will make it easier to get messages to a subject at
the appropriate place. Bluetooth headsets such as the FreeSpeak ( JABRA
Corporation, Ballerup, Denmark) can wirelessly transmit a private audio message
to a person’s ear from a mobile computing device. Heads-up display devices such
as the SV-6 PC Viewer (MicroOptical Corporation, Westwood, MA) that attach to
the ear or glasses and provide a video display to a person as he or she moves
about the environment are also dropping in price. Even interactive voice
response systems in vehicles, such as OnStar (General Motors, Detroit, MI),
could be used to collect data from subjects.

Looking 10 to 15 years into the future, new low-cost display devices for homes
and workplaces may transform typical home environments into spaces where
information can be presented not only in the right room but also on the most
appropriate object, such as furniture, walls, floors, overlaying a picture, or placed
on a particular device such as an outlet.

Figure 16-4 shows a prototype living room at MIT. In the corner is an
Everywhere Displays Projector (EDP) (Pinhanez, 2001) consisting of a computer

Figure 16-4. Prototype living room with an Everywhere Displays Projector in one cabinet;
it can display information on most surfaces in a typical-size room.

stone_Chapter16.qxp  12/14/2006  8:19 PM  Page 324



Technological Innovations Enabling Ecological Momentary Assessment 325

projector, a computer-controlled mirror, and a standard desktop computer. After
calibrating the device, the computer can use a perspective transformation to warp
an image so that, when it is projected onto objects in the environment, it retains its
correct size and shape. If the computer is also connected to a computer-controlled
camera, it can detect the laser dot and allow the laser pointer to be used to “click”
on the image, no matter where it is projecting (Intille, Lee, & Pinhanez, 2003).
Such advances in computer hardware and the widespread adoption of consumer
technologies for communication and entertainment will create new opportunities
to display messages at the appropriate place, possibly allowing prompting strategies
that grab a person’s attention without audio interruption.

Detecting an Appropriate Time

A greater challenge than presenting or requesting information at the right place
may be to develop algorithms that can use sensors to determine an appropriate time.

DETECTING THE ACTIVITIES THAT MATTER

Entire fields in engineering are devoted to developing algorithms that can col-
lect noisy sensor readings and infer a person’s activity or context. Recent
advances in pattern recognition algorithm development and improvements in
processor speed have led to systems that can robustly infer events from noisy sensor
data. The most promising techniques typically use a supervised learning algo-
rithm, where a set of labeled examples is used to create exemplar models of each
target class and then new examples are classified based on similarity functions
with the targets (Witten & Frank, 1999).

Using pattern recognition, raw sensor data can be converted into more mean-
ingful labels. For example, data on limb motion collected from accelerometers
worn on multiple body parts can be used to automatically determine which of a
list of known activities such as “walking,” “cycling,” “scrubbing,” “working at a
computer,” and “vacuuming” a person may be performing (Bao & Intille, 2004).
One of the key challenges for health researchers is to learn how to exploit these
pattern recognition algorithms. The algorithms are statistical—they output only
a statistical likelihood that an activity is observed given the observed data.
Therefore, when developing CS-EMA sampling protocols and performing data
analysis, researchers need to account for both the variability among subjects and
the uncertainty in the triggering algorithms. The data analysis methods needed
to analyze data collected with CS-EMA tools demand future research.

MINIMIZING INTERRUPTION BURDEN

In most electronic sampling studies, the researcher assumes that, given a full
day and random sampling, the sampling will eventually capture a sufficient num-
ber of events of interest. However, a well-known limitation of EMA is the burden
the technique places on the participant. One way to reduce the burden is to
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keep the measures brief to avoid subject fatigue (Stone & Shiffman, 1994). This
strategy, however, may not be sufficient for long-term sampling studies or for
studies where the events of interest are short in duration.

The CS-EMA methodology may provide a solution by limiting sampling to the
moments of greatest interest to the researcher. A variation on this approach is to
also use context-sensitive computing to determine good (or poor) times to inter-
rupt if a specific activity of interest cannot be detected. Because of the prolifera-
tion of electronic devices vying for the user’s attention, the detection of good
times to interrupt using sensors is becoming an active topic of research for 
computer scientists (Horvitz & Apacible, 2003). Ironically, EMA is a technique
being used to conduct these studies. In one study conducted in the workplace
setting, researchers found that a few sensors that detect use of the phone, if any-
one is talking, or other indicators of conversation could be better than 75 percent
effective at predicting interruptability in the office (Hudson, Fogarty, Atkeson,
et al., 2003). Another study found that information proactively presented at
physical activity transitions (e.g., a transition from sitting to walking) rather than
at random times has a higher perceived value (Ho & Intille, 2004). Future versions
of CS-EMA might use such sensors to reduce the burden of sampling by trigger-
ing prompts during automatically detected activities or during activity transitions
when participants are likely to be most receptive to an interruption.

EXPLOITING THE NETWORK

Even with a variety of sensor inputs available, automatic detection of subject activity
is challenging for many activities of interest. For example, although galvanic skin
response and other physiological measures can provide some information about
emotional state, reliable detection of most emotions is still an active research prob-
lem (Picard, 2003). Similarly, automatic detection of certain activities or parameters
of those activities (“he’s cooking lazily,” “she’s being passive-aggressive” ) may be far
beyond current capabilities of machine perception. In these cases, a researcher
interested in using CS-EMA may need to fall back on other EMA designs.

An alternative is to exploit the ubiquitous networking capability of emerging
computing devices. For example, suppose two people living in the same home
are participating in a study. Instead of sampling the target individual, if PDA
software detects that the two people are near one another, the software might
silently prompt the second individual (perhaps using vibration) and present
questions about the state of the first. The software can attempt to exploit human
intelligence of other people as triggers for sampling the subject of greatest interest.
Moreover, answers from the second individual might change the sequence of
questions asked of the first. Although this network-triggered CS-EMA protocol
could occur in a home, it might also occur in a workplace or other environment
where large groups of people work and where not all the people participating
know each other well.

Text messaging using the network could also trigger data collection among
groups. Text messages have already been used as economical interventions for
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diabetes for children (Franklin, Waller, Pagliari, & Greene, 2003), asthma man-
agement (Neville, Greene, McLeod, et al., 2002), and bulimia research (Bauer,
Percevic, Okon, et al., 2003). Clever use of simultaneous communication
between groups of subjects could heighten the sense of perceived value of the
experience for subjects by exploiting social norms. For instance, if subjects in a
study are receiving prompts at the same time, a real-time update about who has
answered the queries might be a useful tool to increase compliance.

Data Collection Tailored to the Individual and to the Situation

The CS-EMA methodology as described thus far involves continuous collection
and analysis of data that are used to prompt self-report at appropriate times and
places. However, emerging computer technologies will also facilitate opportuni-
ties for personalized tailoring based on an individual’s past behavior, subjective
states, cognitions, and interpersonal experiences.

User-Specific Devices

The mobile computing technologies that will enable the next generation of CS-
EMA instruments will be highly personal devices. Already mobile phone users
are beginning to use their phones to store detailed personal information and
files. As the interfaces between the phones and desktop computers are improved
in the next 5 years, phones will become the primary mechanism by which people
carry and exchange data. For heavier computer users, phones are likely to contain
information about personal contacts, meetings, and movement patterns around
the community (from GPS). It is not unreasonable to expect the mobile devices
to also contain large amounts of health data. As the physiological and motion
sensors reach comfortable sizes, first athletes and then the general public will
begin to use them for personal health monitoring.

Longitudinal Data Storage—Lifelong Records

A trend toward personalizing mobile computing devices will take place at the
same time as another important technological innovation: “free memory.”
Storage devices the size of a quarter can now store gigabytes of information, and
the cost of memory has plummeted. For all practical purposes, within 10 years
digital memory storage capacity will no longer be a consideration for most typi-
cal data collection tasks, even those that take place on mobile computing
devices. “Free memory” and personalized devices will mean that people will
never need to delete the digital data they collect. Suppose a mobile phone user
has a wireless pedometer that saves walking data and GPS position data on the
phone. That person could easily save a lifetime of walking data on a single phone
and never have a reason to delete it. In fact, as discussed in the next section, the
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phone might collect a longitudinal record of nearly everything the person sees,
hears, and does.

Looking to the Future: CS-EMA�10

In the next 10 years, new technologies will enable CS-EMA protocols to be widely
deployed for health research. How will the properties of new CS-EMA instruments
compare with the current dominant technology of paper? Consider what an
instrument that implements a CS-EMA protocol might be like 10 years from now
(CS-EMA�10), after mobile computing, wireless sensors, ubiquitous networks,
and “free memory” have permeated the marketplace.

A device implementing a CS-EMA protocol for studying how, when, and
where people engage in physical activity might operate as follows. The device
would consist of software that runs on all major mobile phones. Ten years from
now, well over 150 million mobile phones will be in use daily in the United States.
People who wish to become research subjects will obtain the software using the
touch screen on the phone to access the project website and download and run
the program.

The typical phone will be a powerful, miniature computer with a 0.5- to 1-
terrabyte storage card; it will easily synchronize with a computer via low-power
wireless networks. Some people will use phones with a pocket-sized physical
shape and style; others will have phones with watch or armband physical styles.
Nearly all phones will have color screens with touch-input displays.

Each phone will have a local body network used to collect data from built in and
add-on sensor devices. Pedometers and some physiological monitors (e.g., heart
rate) may be common. These devices will always be activated and collecting data,
most likely so phone users can monitor their own health. Researchers using
phones for CS-EMA protocols may distribute additional sensors to subjects as
well, and the sensors will use the local body network to transmit data to sampling
software running on the phone. For physical activity measurement, the sensors
will consist of miniature accelerometers embedded in comfortable elastic wrist
and ankle bands and a wireless heart rate chest patch. Subjects may wear them
for months, charging their batteries at night. Two to five accelerometer bands
may be worn on different parts of the limbs. Additional data will be collected on
the subject’s position from the phone’s built-in GPS or indoor tracking system
using the local network inside buildings. The researchers may ask subjects to
place a few hundred sensors like MITes around their home to improve recogni-
tion of certain types of activities and detect events such as eating, opening the
refrigerator, cooking, exercising, sleeping, and socializing.

The software for monitoring physical activity will save and then immediately
process the incoming signals. The accelerometers will send three-axis accelerom-
eter data to the phone at 20 Hz. The phone will continuously process the sensor
data and use statistical learning algorithms to automatically detect certain physical
activities specified by the researcher. The algorithms will recognize many activities
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with 80 to 90 percent accuracy (Bao & Intille, 2004). Using more sensors will typ-
ically improve recognition performance. Heart rate in combination with the
accelerometer data will determine what activity is being performed and with
what intensity.

When a target physical activity is detected, such as “walking,” “cycling,” “scrub-
bing,” or “vacuuming,” the phone will prompt the subject and present context-
specific (multiple-choice) questions that the researcher has constructed. The
questions may change based on the subject’s prior activity, including pedometer
data collected 2 years ago but saved on the subject’s phone. Subjects will use the
phone’s touch screen to answer the questions after receiving an audio prompt.

As it gathers the self-report data, the CS-EMA�10 device can create a “digital
diary” of the subject’s activity by recording what a user sees and hears (Clarkson,
2002; Gemmell, Bell, Lueder, et al., 2002). The researcher can use this diary to
interpret surprising results. The value of such an experiential memory device was
realized as early as 1945, but only recently have improvements in the size and cost
of technology made the vision achievable (Bush, 1945; Gemmell et al., 2002).

The phone will collect all of the following information: a continuous video
stream (from an embedded camera), a continuous audio stream of everything
the subject hears and says (from the phone’s microphone), a continuous
accelerometer data stream of the subject’s limb motion, a continuous data
stream of physiological parameters such as heart rate, a continuous data stream
of subject’s location in the community, and other miscellaneous data about how
the subject is feeling as reported by the user occasionally via a mobile computing
device user interface. When compressed, a year of data can be stored with less
than 1 terabyte of memory. By 2007, 1 TB of memory may retail for approximately
$300 (Gemmell et al., 2002).

In some situations the software running on the telephone may change the
question that is asked based on an automatically detected deviation from past
baseline performance. For example, a person may be reminded of previous
answers from the previous days, weeks, or years (e.g., “Yesterday at this time you felt
tired. Do you feel more or less tired right now?” or “You’ve done this activity at about the
same time every day for the last month. Why do you think that is the case?”). The device
can go one step further, however, and use image-based EMA to show the subject
video or play the subject audio from periods of time in the past. The computer
might play a video clip of an activity that occurred 2 months ago and ask the subject
to compare the current situation to the past event.

People using the telephone software might participate in CS-EMA studies for
years if researchers ensure that the context-sensitive interruptions do not
become a burden. Participation would require no more than telling the telephone
how many questions a week are tolerable and letting the program automatically
run in the background. In some studies, participants using devices running CS-
EMA protocols may start to view themselves less as “subjects” and more as “active
volunteers.” The software could be structured so that some studies are experi-
enced as long-term participatory conversations rather than impersonal and
untailored question-and-answer sessions.
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All the technologies that are needed to make this scenario a reality exist today
and prototypes are being tested at MIT and elsewhere. As consumer technologies
drop in size and price, such instruments could be deployed on very large scales
with millions of telephone users. Open research questions include how to analyze
the huge amount of data that such a tool would produce and how to provide
researchers with the tools they need to develop context-sensitive sampling proto-
cols without requiring expertise in the sensor technologies.

Privacy, Ethical, and Practical Considerations

As with any research study, the use of CS-EMA protocols, particularly those
deployed with tools available 10 years from now, requires that informed consent
be obtained from subjects. The investigators must ensure that participants under-
stand what data are being collected, what the data could be used to infer, and
how they can opt out of data being collected at particular times. Investigators
must take the most care when sensors are being used to continuously collect data
without the direct input of participants, because they may not realize how much
data a consumer device such as a mobile phone could (or already does) collect.
They may also forget that data are being collected when no proactive action is
required.

A device implementing a CS-EMA protocol may be capable of recording a per-
son’s location, activities, interactions with other people, physiological states, and
psychological states. Such descriptive data sets may make it increasingly likely
that EMA data collected in one study can be retroactively reused for a different
purpose in another study at a later date. However, the density and versatility of
the datasets may also make it more likely that datasets will be of value to other
parties, such as the government or family members interested in the behavior of
particular subjects. The probative power of the data sets may necessitate
improved procedures for masking subject identity. This is especially true because
the data sets may contain audio and video samples that can be used to identify
the participant, and current technologies do not allow researchers to automati-
cally anonymize those data sources without obscuring much potentially relevant
data.

The EMA technology that is continuously monitoring raises several other con-
cerns that need to be addressed. One is that investigators may wish to request
data collected by consumer devices used by participants prior to their enroll-
ment in the study. A standard mobile phone, for instance, may store detailed
information on the person’s prior whereabouts, social connections, and physio-
logical state—perhaps from the last several years. A participant may wish to pro-
vide only the relevant longitudinal data to the researcher, but in practice it will
be more difficult to recall and flag data that he or she does not wish the
researcher to see. The participant may therefore turn over the data without fully
comprehending the amount of information it contains.
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Another concern raised by EMA continuous monitoring is that some sensors
may unintentionally capture data on nonconsenting people who interact with
the subject. In situations where data about interaction with others are collected,
it may not be possible for the investigator to obtain informed consent from all
people with whom the subjects interact, either before or after the study. Such data
could be removed once it is identified, but marking instances for deletion may
require seeing of the data.

Finally, EMA continuous monitoring may capture data from the participant that
is unrelated to the core study goals but that requires a response by the investigator.
For example, while analyzing heart-rate–prompted questions, the investigators
may discover heart arrhythmias. Should the researcher communicate this informa-
tion to the subject? Alternatively, the investigators may determine that the subject
engaged in an illegal activity. Do they report this information to the authorities?
Subjects may also mistakenly feel that they are being monitored in real time and
adjust their behavior accordingly. A researcher would not want a subject to defer
medical care because he or she mistakenly felt that the system monitoring heart
rate would trigger a warning if a serious heart problem was observed.

In addition to privacy and ethical concerns, future CS-EMA studies offer some
practical challenges. A device running a CS-EMA protocol on a future comput-
ing device could generate orders of magnitude more data than current studies.
New tools will be needed to manage these datasets and allow researchers to eas-
ily manipulate multimodal data sources with sampling rates that vary from days
to milliseconds. Although many studies will be possible using standard tele-
phones and commercial sensors such as electronic pedometers, in other cases a
substantial infrastructure investment may required to collect the data desired
(e.g., television content from a proprietary digital video recorder/tuner). Once
again, special tools may be required for some studies that collect and process
data. In most cases, the context detection algorithms will function as “black
boxes.” This may create some analysis challenges because the researcher may not
have access to reliable data on the performance on the algorithms that are ana-
lyzing data to trigger self-reports.

Conclusions

Electronic sampling techniques, and particularly context-sensitive sampling
techniques that use new sensor technologies, will create exciting new opportuni-
ties for health researchers interested in studying behavior, subjective states, cog-
nitions, and interpersonal experiences of free-living subjects in natural settings.
The CS-EMA methodology is likely to provide value for any health-related
research where behavior and context are intertwined. For example, one can
imagine studies such as the following:

● A study using CS-EMA to gather data on the links between television
viewing, eating behaviors, and sedentary behaviors. Sensors worn on the
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body, placed in the kitchen, and placed on the television trigger ques-
tions when people are sedentary, snacking, and/or watching particular
types of television shows.

● A study on ultraviolet exposure where questions about sun exposure are
triggered only when a subject has been getting unusually high UV expo-
sure for at least 15 minutes

● A study on walking behavior and the built environment, where subjects
are asked specific questions based on their typical walking behavior, cur-
rent walking speed and duration, and type of space they are currently in

● A study on the impact of social contact on perceptions of psychological well-
being, where a group of friends or coworkers are prompted to describe how
they feel just after an encounter with one another. Audio snippets from the
conversations could be saved and analyzed by the researchers.

Table 16-1 (presented earlier in the discussion of emerging technologies) com-
pares four technologies for real-time assessment: paper used for a diary, PDA
software used for computerized EMA, PDA devices with context-sensitive soft-
ware and sensors used for CS-EMA, and mobile devices 10 years from now used
for CS-EMA�10. The table, which is speculative and makes gross simplifications,
nonetheless suggests that researchers interested in studying free-living subjects
may have a powerful new assessment instrument at their disposal as the technol-
ogy that enables widespread adoption of CS-EMA matures. This new tool may be
characterized by the following:

● A CS-EMA�10 device will be as lightweight and compact as the typical
mobile phone, which most people will carry everywhere they go. The CS-
EMA�10 device will be as inconspicuous as the mobile phone, which will
have permeated society.

● A CS-EMA�10 device will be inexpensive to deploy for research.
Consumers will absorb the cost of the mobile computer and sensor
technology for personal entertainment and communication purposes.
Hundreds of millions of people will own sufficiently powerful mobile
computers, permitting instruments to be deployed in studies with
extremely large sample sizes.

● A CS-EMA�10 device will not have a flexible physical form factor but it
will have a comfortable one. It will have flexible function; the researcher
can structure the way that information is presented to the subject to
achieve a particular end.

● Many versions of CS-EMA�10 devices will be easy to replicate and modify
without special expertise because tools will be developed so researchers
can set up context-sensitive protocols. The investment in such tools will
be justified by the enormous sample sizes that can be obtained for tools
that are widely deployed.

● The CS-EMA�10 technology will operate on mobile computing devices
that are familiar to subjects and easy for most people to use.
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● The CS-EMA�10 technology can be developed so that participants can
correct and adapt their entries—for example, by leaving audio notes for
the researcher to explain their answers.

● The CS-EMA�10 tool may still raise questions about validation, reactiv-
ity, and selection bias, as does current electronic EMA.

● Although CS-EMA�10 instruments will be easy to carry everywhere, they
will not be easy to forget because they will proactively prompt for infor-
mation and the technology will be the subject’s primary phone.

● Most data collected via CS-EMA�10 tools will not require costly, time-
consuming, and error-prone manual data entry and coding.

● CS-EMA�10 technology will have automatic time stamping of entries,
prohibiting hoarding. It will also allow the researcher to ensure that
questions are answered in a particular order.

● The CS-EMA�10 device will allow acquisition of both self-report data
and passive acquisition of multimodal data.

● In ways not possible via any other instrument, the CS-EMA�10 device
will permit researchers to automatically tailor data acquisition to the 
context.

Finally, although this chapter is about the use of new technologies for real-time,
context-sensitive assessment, the same technologies could be powerfully
deployed for just-in-time intervention (Intille, 2004). A computing device can
automatically determine when and how to present information to motivate
behavior, attitude, or belief changes at “teachable” moments. Evaluation of such
technologies is likely to require the use of the CS-EMA protocols.
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Note

1. In past work, this extension to the EMA methodology has been called context-aware expe-
rience sampling, or CAES (CAES, 2003; Intille, Rondoni, Kukla, et al., 2003). Context-aware is
a term commonly used by ubiquitous computing researchers to indicate systems that automati-
cally detect and respond to context.
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