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Abstract
Purpose—State-of-the-art methods for recognizing human activity using raw data from body
worn accelerometers have primarily been validated with data collected from adults. This study
applies a previously available method for activity classification using wrist or ankle accelerometer
to work on datasets collected from both adults and youth.

Methods—An algorithm for detecting activity from wrist-worn accelerometers, originally
developed using data from 33 adults, is tested on a dataset of 20 youth (age 13±1.3). The
algorithm is also extended by adding new features required to improve performance on the youth
dataset. Subsequent tests on both the adult and youth data were performed using crossed tests
(training on one group and testing on the other) and leave-one-subject-out cross-validation.

Results—The new feature set improved overall recognition using wrist data by 2.3% for adults
and 5.1% for youth. Leave-one-subject-out cross-validation accuracy performance was 87.0%
(wrist) and 94.8% (ankle) for adults, and 91.0% (wrist) and 92.4% (ankle) for youth. Merging the
two datasets, overall accuracy was 88.5% (wrist) and 91.6% (ankle).

Conclusions—Previously available methodological approaches for activity classification in
adults can be extended to youth data. Including youth data in the training phase and using features
designed to capture information on the peculiar activity fragmentation of young participants
allows a better fit of the methodological framework to the characteristics of activity in youth,
improving its overall performance. The proposed algorithm differentiates ambulation from
sedentary activities that involve gesturing in wrist data, such as that being collected in large
surveillance studies.
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Introduction
Traditional methods of measurement of physical activity include using a wearable device on
the hip over a seven-day period of activity to classify participants into activity categories.
Accelerometer-based activity monitors that output activity “count” values aggregate the
motion of the device over a short window of time (“epoch”). The count value does provide a
useful summary of overall motion along with some indication of gross motion and
ambulation when placed at the hip. A recent trend, however, is to move the activity monitor
from the hip to the wrist location, to increase wear-time compliance and capture sleep-
related behavior, as in the UK BioBank and U.S. National Health and Nutrition Examination
Survey (NHANES) studies (26, 30). This trend recently started to involve physical activity
estimation in youth using wrist worn accelerometers (7). Interpretation of wrist-based count
values is challenging due to hand gesturing, which may confound the mapping between
overall body ambulation and motion of the sensor (20). More detailed information about
wrist motion captured in raw accelerometer data sampled at a high rate, however, may
permit automatic identification of classes of activity types, such as ambulation vs. sedentary
behavior. This information could be used directly to characterize activity, or perhaps to
improve accuracy of accelerometer-based energy expenditure estimation (1, 8).

Prior work detecting activity type from raw accelerometer data from a variety of sensor
locations on the body has primarily focused on detecting the activity of adults (e.g., (2, 16,
34)). Recent work on the detection of activity type from raw accelerometer data on the wrist
has focused mainly on adults (16, 24, 34) with the only exception being the work by Trost et
al (29). In this study, we tested the applicability of an activity recognition algorithm based
on ankle or wrist raw accelerometer data, previously developed for and validated in adults
with youth aged 11 to 15 (16). The type and amount and intensity of activity of children and
youth may differ from those of adults (5, 27). Algorithms developed for adults may not work
well on children for one of two reasons: activities that children perform may not be
represented in the adult models, and features used by the models for adults may not
adequately capture important distinctions between activities in children, if children perform
those activities in dramatically different ways. Whereas physical activity assessment in
children and youth using activity count values obtained using accelerometry is common (7,
21), researchers are still exploring whether the same models that worked for adults can be
applied to children.

Activity recognition in youth: related work

Previous studies involving automatic activity recognition in youth from accelerometers have
been surveyed (see Table 1). Four studies use activity count values. One such study using
classification features extracted from activity counts (1 s epochs) gathered from 41 youth
aged 10.8 ± 1.3 years classified activity into 10 categories (stationary, biking, crawling,
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walking, scooter, horseback riding, jumping and floor exercise) with 67% accuracy using
monitor data from the hip and wrist simultaneously (23). De Vries et al. tested single sensor
solutions on 58 participants, using ankle and hip sensors worn by 9-12 yo youth that output
1 s count values (9). When classifying seven activity types (sitting, standing, walking,
running, rope skipping, playing soccer, and cycling) from 20 minutes of data per person,
they obtained an overall accuracy of 68% ankle data, and 77% using hip data. More recently
Trost et al. attempted the classification of five activity types (sedentary, walking, running,
light intensity household activities or games, moderate-to-vigorous intensity games or
sports) from activity count data with 1 s epochs, evaluating the algorithm on data from 100
participants (5 to 15 yo), with two minutes of classified data for each activity (28). An
overall accuracy of 88.4 % from a hip-worn sensor was reported. The most recent paper to
include 1 s epoch counts processing for activity recognition was by Hagenbuchner et al who
involved 11 pre-school children (3 to 6 yo, with a total of 264 minutes of classified data)
(12). Four classes were recognized (sedentary activities, light activities, moderate to
vigorous activities, walking and running) reporting 82.6% accuracy.

An alternative approach to using count values is to use the raw accelerometer data and
compute a richer set of features that may help differentiate specific activities. Four recent
studies have explored this approach for activity type detection in children. In Hikihara et al.
(13), 32 Hz data from a waist-worn triaxial accelerometer were used to distinguish between
two non-locomotive and locomotive activities in 68 6-12 yo children with approximately one
hour of data from each child, classifying 99.1% of examples correctly. Nam and Park (19)
proposed a method using a waist-worn accelerometer and a barometric pressure sensor to
classify 11 classes (wiggling, rolling, standing still, standing up, sitting down, walking,
toddling, crawling, climbing up, climbing down and stopping) of 10 1.3-2.4 yo toddlers.
With a total of 50 h of acquired data, they obtained 88.3% classification accuracy using the
accelerometer alone and 98.4% using both the accelerometer and barometric pressure
sensors. Del Rosario et al. (10) performed activity classification using a smartphone
embedded accelerometer, gyroscope and barometric pressure sensor, evaluating
performance on 20 young adults (21.9 ± 1.7 yo) and 37 older adults persons (83.9 ± 3.4 yo).
The same feature set was used in both age groups to classify 9 activities (stand, sit, lie, walk,
walk upstairs, walk downstairs) from 10-30 minutes of data per person collected when the
smartphone was kept in a person's trousers front pocket. Overall recognition accuracies of
79.9% and 82.0% for young and older adults, respectively were reported. Finally, Trost et
al. (29) proposed a method based on wrist or hip accelerometer for recognizing 12 activities
merged to 7 categories (lying down, sitting, standing, walking, running, basketball and
dancing). A total of 52 (13.7 ± 3.1 yo) children were included in tests and 2 min of each
activity were classified obtaining 91% and 88.4% accuracy on average at the hip and at
wrist, respectively.

Previous work did not test activity classification methods designed for adult activity on
youth data. In this work, we fill this gap by testing an activity recognition algorithm we
previously developed for adults (16) on data from youth performing a similar set of
activities. The objective behind this approach is to check if it is possible to apply existing
methods to this different age group and if it is possible to improve its results in a general
solution that could effectively process data from both age groups. While it is theoretically
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possible to create algorithms tuned for all age ranges, that would require large age-specific
data collection efforts, with somewhat arbitrary age cutoffs. Moreover, deployment of
algorithms would be simpler in large surveillance studies if the same algorithms could be
used for both adults and children. Even if the algorithms could have to be tuned differently
based on age, using the same set of features for adults and children might ultimately allow
algorithms to be developed that adapt smoothly to different age groups, rather than using a
hard (and unrealistic) age threshold to process data using two entirely different algorithms
and models. . Both the youth and adults data in our work were acquired simulating free
living conditions: participants were asked to do things as naturally as possible while doing a
set of 23 activities for youth and 26 activities for adults classified among 4 general classes.
Sensors were again placed at the ankle and wrist (each sensor was tested independently).
Modifications to the algorithm were proposed – specifically in the selection of features
computed from the raw data and fed to classification algorithm – that allow better detection
of differences in the activities being performed by the youth. The resulting method was
tested on the adults’ data as well as the combined dataset.

Materials and methods
1. Datasets

Participants performed a set of simulated daily activities in a lab environment while wearing
a suite of synchronized sensors, following a similar protocol used when collecting data from
33 adults in prior work (16). Twenty youth (12 boys 8 girls, ages 13±1.3) were recruited
from the Stanford, California community. The Stanford University's Institutional Review
Board approved the data collection protocol, and written informed consent was obtained
before participation. Triaxial Wocket accelerometers (14) were secured to the wrist and
ankle positions on the body using custom Velcro bands. Wockets are small, thin, and
lightweight devices (43 × 30 × 7 mm, 13 g) making them particularly suitable for long-term
physical activity monitoring studies. Raw acceleration data (range ± 4 g) were acquired at 90
Hz and sent using the Bluetooth wireless protocol to a smartphone. The wrist sensor was
placed on the dorsal aspect of the dominant wrist midway between the radial and the ulnar
process. The ankle sensor was placed on the outside of the ankle, just above the lateral
malleolus. The ankle placement site was chosen because it is an ideal site for ambulation
detection (16). The wrist is a practical site for long term monitoring, because sensors can be
attached using watch-like bands, can be worn during sleep comfortably, and do not need to
be removed when changing clothes.

Participants were asked to perform a guided sequence of laboratory-based physical activities
and common daily activities lasting 3-5 min each. Activities were annotated during the
execution of tasks using a voice recorder, and then timings on the voice recording were used
to annotate start/stop times for specific activities being observed. Data and annotation were
synchronized using custom software (14). Data collected from the youth using this
procedure will be identified as the Y-dataset (Youth). Similar data collected in prior work
from adults will be identified as the A-dataset (Adult). Table 2 summarizes the list of
available activities in each dataset. Activities were grouped into four classes: sedentary,
cycling, ambulation and other activities. Multitasking behaviors were not included, except
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for the activity “walking-carrying a load” in A. Activity categories were reduced to four
categories used in previous work on wrist/ankle activity recognition in adults (16). Activities
that were done in an upright posture but that can be physical demanding, such as cleaning
and wall painting, were included in an other activities because they did not seem appropriate
for the sedentary, ambulation and cycling classes. By collapsing activities into categories,
the machine learning algorithms had more training data; future work with much larger
datasets could explore detection of specific activities as well. To facilitate comparison with
past work, new sport and leisure activities of the Y dataset involving movement in the
upright position and not represented in A, were included in the other activities class.

2. Data preprocessing and features evaluation

Three-axis raw accelerometer data were preprocessed to extract the Signal Magnitude vector
(SM):

where acc indicated the recorded raw data in g-units (1 g = 9.81 m/s2). The resulting 90 Hz
SM signal was independent of the orientation of the sensing node. SMs were low pass
filtered using a 15 Hz cut-off 4th order Butterworth filter to limit the bandwidth of the signal
to the frequencies common in human motion (3). To classify data within the four defined
activity classes, the SMs data were divided into 12.8 s non-overlapping windows. This
window size was proposed by Zhang et al. (34) and also applied in Mannini et al. (16).
Although prior work has shown that other window sizes (e.g., 4s) can be used with only
modest degradation of performance (16), here use of the same window length value as in
two prior studies allows a direct comparison between these results and those from the
previous one about activity classification in adults(16).

The datasets used in this work were collected in the lab but include semi-structured activities
labeled in real time, introducing small errors in annotating activity transitions due to reaction
time and the difficulty of labeling activities when transitions occur quickly. For this reason,
one window (12.8 s) was discarded before and after each label transition. Another type of
annotation error is that some short activity changes during semi-structured activities were
not labeled at all. For example, the dataset contains examples where participants stop briefly
during non-treadmill walking, such as at a door that had to be opened. In such cases, even
though a participant is standing still briefly, the label for the data is still ambulation. Some
errors can be detected using the ankle acceleration recordings because in data labeled as
ambulation, the SM of the ankle sensor is expected to be significant. Therefore the ankle
sensor SM was used both to identify these labeling errors and to correct labels indicating
ambulation. In particular, 2 s windows labeled as ambulation with a standard deviation less
than 0.1 g were marked as labeling errors and discarded. This value was set by empirical
observation so that ambulation with a cadence of 1 impact per window (i.e., nearly any
movement) would be detected with an ankle sensor. Data-loss due to Bluetooth wireless
transmission errors was handled by discarding windows with less than the 80% of the
number of expected samples at the nominal 90 Hz sampling rate. In such cases, a new
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window was started at the end of the data gap. Some fluctuations in the sampling rate may
occur in the remaining windows due to the wireless connection. Before extracting frequency
domain features, SMs in each window were linearly interpolated to obtain the same number
of samples in every window.

Initially, the feature set defined in previous work was tested (16). Those features, listed in
Table 3, encoded both temporal and frequency domain information, computed from
acceleration SM. As in our prior work (16), the feature vectors (computed on every 12.8 s
window) were used as input for a Support Vector Machine (SVM) with radial basis function
kernel (31). Also as in prior work (16), the results were evaluated using cross-validation
with Leave-One-Subject-Out (LOSO). Finally, the parameters of the radial basis function
used for SVM classification were retained from the previous study (upper complexity bound
C = 100 and γ = 0.1) for evaluating the previous version of the algorithm and then optimized
by running a grid search using classification accuracy as the optimization criterion. As
described below, our initial testing suggested that the youth dataset recognition could be
improved by adding some additional features to the algorithm. The adult dataset upon which
the algorithm was developed did not include sports activities such as basketball, soccer, and
tennis that were included in the youth data. To capture such activities that are more frequent
in youth than in adults, the signal power at frequencies higher than 3.5 Hz, normalized by
the total power, was included as a new frequency domain feature. The 3.5 Hz cutoff
frequency was selected because previous studies pointed out that most of the energy of
human movement during daily activities lies in the 0.3-3.5 Hz band (25). High frequency
components, which are present especially in lower limb recordings, are mainly from high
impacts (4); therefore, their presence suggests that the movement being performed involves
high impact, as is common in ambulation or sport.

New features were introduced to capture information about starts and stops of short activity
bouts that may be common for children (21, 22). Evaluating relevant acceleration bouts
within the window allows to extract information about the activity fragmentation, while
keeping the same window length used in previous work (16, 34). The fragmentation of the
acceleration signal magnitude was evaluated as it is done in evaluating onset of
electromyographic signals (18):

• SM were rectified by subtracting a constant value corresponding to
gravitational acceleration (1 g) and removing the sign of the result.

• Windowed data were then low pass filtered (Butterworth filter, 5 Hz cut-
off frequency).

A threshold (Th = 0.2*g, i.e. 1.96 m/s2) to identify active samples was then applied. In
previous studies, periods with unfiltered acceleration SM lower than 0.4 m/s2 are considered
static (32). Our threshold results from preliminary observation of rectified and filtered SM;
it is significantly different, because our aim is to identify with high specificity periods of
relevant activity, as opposed to periods with little motion.

Four different activity fragmentation features were evaluated as follows:

1. Fragmentation, active samples:
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Where W is the window length in samples. This feature identifies the
amount of activity within the window that is over the threshold, thereby
providing a rough estimate of the amount of relevant activity being
recorded in the window. This feature could distinguish between activities
that result in relevant acceleration in most of the window and activities in
which the relevant activity takes place for only a portion of the window.

2. Fragmentation, number of activations:

This feature identifies the number of threshold crossings within the
window (rising edges only), normalized to the number of active samples
FS, thereby capturing movement fragmentation within the window. This
feature could discriminate impulsive events from longer-lasting
acceleration events, since it quantifies how many times within the window
the acceleration passed from the inactive to the active condition.

3. Fragmentation, mean activation interval duration

This captures the mean duration of activation intervals within the window,
normalized by the window length. An activation interval is defined as the
amount of samples between two consecutive threshold crossings. This
feature provides information on movement bout fragmentation within the
window that could help discriminate between activities that involve stable
movements, such as those in natural walking, and those with short bouts,
such as sport ones.

4. Fragmentation, activation interval duration variability

This feature captures the standard deviation of the duration of activation
intervals within the window, normalized by the window length, thereby
providing information on uniformity of activation intervals within the
window. This feature may help discriminate between activities with cyclic
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movements with a very stable ratio between active and inactive phases,
and more random activities. A stable cyclic movement would result in
lower variability of activation intervals that would repeat themselves
within the window. Fast and aperiodic movements, however, such as those
in recreational activities would result in highly variable activation bouts.

If no samples over the threshold were observed, FS, FAN, FAM and FAV were set to 0. FAV
was set to zero also in the case of #threshold_exceedings less than 2.

In summary, six new features specifically developed for activities common in children were
computed and available to the classification algorithm. All features are computationally
efficient, permitting real-time recognition in future systems.

3 Feature selection, classification and validation strategies

In prior work, manual testing was used to assess the contribution of some group of features
to overall algorithm performance (16). Here, new features were added to the feature space,
and an automatic sequential forward search feature selection process (15) was adopted,
where the LOSO validation output was used as the selection criterion. Sequential forward
search is a suboptimal algorithm for feature selection that cannot guarantee the optimality of
the selected set (15). However, it is a computationally acceptable (linear time complexity)
dimensionality reduction strategy that may improve classification results by discarding
redundant features prior to the classification step (15). SVM classifier training does not rank
features (6). Therefore, feature set dimensionality reduction is effective for SVM classifiers.
Reducing feature space dimensionality typically reduces the amount of training examples
required to obtain reliable recognition results, because there is a lower risk of over-fitting
examples and better generalization (15, 33). Moreover, by reducing the number of features,
the complexity of the classifier is reduced (less parameters are needed) then the
computational cost of both training and real-time recognition is reduced (33). In prior work
the same feature sets were used for both the ankle and wrist algorithm training (16). Here,
however, the algorithm could select different feature sets for the two sites; automatic feature
selection was run on each site separately to obtain a location-specific feature set, given that
signals may have different characteristics at different body sites (3, 17).

The LOSO cross-validation approach was preferred over standard n-fold cross-validation. In
standard n-fold cross-validation, data are mixed from all subjects and held-out data are
randomly selected; LOSO, alternatively, prevents similar data collected from the same
participant at about the same time from ending up in both the training and test datasets (11,
16). Therefore, LOSO results are more likely to demonstrate how a method may work under
realistic conditions where a new participant, not included in the training data, is tested.
LOSO is particularly challenging if testing occurs across different populations of people,
such as training on adults and testing on youth, as done here. Most previous studies on
activity classification did not apply LOSO cross-validation (13, 19, 23, 28, 29). A few
studies did use this type of cross-validation (9, 10, 12), but they limited their testing and
evaluation to a homogeneous pool of healthy adult users, with the exception of Del Rosario
et al. who involved two age groups: 37 elderly (average age 84 yo) and 20 young adults
(average age 22 yo) (10).
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The two datasets used in this work, adult activity (A) and youth activity (Y), were collected
as part of two separate experiments. All activities in both datasets were chosen to represent
common activities, and these are significantly different in an adult and youth population, as
shown in Table 2. In LOSO validation using data from a single age group, all activities for
that class listed in Table 2 were used. For LOSO validation using both age groups, classes
were removed if no training data were available for that class. For example, when training
on A and testing on Y, all the activities in A were trained, but those activities not available
in A but in Y were removed from Y (i.e., the sport activities in the other activities class and
the video gaming activities in the sedentary class were removed from Y for testing, because
no training data were available for them). Alternatively, when training on Y and testing on
A, activities in A that did not have training data were removed (i.e., painting with roller and
painting with brush).

Testing proceeded as follows:

– Experiment 1: Test the algorithm originally developed for A on Y. This first
experiment was aimed at evaluating if the previous existing methodology
could be extended without modification to Y by running a LOSO cross-
validation on Y.

– Experiment 2: Extend the feature set to incorporate additional features
intended to capture more information about the youth activities, and train and
the test using LOSO validation separately on the Y and A datasets. This was
done to check if the proposed modification to the methodology improves the
recognition accuracy respect to the original algorithm on both datasets.

– Experiment 3: Cross-test the algorithm by training on A and testing on Y,
and training on Y and testing on A. Both the original feature set and the newly
proposed set are evaluated. As mentioned above, activities not represented in
the training set (i.e., without training data) were removed from the test set. The
goal of this experiment was to assess whether information learned from one of
the groups could be used to recognize similar activities in the other.

– Experiment 4: Test the algorithm with both datasets combined. LOSO
validation is performed on A+Y, without removing any activities from either
dataset. This test was performed to check if it is possible to obtain a general
classifier that works equally-well on both groups.

Results
1. Experiment 1: Test the algorithm originally developed for A on Y

The first test consisted of running a LOSO validation on the youth dataset, using the
previously existing feature set (16). Ankle and wrist classifications were correct in the
85.9% and 89.7% of cases, respectively. Results are reported in Table 4, part A.
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2. Experiment 2: Extend the feature set

Table 3 shows the feature sets obtained for wrist and ankle activity classification after (1)
adding the new features, (2) applying the feature selection approach and (3) optimizing
SVM parameters.

The feature selection procedure was run independently for the wrist and ankle, selecting 9
wrist features and 7 ankle features. These location-optimized feature sets (including features
designed to capture more information about the youth activities) led to improved results, as
summarized in Table 4, part B, and in Table 5. By using the new feature set with the
automatic feature selection, an improvement in overall classification accuracy of 2.7% was
obtained for the ankle and 5.1% for the wrist. The detailed classification results for each
type of activity are reported in Table 5.

SVM parameter optimization was used to find radial basis function parameters for the ankle
(C = 16, γ = 0.25) and wrist (C = 128, γ = 0.0625) classifiers. However, comparing these
parameter optimization results with the previously proposed configuration (C = 100, γ = 0.1)
improved overall accuracy by less than 0.5% for both ankle-based and wrist-based
classification.

Solution robustness respect to different window sizes (8 s , 6.4 s, 4 s and 3.2 s) was tested.
Classification accuracy decreased when reducing the window length. However, even in the
worst case, the accuracy remained higher than 80% (83.5% at the wrist and 86.9% at ankle
for the smallest window).

3. Experiments 3 and 4: Tests on both A and Y datasets

Table 6 shows results obtained by training on one dataset and testing on the other
(experiment 3). Both the new and old feature sets were tested. Classification accuracies
varied in this case from 79.3% to 87.4% at the ankle and from 58.8% to 71.8% at wrist.

Table 4, part C shows the results of running LOSO cross validation with the combined
datasets including all 53 participants (experiment 4). The classifier was trained without
respect to age group. The overall accuracy for this validation test reached 88.5 % at wrist
and 91.6% at ankle. The contribution of the youth and adult results to the overall accuracy
are reported in Table 6. Table 6 also summarizes accuracy results for all the tested
experiments, showing the overall recognition accuracy and the recognition accuracy of each
activity class.

Discussion
Feature sets

The extension of the methodology presented in Mannini et al. (16) to the Y dataset
(experiment 1), using the same feature set and classification approach used on the original A
dataset, produced classification results comparable to those in most previous studies (see
Table 4 part A and Table 1). However, a significant improvement on this new group was
obtained in experiment 2 by adding 4 (wrist) or 3 (ankle) new features and pruning 8 of the
old features, as identified by automatic selection (table 4 part B). In addition to features
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related to basic signal structure (mean, standard deviation, acceleration range), activity
fragmentation features appear to be an important source of information (see Table 3) for
both ankle and wrist sensing sites. The ankle classifier exploited the ratio between the
dominant frequency of the currently tested window and the dominant frequency of the
previous window (i.e., the prior 12.8 s). This feature, used in the previous adult-only study
as well (16), captures temporal information that is useful for identification of consistently
periodic behaviors such as ambulation or cycling at the ankle site. This feature was
discarded at the wrist site; the activities tested here may exhibit more constant, periodic
motion at the ankle than at the wrist.

The activity fragmentation features that were included to capture information about some of
the youth activity, such as sports, encode information about signal power, taking into
account the amplitude of the signal, the time duration and frequency of significant
acceleration episodes within the window. Accordingly, when these features were available,
several power-related features were discarded by the feature selection strategy. Similarly,
the introduction of the “range” feature, jointly with the “maximum value” feature, led to the
algorithm discarding the minimum-value feature at both ankle and wrist. The minimum may
be less informative than the maximum acceleration, given that a low SM depends upon
slight variations of the SM around 1 g. Such values can result from noise or from downward
accelerations that compensate for the gravitational acceleration measured by the sensor.
Such direction of movement at the ankle site, is necessarily followed by an impact, that is
already observed by the “maximum value” feature.

Not all the frequency domain features proposed previously (34) and confirmed in our
previous work (16) were actually selected by the automatic selection strategy. In particular,
the first dominant frequency was retained for both ankle and wrist classifier, but the feature
selector discarded the second dominant frequency and the dominant frequency in the band
0.6-2.6 Hz. The number of activity fragments within the window may capture the
information missed by discarding those features: a large number of activations within the
window should be associated with fast movements that involve frequent accelerations and
decelerations; a low number of activations may be associated to slow or sporadic movement
episodes in which the amplitude of the acceleration is smoother. At the wrist site, a newly
introduced frequency domain feature, the power at frequency components higher than 3.5
Hz, was selected.

Activity classification using youth data

When using the new feature set on the newly available youth dataset, both ankle and wrist
overall accuracy exceeded 90% (see table 4A and 4B). Updating the feature set resulted in a
significant improvement on youth activity classification accuracy, especially for the other
activities class. This result was expected after the introduction of the new features that are
capable of extracting information about movement fragmentation, typical of recreational
activities. Moreover, misclassifications are consistent with intuition. With the ankle
classifier, for example, 24.5% of basketball-passing windows were misclassified as
sedentary, which is consistent with someone temporarily keeping feet still doing this task
(for a short 12.8 s window). Similarly, cleaning room and tennis-ball:-throwing-catching
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were misclassified as sedentary from ankle data in 16.1 % and 20.2 % of cases, respectively
– likely as a result of short bouts of no leg motion. Wii games were misclassified as other
activities using ankle data in approximately the 10% of cases. Despite the sedentary nature
of video-gaming, some Wii-games can actually be similar to sport activities, such as those
included in other activities, if players engage in full-body motion when playing. When
assigning activities to classes, we clustered the Wii games with sedentary video gaming in
the “sedentary” class instead of grouping it with sport activities in the “other” class because
Wii games can be played without moving feet, and even while sitting, and some children
were observed doing so. At the ankle, misclassifications also occur between ambulation and
other activity, basketball dribbling and ambulation, and walking natural and other
categories. In all instances, the relatively small percentage of errors can be explained by the
variability in the behaviors being studied.

Table 5 illustrates challenges with wrist-only activity recognition. Approximately one fourth
of walking natural data were misclassified as other activities, whereas slow speed treadmill
walking (2 mph) had the highest number of misclassifications in the ambulation class. Wrist
movement during slow treadmill walking may not be significant. Exercise bike pedaling was
classified as sedentary in almost all cases (88.9%). During this activity, the wrist was placed
on the exercise bike handlebar and its movement could be negligible. Conversely, outdoor
cycling was characterized by more significant wrist movement due to more variable wrist
movement and vibrations that may result from real bicycle riding. Three of the youth
participants were not comfortable with riding a bike and so they only used the exercise bike.
As a consequence their cycling data were misclassified (see Table 5). Sport activities may
involve ambulation and active bouts followed by quasi-sedentary periods. This resulted in
higher error rates for basketball passing, soccer dribbling and tennis ball fielding. As with
the ankle, Wii activities at the wrist were sometimes classified as other activities instead of
sedentary as expected.

Cross-tests (experiment 3)

When training the SVM classifier on all available adult data and testing on all available
youth data (or vice versa, see Table 5), ambulation and sedentary activities were generally
correctly recognized, whereas more errors are found in the other activities. Cycling detection
using wrist data was problematic if the model was trained on youth data and tested on adults.
Both the ankle and wrist classifiers obtained overall recognition accuracies higher than 75%
for sedentary and ambulation classes, even if the tested population was completely different
in term of age of participants.

Merged dataset LOSO tests (experiment 4)

Merging both datasets in a single, larger dataset allowed us to use LOSO validation to verify
the classifier independently from the age group (Table 4 part C and Table 6). When training
data reflects testing data well, in this case including both examples from adults and youth,
better performance would be expected, and we confirmed that here. For what concern the
wrist classifier it was confirmed that the correct classification rate for cycling in adults was
low in the merged dataset as well. This was because most of the adults cycling data were

Mannini et al. Page 12

Med Sci Sports Exerc. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acquired on an exercise bike. As stressed before, the wrist movement in exercise bike
pedaling may be negligible.

Overall, the results confirm that the activity recognition method proposed previously (16)
can be applied to recognize activity on youth data as well on adults. The LOSO validation
results on the complete dataset (with both young and adults data) show that training
classifiers with data from different age groups does not significantly reduce activity
classification performances (Table 4C). Merging data from the two groups into a single
dataset results in an accurate classifier that is not specific to one age group.

Comparison to literature

Prior work on activity classification using accelerometers in youth uses different activity
sets, age ranges, number of participants, amount of processed data and experimental setups,
and validation approaches (see Table 1), making direct comparison of results challenging.
This study demonstrates a solution with overall accuracy higher than 90% for both wrist and
ankle in a four-class activity problem, tested on structured and semi-structured activities.
Unlike prior work, adults and children are considered together. Del Rosario et al. included
activities from elderly and young adults, classified with 82.0% and 79.9% accuracy
respectively, but from a smartphone in the trouser pocket (10). Only two previous studies
focus on wrist activity classification in youth. Accuracy results obtained by Ruch et al., (23)
who used wrist and hip sensors simultaneously, 67.0% on 10 classes. Activity counts were
used instead of raw data to extract features. Trost et al. recently achieved wrist activity
classification in youth with 5-class accuracy results similar to those presented here (88.4
± 3.0% at wrist). In that study, a smaller number of activities were merged into five broad
categories. LOSO cross-validation was not conducted; however, the authors applied a
modified version of n-fold cross-validation to prevent data of the subject being tested from
being included in the training set (29). Two previous studies that did not use LOSO cross
validation show recognition accuracies larger than ours. In Hikihara et al. the classification
was a 2-class problem, discriminating data between locomotion and non-locomotion using
raw accelerometer readings from the waist, obtaining a 99.1% accuracy (13). Nam and Park
report 98.4% accuracy using sensors including the accelerometer and barometer, but in this
case the target population was significantly younger (1.3 to 2.4 yo), resulting in a very
different activity vocabulary (19).

The dataset and Matlab code used in this study will be available to interested researchers
(https://mhealth.ccs.neu.edu/data/).

Conclusions
In this work, good overall classification results were obtained using previously defined
methods and features. However, given the different nature of activities that are much more
frequent in youth than in adults (such as video-gaming or sports), the accuracy of the
classifier may take advantage of the introduction of a different set of dedicated features.
When validating methods with a LOSO approach starting from a merged A+Y dataset, it
was confirmed that the accuracy can be improved by using data from both groups, even if
the tested subject was not included in the training set. At the same time, the algorithm
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preserves all the advantages of the previously proposed method in term of real-time
implementation suitability and high comfort for the user given the single sensor wrist or
ankle-worn proposed configuration.

In conclusion, as large surveillance studies include young participants in their evaluations
with wrist worn monitors, it will be possible to use previously available methods, provided
that data from young participants are included in the definition of classification rules.
Important accuracy improvement would be obtained if the feature set also includes
quantities that can describe the impulsive and fragmented nature of many youth activities.
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Table 2

Activities in the adult and youth datasets, grouped into four broad classes.

Ambulation Cycling Other activities Sedentary

Adult dataset (A) • walking. carrying-load
• stairs: inside and down
• stairs: inside and up
• treadmill: 3 mph 0% incline
• treadmill: 3 mph 6% incline
• treadmill: 3 mph 9% incline
• treadmill: 2 mph 0% incline
• treadmill: 4 mph 0% incline
• walking, natural

• 70rpm. 50W. 0.7kg
• cycling outdoor level
• cycling outdoor
uphill
• cycling outdoor
downhill

• painting: roller
• painting: brush
• sweeping with broom

• sitting, internet search
• sitting, computer typing
• sitting: writing
• sitting: reading
• sorting files / paperwork
• lying: on back
• lying on left side
• lying on-right-side
• sitting: legs straight
• standing still

Youth dataset (Y) • walking, natural
• treadmill walking: 2
• treadmill walking: 3 - 4 mph
• treadmill running:4.5 - 5 mph

• 70 rpm 50 watts
• Outdoor cycling

• basketball:-dribbling
• basketball:-passing
• basketball:-shortshots
• clean room
• soccer:-dribbling
• soccer:-passing
• tennis-ball:-fielding
• tennis-ball:-throwing-catching

• sitting: reading
• play-computer-game
• play-on-gameboy
• watch TV
• wii:-boxing
• wii:-tennis
• lying: on back
• sitting: legs straight
• standing still
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Table 3

Feature sets considered in this work (shaded are new relative to prior work (16)). Features indicated with
check marks are those retained by the automatic selection strategy.

Features Selected for wrist classifier Selected for ankle classifier

Mean value ✓ ✓

Standard deviation ✓ ✗

Maximum ✓ ✓

Minimum ✗ ✗

P1 = Power of the first dominant frequency ✗ ✗

P2 = Power of the second dominant frequency ✗ ✗

F1 = First dominant frequency ✓ ✓

F2 = Second dominant frequency ✗ ✗

PT = Total power ✗ ✗

P1 / PT = Ratio of power at dominant frequency and total power ✓ ✗

Power of the first dominant freq in the band 0.6-2.6 Hz ✗ ✗

First dominant frequency in the band 0.6-2.6 Hz ✗ ✗

Ratio between F1 of the current and previous windows ✗ ✓

Range = maximum – minimum ✓ ✗

(Power at frequencies higher than 3.5 Hz) / PT ✓ ✗

fragmentation, samples ✓ ✓

fragmentation, number of activations ✓ ✓

fragmentation, mean activation interval duration ✗ ✗

fragmentation, activation interval duration variability ✗ ✓
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Table 4

Wrist and ankle classification confusion matrices for the four target activity groups using the SVM classifier
with LOSO cross-validation. Correct classifications are in bold.

Part A, experiment 1, original feature set, Youth dataset

Wrist Ambulation Cycling Other activities Sedentary

Ambulation 646 (75.6%) 26 (3%) 52 (6.1%) 131 (15.3%)

Cycling 26 (2.1%) 1067 (87.5%) 36 (3%) 90 (7.4%)

Actual label Other activities 38 (3%) 38 (3%) 1038 (81.7%) 157 (12.4%)

Sedentary 16 (0.6%) 44 (1.8%) 170 (6.8%) 2277 (90.8%)

Overall accuracy 85.9 %

Ankle Ambulation Cycling Other activities Sedentary

Ambulation 752 (88%) 41 (4.8%) 60 (7%) 2 (0.2%)

Cycling 24 (2%) 1074 (88%) 89 (7.3%) 33 (2.7%)

Actual label Other activities 50 (3.9%) 58 (4.6%) 1025 (80.5%) 140 (11%)

Sedentary 1 (0%) 16 (0.6%) 94 (3.7%) 2433 (95.6%)

Overall accuracy 89.7 %

Part B, experiment 2, new feature set, Youth dataset

Wrist Ambulation Cycling Other activities Sedentary

Ambulation 674 (78.8%) 39 (4.6%) 60 (7%) 82 (9.6%)

Cycling 14 (1.1%) 1104 (90.6%) 21 (1.7%) 80 (6.6%)

Actual label Other activities 36 (2.8%) 11 (0.9%) 1149 (90.4%) 75 (5.9%)

Sedentary 8 (0.3%) 35 (1.4%) 63 (2.5%) 2401 (95.8%)

Overall accuracy 91.0 %

Ankle Ambulation Cycling Other activities Sedentary

Ambulation 818 (95.7%) 10 (1.2%) 27 (3.2%) 0 (0%)

Cycling 7 (0.6%) 1101 (90.2%) 79 (6.5%) 33 (2.7%)

Actual label Other activities 35 (2.7%) 19 (1.5%) 1084 (85.2%) 135 (10.6%)

Sedentary 0 (0%) 7 (0.3%) 99 (3.9%) 2438 (95.8%)

Overall accuracy 92.4 %

Part C, experiment 4, new feature set, Youth +Adult dataset

Wrist Ambulation Cycling Other activities Sedentary

Ambulation 2842 (86.4%) 149 (4.5%) 170 (5.2%) 127 (3.9%)

Cycling 92 (4.1%) 1741 (77.3%) 36 (1.6%) 383 (17%)

Actual label Other activities 85 (3.8%) 37 (1.7%) 1943 (87.4%) 159 (7.1%)

Sedentary 15 (0.3%) 153 (2.8%) 124 (2.3%) 5197 (94.7%)

Overall accuracy 88.5 %
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Part A, experiment 1, original feature set, Youth dataset

Wrist Ambulation Cycling Other activities Sedentary

Ankle Ambulation Cycling Other activities Sedentary

Ambulation 3278 (97.9%) 31 (0.9%) 37 (1.1%) 2 (0.1%)

Cycling 24 (1.1%) 2026 (89.7%) 111 (4.9%) 97 (4.3%)

Actual label Other activities 54 (2.4%) 29 (1.3%) 1766 (78.3%) 407 (18%)

Sedentary 0 (0%) 16 (0.3%) 315 (5.7%) 5211 (94%)

Overall accuracy 91.6%
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Table 5

Wrist and ankle classification details showing category recognition for each specific activity type. LOSO
validation results using the new feature set on the youth dataset (experiment 2). Correct classifications are in
bold.

Wrist, Ambulation Cycling Other Activities Sedentary

Ambulation Activities

    walking, natural 71 (71%) 3 (3%) 26 (26%) 0 (0%)

    treadmill walking: 2.0 249 (66%) 34 (9%) 21 (5.6%) 73 (19.4%)

    treadmill walking: 3.0 – 4.0 mph 9 (56.3%) 0 (0%) 1 (6.3%) 6 (37.5%)

    treadmill running: 4.5 – 5.0 mph 344 (95.3%) 2 (0.6%) 12 (3.3%) 3 (0.8%)

Cycling Activities

    Exercise bike 70 rpm 50 watts 2 (3.2%) 0 (0%) 5 (7.9%) 56 (88.9%)

    Outdoor cycling 12 (1%) 1104 (95.5%) 16 (1.4%) 24 (2.1%)

Other activities

    basketball:-dribbling 0 (0%) 0 (0%) 122 (97.6%) 3 (2.4%)

    basketball:-passing 0 (0%) 0 (0%) 100 (90.9%) 10 (9.1%)

    basketball:-shortshots 0 (0%) 0 (0%) 126 (97.7%) 3 (2.3%)

    clean room 13 (3.3%) 5 (1.3%) 357 (90.4%) 20 (5.1%)

    soccer:-dribbling 21 (17.8%) 3 (2.5%) 86 (72.9%) 8 (6.8%)

    soccer:-passing 1 (0.8%) 3 (2.3%) 117 (90.7%) 8 (6.2%)

    tennis-ball:-fielding 1 (0.7%) 0 (0%) 117 (86.7%) 17 (12.6%)

    tennis-ball:-throwing-catching 0 (0%) 0 (0%) 124 (95.4%) 6 (4.6%)

Sedentary activities

    sitting: reading 1 (0.4%) 3 (1.1%) 0 (0%) 275 (98.6%)

    play-computer-game 0 (0%) 5 (1.5%) 0 (0%) 321 (98.5%)

    play-on-gameboy 0 (0%) 0 (0%) 0 (0%) 320 (100%)

    watch TV 1 (5.9%) 0 (0%) 0 (0%) 16 (94.1%)

    wii:-boxing 3 (0.7%) 10 (2.5%) 41 (10%) 354 (86.8%)

    wii:-tennis 1 (0.2%) 4 (0.9%) 21 (4.9%) 403 (93.9%)

    lying: on back 0 (0%) 3 (1.2%) 0 (0%) 242 (98.8%)

    sitting: legs straight 1 (0.4%) 7 (2.9%) 0 (0%) 233 (96.7%)

    standing still 1 (0.4%) 3 (1.2%) 1 (0.4%) 237 (97.9%)

Ankle, Ambulation Cycling Other Activities Sedentary

Ambulation Activities

    walking, natural 86 (86%) 0 (0%) 14 (14%) 0 (0%)

    treadmill walking: 2.0 367 (97.3%) 7 (1.9%) 3 (0.8%) 0 (0%)

    treadmill walking: 3.0 – 4.0 mph 14 (87.5%) 2 (12.5%) 0 (0%) 0 (0%)

    treadmill running: 4.5 – 5.0 mph 350 (97%) 1 (0.3%) 10 (2.8%) 0 (0%)

Cycling Activities

    Exercise bike 70 rpm 50 watts 0 (0%) 63 (100%) 0 (0%) 0 (0%)
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Ankle, Ambulation Cycling Other Activities Sedentary

    Outdoor cycling 7 (0.6%) 1038 (89.7%) 79 (6.8%) 33 (2.9%)

Other activities

    basketball:-dribbling 26 (20.8%) 2 (1.6%) 97 (77.6%) 0 (0%)

    basketball:-passing 0 (0%) 2 (1.8%) 81 (73.6%) 27 (24.5%)

    basketball:-shortshots 0 (0%) 2 (1.6%) 119 (92.2%) 8 (6.2%)

    clean room 0 (0%) 11 (2.8%) 323 (81.2%) 64 (16.1%)

    soccer:-dribbling 9 (7.6%) 0 (0%) 106 (89.8%) 3 (2.5%)

    soccer:-passing 0 (0%) 0 (0%) 129 (100%) 0 (0%)

    tennis-ball:-fielding 0 (0%) 1 (0.7%) 127 (94.1%) 7 (5.2%)

    tennis-ball:-throwing-catching 0 (0%) 1 (0.8%) 102 (79.1%) 26 (20.2%)

Sedentary activities

    sitting: reading 0 (0%) 2 (0.7%) 1 (0.3%) 291 (99%)

    play-computer-game 0 (0%) 1 (0.3%) 4 (1.2%) 323 (98.5%)

    play-on-gameboy 0 (0%) 0 (0%) 3 (0.9%) 334 (99.1%)

    watch TV 0 (0%) 0 (0%) 0 (0%) 17 (100%)

    wii:-boxing 0 (0%) 2 (0.5%) 42 (10.2%) 366 (89.3%)

    wii:-tennis 0 (0%) 2 (0.5%) 46 (10.7%) 381 (88.8%)

    lying: on back 0 (0%) 0 (0%) 0 (0%) 250 (100%)

    sitting: legs straight 0 (0%) 0 (0%) 2 (0.8%) 238 (99.2%)

    standing still 0 (0%) 0 (0%) 1 (0.4%) 238 (99.6%)
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Table 6

Accuracy results are summarized for all the experiments conducted (Single group LOSO cross validation tests
(CV), crossed test and LOSO CV on the merged dataset)

Classification accuracy (%)

Exp ID Wrist activity recognition Ambulation Cycling Other Sedentary Overall

Mannini et al. (16) LOSO CV on A (original feature set) 87.2 62.9 81.6 91.2 84.7

Exp 1 LOSO CV on Y (original feature set) 75.6 87.5 81.7 90.8 85.9

Exp 2 LOSO CV on A (new feature set) 88.9 66.4 83.5 93.6 87.0

LOSO CV on Y (new feature set) 78.8 90.6 90.4 95.8 91.0

Exp 3 Crossed tests:

    Training on A testing on Y (original feature set) 75.1 29.0 44.1 92.2 58.8

    Training on A testing on Y (new feature set) 66.6 59.2 44.1 94.0 69.8

    Training on Y testing on A (original feature set) 76.3 8.5 47.9 93.7 71.7

    Training on Y testing on A (new feature set) 79.4 12.4 30.4 93.0 71.8

Exp 4 LOSO CV on A+Y 86.4 77.3 87.4 94.7 88.5

        (Youth data contribution only) 77.9 92.5 90.0 94.6 90.7

(Adult data contribution only) 89.4 59.4 83.8 94.8 86.7

Exp ID Ankle activity recognition Ambulation Cycling Other Sedentary Overall

(16) LOSO CV on A (original feature set) 99.5 93.9 81.6 96.0 95.0

Exp 1 LOSO CV on Y (original feature set) 88.0 88.0 80.5 95.6 89.7

Exp 2 LOSO CV on A (new feature set) 99.0 91.6 81.1 97.1 94.8

LOSO CV on Y (new feature set) 95.7 90.2 85.2 95.8 92.4

Exp 3 Crossed tests:

    Training on A testing on Y (original feature set) 92.7 76.2 37.4 92.7 79.3

    Training on A testing on Y (new feature set) 93.7 85.5 47.2 93.8 84.7

    Training on Y testing on A (original feature set) 89.4 91.3 26.0 94.9 87.4

    Training on Y testing on A (new feature set) 94.1 89.9 28.2 85.2 84.9

Exp 4 LOSO CV on A+Y 97.9 89.7 78.3 94.0 91.6

        (Youth data contribution) 96.8 89.3 88.3 88..8 90.0

        (Adult data contribution) 98.3 90.3 65.3 98.5 92.9
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