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Width of Points in the Streaming Model
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We show how to compute the width of a dynamic set of low-dimensional points in the streaming model. In
particular, we assume the stream contains both insertions of points and deletions of points to a set S, and
the goal is to compute the width of the set S, namely the minimal distance between two parallel hyperplanes
sandwiching the pointset S.

Our algorithm (1+ε)-approximates the width of the set S using space polylogarithmic in the size of S and
the aspect ratio of S. This is the first such algorithm that supports both insertions and deletions of points to
the set S: previous algorithms for approximating the width of a pointset only supported additions [Agarwal
et al. 2004; Chan 2006], or a sliding window [Chan and Sadjad 2006].

This solves an open question from the “2009 Kanpur list” of Open Problems in Data Streams, Property
Testing, and Related Topics [Indyk et al. 2011].
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1. INTRODUCTION
Two common geometric optimization problems are computing the diameter and the
width of a set of points in the plane. These are just two out of an area of problems
aimed at describing a set of points. A typical question may be: given a set of points in
2D, is it well-approximated by a line? Questions of this type — called shape fitting —
are fundamental in computational geometry, computer vision, data mining, etc. While
it would be difficult to summarize all previous work on the subject, we refer the reader
to [Agarwal et al. 2005] who give a very good overview of the problem.

In the quest for very efficient algorithms for these problems, researchers devel-
oped efficient (1 + ε)-approximation algorithms [Agarwal et al. 2004; Chan 2006] in
the streaming model [Muthukrishnan 2005]. These algorithms process the stream of
points — one point at a time in a sequential manner — while using only low (poly-
logarithmic) space. Streaming algorithms for these (and other related) problems are
based on the coreset technique, which has been very powerful for obtaining such algo-
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rithms for a range of geometric optimization problems (see the survey [Agarwal et al.
2005] and references therein, also [Chan 2006; Chan and Sadjad 2006]). In particular,
the best algorithm for insertion-only width problem achieves space and amortized in-
sertion time of (1/ε)O(d) in dimension d [Chan 2006]. In the related model of “sliding
window”, where one has to report the width of most recent N points in the stream, the
best algorithm achieves space and update time of (1/ε)O(d) log ∆ for points with integer
coordinates bounded by ∆ [Chan and Sadjad 2006].

It seems challenging though to adapt the coreset technique to the more general case
of a dynamic set: when the stream contains both insertions of points to the set and
deletions from the set (corresponding to the “strict turnstile model” in the streaming-
speak). Without respect to the streaming model, there are “dynamic coresets” that
yield a data structure that achieve, for example, (1/ε)O(d) logO(1) n update time for the
dynamic width problem [Chan 2009]. However such data structures use Ω(n) space,
which is much more than the desired logarithmic-in-n space in the streaming model.
[Indyk 2004] gave some of the first low-space dynamic algorithms for certain geomet-
ric problems. Presently we have efficient dynamic algorithms for some geometric prob-
lems, including the diameter [Feigenbaum et al. 2004; Indyk 2004], or the clustering
and optimization problems [Frahling et al. 2005; Frahling and Sohler 2005]. Yet the
dynamic width problem has so far remained open (see Question 17 in the open list [In-
dyk et al. 2011]).

Here we resolve this question by giving an efficient (1 + ε)-approximation algorithm
for computing the width in the dynamic streaming model.

1.1. Techniques
Our algorithm relies on a certain “polynomial method”. We show that it is possible
to construct a (deterministic) oracle that, given a fixed line in the plane, returns an
approximation to the maximal distance from the line to the points in set. Once we
have such an oracle, it is possible to just enumerate over all possible lines and thus find
the (approximately) best sandwiching lines. While such an enumeration would have a
large runtime, we also show a randomized algorithm achieving a better runtime. The
latter algorithm stores additional information about the pointset to reduce the number
of candidate lines to a small (polylogarithmic) number only.

We now explain why such an oracle would be possible. The main idea is that the
value of the width may be approximated by a polynomial (in the coordinates of the
pointset and the parameters of the line), which has a sufficiently low degree. In partic-
ular, consider the width Wu,t of a point set {pi}i in the direction u (perpendicular to the
sandwiching lines), where t is the inner product of u and a(ny) point on the mid-line
(i.e., half-way between the two sandwiching lines):

Wu,t = 2 max
i
|upi − t|.

Note that this may be also written as Wu,t = 2 maxi |uxxi +uyyi− t|, where u = (ux, uy)
and pi = (xi, yi).

Now, the polynomial arises from the following standard relation between norms
(see, e.g., [Indyk et al. 2004]): one can approximate the max-norm ‖z‖∞ = maxi |zi|
by a sufficiently high p-norm ‖z‖p = (

∑
i |zi|p)1/p. In our setting, zi is the distance

from the mid-line to a point i, namely zi = |uxxi + uyyi − t|. In fact, the approxima-
tion is up to a factor of n1/p for n points (terms), and hence taking p ≈ O(ε−1 log n)
yields a (1 + ε)-approximation. Writing out the resulting approximation Wu,t ≈
2 (
∑
i(uxxi + uyyi − t)p)1/p, we observe that a small number of moments (up to degree

p) of the pointset coordinates will suffice for evaluating this resulting polynomial for
given sandwiching lines, specified by u, t.
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Given the oracle, one can enumerate over all possible u, t and compute the best sand-
wiching lines as the width is equal to W = minu mintWu,t. Next, we explain how we
reduce the runtime to (ε−1 log n)O(1).

We start by showing how to efficiently minimize over t, for a given u. In particular, it
suffices to sample a random point p from the (dynamic) set and compute t′ = up. Then
t′ is a O(W ) additive approximation to the best t for the given u, and hence it suffices
to try O(1/ε) discretizations of t (assuming a “guess” W ). To sample a point p from the
dynamic set, we use the algorithm of [Frahling et al. 2005].

The final ingredient is the algorithm for choosing the best direction u. Again, we re-
duce the number of candidate (near-)best u to a polylogarithmic number only. We dis-
tinguish two cases, depending on whether the instance pointset is fat, i.e., the width is
not much smaller than the diameter. If the instance is fat, a small absolute error in the
guess u, say, ε degrees, is sufficient to get an approximation for the width. Otherwise,
if the instance is not fat, this is not sufficient. In this case, the direction minimizing
width is approximately orthogonal to the direction maximizing width. Thus we can get
a good guess for u by finding far points and using the direction orthogonal to the line
connecting those points as a guess. This procedure only produces a reasonably good
(but not 1 + ε) approximation to the best direction u, but one can tweak this guess with
steps of proportionate magnitude to get a 1 + ε approximation.

1.2. Preliminaries
We use the notation [n] = {1, 2, . . . , n}. We now define the parameter width formally.

Definition 1.1. Define the directional width of S with respect to a unit vector (direc-
tion) u, denoted Wu(S), to be

Wu(S) = max
a∈S

a · u−min
b∈S

b · u

The width of a set S, denoted by W (S) is defined as the minimum directional width
of S over all unit vectors u:

W (S) = min
||u||=1

Wu(S) = min
||u||=1

(max
a∈S

a · u−min
b∈S

b · u)

Note that the formula for computing the directional width Wu(S) follows from the
Hesse normal form. Also notice that even though the width and the directional width
are defined over an infinite number of choices, it suffices to consider only directions
orthogonal to lines going through two points in S and slabs centered around lines
going through the mid-point of segments connecting two points in S. We will use this
fact in the subsequent reasoning in the paper.

We assume that our pointset S comes from a discrete grid {1, 2, . . . ,∆}d, and n is an
upper bound on the size of S. We note that most of the paper describes the solution
of the d = 2 case, though we address the d > 2 case in the last chapter of the paper.
We will use the following lemma (which is similar to, say, the concommitant result of
[Varadarajan and Xiao 2012, Lemma 5.1]):

LEMMA 1.2. For any d, the minimum possible nonzero width of the point set S
coming from [∆]d is at least ((∆ + 3)

√
d+ 1)−d−1.

PROOF. Consider the optimal direction u and the two corresponding parallel hy-
perplanes forming the minimum width. There must exist d + 1 points in S that are
on the two hyperplanes and form a simplex. Otherwise, a smaller width can be ob-
tained by rotating the hyperplanes. Assume a1, . . . , at are on the first hyperplane
and at+1, . . . , ad+1 are on the second hyperplane. Then a1 · u = · · · = at · u = C,
at+1 · u − W (S) = · · · = ad+1 · u − W (S) = C for some C. We can assume C is a

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 A. Andoni and H. L. Nguy˜̂en

real number satisfying 1 ≤ |C| ≤ ∆ + 3 because if |C| < 1, we can consider a new set
of points of the same width obtained from S by translating in every coordinate by 3
and get a new value of C different from the old value by at least 3‖u‖1 ≥ 3. If we treat
u and W (S) as unknowns, and ai and C as knowns, then we have a system of d + 1
unknowns and d + 1 equations. By Cramer’s rule, W (S) is the ratio of determinants
of two (d + 1) × (d + 1) matrices with entries of absolute values at most ∆ + 3. The
determinant in the numerator is C times the determinant of an integer matrix so if it
is nonzero, its absolute value is at least 1. For any (d+1)×(d+1) matrix A with entries
of absolute values at most ∆ + 3 and singular values λ1, λ2, . . . , λd+1, by the AM-GM
inequality applied to λ2

1, . . . , λ
2
d+1, we have

|det(A)| =
d+1∏
i=1

λi ≤

(
d+1∑
i=1

λ2
i /(d+ 1)

)(d+1)/2

= (‖A‖2F /(d+1))(d+1)/2 ≤ ((∆+3)2(d+1))(d+1)/2

Therefore, if W (S) > 0 then W (S) ≥ ((∆ + 3)
√
d+ 1)−d−1.

2. THE ALGORITHMS
We present a low-space algorithm to process a stream of insertions and deletions of
points to a dynamic set S ⊂ [∆]2, and report an approximation of the width of the set
S. Our algorithm has two parts:

— Maintain an oracle that, for a given vector u, can approximate the directional width
Wu(S).

— Approximate the width W (S) by making a small number of queries u’s for the above
oracle.

The final algorithm is randomized. However, one can also obtain a deterministic
algorithm for the problem in any small dimension using a powerful theorem for solving
systems of polynomial equations by [Basu et al. 1996].

THEOREM 2.1 (MAIN). Fix ε > 0 and n,∆ > 1. There exists a streaming algorithm
that supports insertions and deletions of points to a set S ⊂ [∆]2, |S| ≤ n, and outputs
the width of the set S, up to 1 + ε approximation, with 2/3 success probability. The
algorithm uses poly(log n∆, 1/ε) space, and has poly(log n∆, 1/ε) update and evaluation
time.

2.1. An oracle for approximating the directional width
First we show how to approximate the directional width by maintaining a linear sketch
of the point set. Let integer k = Θ

(
logn

log(1+ε)

)
and k is even. The sketch simply consists

of counters Ti,j =
∑

(x,y)∈S x
iyj for all i, j ∈ {0, . . . , k}. Note that there are a total of

O(k2) = O(ε−2 log2 n) such counters, and it is trivial to maintain them in the strict
turnstile streaming model.

LEMMA 2.2. For any set S ∈ [∆]2, given the counters Ti,j , i, j ∈ {0, . . . k}, and any
unit vector u = (ux, uy), one can compute a 1 + ε approximation of the directional width
Wu(S) in time O(∆2 · poly(log n, log ∆, 1/ε)). The algorithm is deterministic.

PROOF. As mentioned above, the sketch consists of all counters Ti,j , for i, j ∈
{0, . . . k}. The estimation algorithm outputs the following quantity, using the counters
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Ti,j ’s and u:

w = 2 min
tx,ty∈{−2∆,...,2∆}

 k∑
i=0

k−i∑
j=0

uixu
j
yTi,j

(
k

i

)
·
(
k − i
j

)
(−txux/2− tyuy/2)k−i−j

)1/k

We now prove that the above is a a good approximation to the directional width.
First we note that the directional width Wu(S) is equal to:

Wu = 2 min
tx,ty∈{−2∆,...,2∆}

max
(x,y)∈S

(ux(x− tx/2) + uy(y − ty/2)).

Indeed, if (tx/2, ty/2) is a point on the mid-line between the two sandwiching lines of
S that are perpendicular to u, then (ux(x − tx/2) + uy(y − ty/2)) is the (directional)
distance to point (x, y) from the midline.

We now approximate the max-norm in the above definition of Wu by a k-norm for
some even k. Consider the approximation

ŵ = 2 min
tx,ty∈{−2∆,...,2∆}

 ∑
(x,y)∈S

(ux(x− tx/2) + uy(y − ty/2))k

1/k

.

Since Wu has n terms, standard internorm relation implies that Wu(S) ≤ ŵ ≤
n1/kWu(S) ≤ (1 + ε)Wu(S). Finally, one can observe that the expansion of ŵ gives pre-
cisely the same expression as w, i.e., w = ŵ is also a (1 + ε)-approximation to Wu.

We now show how to obtain a faster randomized algorithm. First of all, we augment
the sketch by a sample point a from S at the end of the stream, by implementing
the dynamic sampling data structure of [Frahling et al. 2005], in poly(log n∆) space.
We modify the width-estimation algorithm as follows. Intuitively, there are two steps.
First, we obtain a 2 approximation of the directional width by observing that, for any
point a ∈ S, the minimum slab containing S and whose central line goes through a is
a 2 approximation of the directional width. Second, we achieve a 1 + ε approximation
to the true width by trying all shifts of the central line, at steps proportional to the
estimation obtained in the first step.

LEMMA 2.3. There is a randomized algorithm using space poly(log n∆, 1/ε) that
computes a 1+ε approximation of the directional widthWu(S) for any u = (ux, uy) given
at the end of the stream, with 2/3 success probability. The runtime of the estimation
algorithm is also poly(log n∆, 1/ε).

PROOF. Our sketch maintains counters Ti,j , as well as a sample point a from S,
using dynamic sampling algorithm of [Frahling et al. 2005]. Each component uses
space poly(log n∆, 1/ε). The estimation algorithm computes estimates w and w′ defined
below. w′ is the output of the estimation algorithm.

Let

w =

 k∑
i=0

k−i∑
j=0

uixu
j
yTi,j

(
k

i

)(
k − i
j

)
(−a · u)k−i−j

1/k

We now show w is a 2 + 2ε approximation of Wu(S). Notice that w =(∑
b∈S(b · u− a · u)k

)1/k. Thus,
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Wu(S)/2 ≤max
b∈S
|b · u− a · u|

≤w
≤(1 + ε) max

b∈S
|b · u− a · u|

≤(1 + ε)Wu(S)

Next, define w′ = 2 mint∈{−6/ε,...,6/ε} f(t), where

f(t) =

 k∑
i=0

k−i∑
j=0

uixu
j
yTi,j

(
k

i

)
·
(
k − i
j

)
(tεw/3− a · u)k−i−j

)1/k

We now argue that w′ is a 1+ε approximation to Wu(S). Let z? = arg minz maxb∈S |z−
b · u|. Note that maxb∈S |z? − b · u| = Wu(S)/2. Therefore, |z? − a · u| ≤ Wu(S)/2. Thus,
there exists t? ∈ {−6/ε, . . . , 6/ε} such that |z? + t?εw/3− a · u| ≤ εw/6 ≤ εWu/3. First it
is clear that

w′ ≥ 2 min
t

max
b∈S
|b · u+ tεw/3− a · u| ≥Wu(S)

Next we have

w′ ≤ 2f(t?)

= 2

(∑
b∈S

(b · u+ t?εw/3− a · u)k

)1/k

≤ 2

(∑
b∈S

(|b · u− z?|+ |z? + t?εw/3− a · u|)k
)1/k

≤ 2(n((1/2 + ε/3)Wu(S))k)1/k

≤ (1 + ε)Wu(S).

2.2. Width estimation algorithm
First we notice that we can already obtain a deterministic algorithm by running O(∆2)
directional width queries (Lemma 2.2) for all possible directions in [∆]2. In this section,
we show a more efficient algorithm at the expense of randomization. The algorithm
from this section calls the oracle from Lemma 2.3 for onlyO(1/ε2) potential unit vectors
u.

The algorithm uses the following subroutine that allows for sampling “sufficiently
far” points in a specified direction. Intuitively, the algorithm first tries to guess the
right scale of the width in the given direction. Given this guess, it divides the space into
slabs of width equal to an ε fraction of the guess. Now, if the guess is correct, any points
from the first slab and the last slab intersecting S can serve as a pair of approximately
farthest points in the given direction. See Fig. 1 for a pictorial description of the lemma.

LEMMA 2.4. Fix a unit vector u at the beginning of a stream of updates to a set S.
There is a randomized algorithm using poly(log n, log ∆, 1/ε) space that, at the end of
the stream, finds two points a, b ∈ S such that u · (a − b) ≥ (1 − O(ε))Wu(S) with 0.9
success probability.

PROOF. The algorithm is as follows.
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b
a

1 2 3 . . . 1/ε+ 1 1/ε+ 2

u

Fig. 1. Sampling “sufficiently far” points. At the right scale, the point set should occupy 1/ε consecutive
slabs (it is not necessarily the case that there is a point in every slab in that range) and any sample points
from the first and last slabs are far from each other in the direction of u.

— Let m = dlog1+ε(∆ + 3)e. For each c ∈ {0, (1 + ε)−3m−2/ε, (1 + ε)−3m−2/ε+1, . . . , (1 +

ε)m+1/ε} (except for 0, the other values form a sequence growing exponentially in
1 + ε), perform the following steps.
— Divide the space in the direction of u into slabs such that the ith slab consists of

points p with u · p ∈ [iεc, (i+ 1)εc].
— For each j ∈ {0, . . . , 3/ε−1}, let Sj ⊂ S be the set of points in the slabs whose index
i = j (mod 3/ε). For each j, take a sample point from Sj (if it is not empty) using
dynamic sampling of [Frahling et al. 2005].

— In the set T of sample points, choose a = arg maxp∈T p · u and b = arg minp∈T p · u.

Now we prove the correctness of the algorithm. By lemma 1.2, the width is at least
((∆ + 3)

√
3)−3 and at most 2∆. Thus, there exists some value of c considered by the

algorithm such that Wu(S) ≤ c ≤ (1 + ε)Wu(S). Let a1 be the sample point from the
set of slabs containing a∗ = arg maxp∈S p · u, and b1 be the sample point from the set
of slabs containing b∗ = arg minp∈S p · u. Because a1 and a∗ are in the same set of
slabs, they are either in the same slab or in slabs of indices at least 3/ε apart. Since
Wu(S) ≤ c ≤ (1+ε)Wu(S), we have |(a1−a∗)·u| ≤ c < (3/ε−1)εc. Thus, a1 and a∗ must be
in the same slab. Similarly, b1 and b∗ must be in the same slab. We have |(a1−a∗)·u| ≤ εc
and |(b1 − b∗) · u| ≤ εc so |(a1 − b1) · u| ≥ (1−O(ε))|(a∗ − b∗) · u| = (1−O(ε))Wu(S).

(1) Let ~i,~j be the standard orthonormal basis of the plane. For each l ∈
{1, 2, . . . , 4π

ε }, let ul = cos(lε/2)~i + sin(lε/2)~j. Find two points al, bl ∈ S, such
that Wul

(S) ≤ (1 + ε)(al − bl) · ul, using Lemma 2.4.
(2) Let v⊥l = al−bl

||al−bl|| and vl be the unit vector orthogonal to al − bl. Compute the
approximation Wl of Wvl(S), using Lemma 2.3.

(3) For each integer t ∈ {−3/ε, . . . , 3/ε}, let yl,t = t·εWl

3||al−bl|| , yl,6/ε+1+t = yl,t,

xl,t =
√

1− y2
l,t, xl,6/ε+1+t = −xl,t and for each integer t ∈ {−3/ε, . . . , 9/ε + 1},

let xl,12/ε+2+t = yl,t, yl,12/ε+2+t = xl,t. For any l, t such that xl,t and yl,t are reals,
let vl,t = xl,tvl + yl,tv

⊥
l . Compute an approximation of the directional width with

respect to vl,t for all l ∈ {1, 2, . . . , 4π
ε }, t ∈ {−3/ε, . . . 21/ε + 3}, using Lemma 2.3.

Return the minimum directional width over all l, t as an estimate for W (S).

Fig. 2. The randomized algorithm for approximating width. It uses the algorithm for approximating the
directional width from the previous section in a black-box fashion.
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Next, we show the full algorithm described in Fig. 2 yields a good approximation to
the width W (S). The idea of algorithm is as follows. First it tries to guess the direction
minimizing the width. If the instance is fat i.e. the width is not too small compared
with the diameter, a small absolute error in the guess, say, ε degrees, is sufficient to get
an approximation for the width. If the width is much smaller than the diameter, this is
not sufficient. However, in this case, the direction minimizing width is approximately
orthogonal to the direction maximizing width so we can get a good guess by finding far
points and using the direction orthogonal to the line connecting those points as a guess.
Next, once the algorithm has a reasonable approximation of the width, it can tweak
the current guess with steps of proportionate magnitude to get a 1 + ε approximation.
See Fig. 3 for a pictorial description of the lemma.

v⊥

v∗

uk

bk

ak
v⊥k

vk

Fig. 3. Visualization of the algorithm for approximating width. vk is a crude approximation for the optimal
direction v∗. A finer approximation is obtained by searching around vk.

LEMMA 2.5. The minimum directional width over the directions vl,t is a 1 + O(ε)
approximation of W (S), with 2/3 success probability.

PROOF. Let v∗ = arg min||v||=1Wv(S). Let v⊥ be the unit vector orthogonal to v∗. By
the definition of ul’s, there exists some k such that the angle between uk and v⊥ is at
most ε/2. Let γ and δ be numbers satisfying uk = γv∗+δv⊥. Notice that |γ| = |uk ·v∗| ≤ ε
and |δ| = |uk · v⊥| ≥ 1 − ε2. Let α and β be numbers satisfying v⊥k = αv∗ + βv⊥ (hence
vk = βv∗ − αv⊥). Notice that |α|, |β| ≤ 1 and |(ak − bk) · v∗| = |α| · ||ak − bk|| ≤W (S).

First we show Wk is a 2 + O(ε) approximation of the width W (S). Consider two
arbitrary points p, q ∈ S. Because (ak − bk) · uk is a 1 ± ε approximation of Wuk

(S), we
have |(p− q) · uk| ≤ (1 + ε)|(ak − bk) · uk|. Substituting uk and ak − bk, we get

|γ(p− q) · v∗ + δ(p− q) · v⊥| ≤ (1 + ε)||ak − bk|| · |αγ + βδ|

Thus,

|δ(p− q) · v⊥| ≤ |γ(p− q) · v∗|+ (1 + ε)||ak − bk|| · |αγ + βδ|
We can now bound the distance between p and q in the direction vk.
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|(p− q) · vk| =|(p− q) · (βv∗ − αv⊥)|
≤|β(p− q) · v∗|+ |α(p− q) · v⊥|
≤|β(p− q) · v∗|+ |αδ | (|γ(p− q) · v∗|+ (1 + ε)||ak − bk|| · |αγ + βδ|) (1)

≤|β|W (S) + |αδ |
(
|γ|W (S) + (1 + ε)

W (S)

|α|

)
≤(2 +O(ε))W (S)

Thus, the directional width with respect to vk = βv∗−αv⊥ is at most (2+O(ε))W (S).
Now we show that one of the directions vl,t gives a much finer 1+O(ε) approximation

to the width. We consider two cases.

— |α| · ||ak − bk|| ≤ εW (S). Intuitively, this is the case where the width is roughly the
diameter i.e. the point set is ”fat”. Substituting the aforementioned condition into
(1), we get that for any p, q ∈ S,

|(p− q) · vk| ≤ |β(p− q) · v∗|+ |αδ |
(
|γ|W (S) + (1 + ε) εW (S)

|α| · |αγ + βδ|
)

≤ (1 +O(ε))W (S).

Thus, Wk is already a 1 +O(ε) approximation of W (S).
— |α| · ||ak − bk|| > εW (S). Intuitively, this is the case where the width is much smaller

than the diameter. By the definition of yl,t’s, there exists some h such that |yk,h−α| ≤
εW (S)
||ak−bk|| and |xk,h − β| ≤ εW (S)

||ak−bk|| . Consider two arbitrary points p, q ∈ S. We have

|(p− q) · vk,h| ≤ |(βxk,h + αyk,h)(p− q) · v∗|+ |(βyk,h − αxk,h)(p− q) · v⊥|
≤ |(p− q) · v∗|+ |(βyk,h − αxk,h)(p− q) · v⊥|
≤W (S) + |(βyk,h − xk,hyk,h)(p− q) · v⊥|+ |(xk,hyk,h − xk,hα)(p− q) · v⊥|

≤W (S) +
2εW (S)

||ak − bk||
· 1
δ (|γ(p− q) · v∗|+ (1 + ε)||ak − bk|| · |αγ + βδ|)

≤W (S) + | 2αγδ | ·W (S) +
2ε(1 + ε)W (S)

|δ|
≤ (1 +O(ε))W (S).

Thus, the minimum directional width with respect to vl,t’s is a 1+O(ε) approximation
of W (S). Finally, if we perform the above algorithm with a ε replaced by ε/c for suitable
large constant c, we obtain the desired 1 + ε approximation.

In conclusion, our main Theorem 2.1 follows from Lemmas 2.3, 2.4, 2.5. We note that
although the lemmas give constant probability of success, one can amplify the success
rate in a standard way and hence apply them the desired number of times.

2.3. Deterministic algorithm for any dimension
In this section, we consider the generalization where points come from a d-dimensional
grid [∆]d. Our algorithm is also deterministic, albeit relies on the polynomial system
solver of [Basu et al. 1996].

THEOREM 2.6. There is a deterministic algorithm running in time
(log ∆)(d logn

ε )O(d) that computes a 1 + ε approximation of the width W (S).
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PROOF. We use a generalization of the sketch used in Lemma 2.2. Again use k =
Θ( logn

log(1+ε) ) and k is even. The sketch consists of counters

T{ci}di=1
=
∑
a∈S

d∏
i=1

(ai)
ci

for all ci ∈ {0, . . . , k}. For t, u ∈ Rd, define

f(t, u) =
∑
a∈S

(u · (a− t))k

Similar to the proof of Lemma 2.2, since there are at most n points in S, we have
Wu(S) ≤ mint f(t, u)1/k ≤ n1/kWu(S) ≤ (1 + ε)Wu(S). Furthermore, f(t, u) can be com-
puted from the counters T{ci}.

To distinguish between the case where the width is at least D and the case where
the width is at most D/(1 + ε), we have to determine if the system of two polynomial
equations: ||u||22 = 1 and f(t, u) ≤ Dk has any root. This system has degree O(d log n/ε)
and O(d) variables. By the algorithm of [Basu et al. 1996], this task can be done in
(d log n/ε)O(d) time. By binary search and Lemma 1.2, the algorithm for approximating
width runs in time (log ∆)(d log n/ε)O(d).
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