Time lower bounds for nonadaptive turnstile streaming algorithms

Kasper Green Larsen* Jelani Nelson' Huy L. Nguyéni
July 8, 2014

Abstract

We say a turnstile streaming algorithm is non-adaptive if, during updates, the memory cells
written and read depend only on the index being updated and random coins tossed at the
beginning of the stream (and not on the memory contents of the algorithm). Memory cells read
during queries may be decided upon adaptively. All known turnstile streaming algorithms in
the literature are non-adaptive.

We prove the first non-trivial update time lower bounds for both randomized and determin-
istic turnstile streaming algorithms, which hold when the algorithms are non-adaptive. While
there has been abundant success in proving space lower bounds, there have been no non-trivial
update time lower bounds in the turnstile model. Our lower bounds hold against classically
studied problems such as heavy hitters, point query, entropy estimation, and moment estima-
tion. In some cases of deterministic algorithms, our lower bounds nearly match known upper
bounds.

1 Introduction

In the turnstile streaming model of computation [Mut05] there is some vector v € R™ initialized to
0, and we must provide a data structure that processes coordinate-wise updates to v. An update
of the form (i, A) causes the change v; - v; + A, where A € {—M, ..., M}. Occasionally our data
structure must answer queries for some function of v. In many applications n is extremely large,
and thus it is desirable to provide a data structure with space consumption much less than n, e.g.
polylogarithmic in n. For example, n may be the number of valid IP addresses (n = 2!28 in IPv6),
and v; may be the number of packets sent from source IP address ¢ on a particular link. A query
may then ask for the support size of v (the “distinct elements” problem [FMS85]), which was used
for example to estimate the spread of the Code Red worm after filtering the packet stream based on
the worm’s signature [EVF06,[Moo01]. Another query may be the ¢3 norm of v [AMS99|, which was
used by AT&T as part of a packet monitoring system [KSZCO03,TZ12]. In some examples there is
more than one possible query to be asked; in “point query” problems a query is some i € [n] and the
data structure must output v; up to some additive error, e.g. €ljv||, [CCFC04, CMO05]. Such point
query data structures are used as subroutines in the heavy hitters problem, where informally the
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goal is to output all ¢ such that v; is “large”. If the data structure is linearly composable (meaning
that data structures for v and v’ can be combined to form a data structure for v — v’), heavy
hitters data structures can be used for example to detect trending topics in search engine query
streams |Gooal|Goobl|CCFC04]. In fact the point query structure [CCFCO04] has been implemented
in the log analysis language Sawzall at Google [PDGQO5].

Coupled with the great success in providing small-space data structures for various turnstile
streaming problems has been a great amount of progress in proving space lower bounds, i.e. theorems
which state that any data structure for some particular turnstile streaming problem must use
space (in bits) above some lower bound. For example, tight or nearly tight space lower bounds
are known for the distinct elements problem [AMS99), Woo004,|Woo07,lJKS08]|, £, norm estimation
[AMS99, BY JKS04, |(CKS03, [Woo04, KNW10a, |Gro09, |Jay09, JW 13 Woo07, JKSO0§|, heavy hitters
[JST11], entropy estimation |[CCM10,KNW10a|, and several other problems.

While there has been much previous work on understanding the space required for solving
various streaming problems, much less progress has been made regarding update time complexity:
the time it takes to process an update in the stream. This is despite strong motivation, since in
several applications the data stream may be updated at an extremely fast rate; for example, [TZ12]
reported in their application for fo-norm estimation that their system was constrained to spend only
130 nanoseconds per packet to keep up with high network speeds. Of course, without any space
constraint fast update time is trivial: store v in memory explicitly and spend constant time to add A
to v; after each update. Thus an interesting data structural issues arises: how can we simultaneously
achieve small space and low update time for turnstile streaming data structures? Surprisingly, very
little is understood about this question for any turnstile streaming problem. For some problems
we have very fast algorithms (e.g. constant update time for distinct elements [KNW10b|, and
also for ¢y estimation [TZ12]), whereas for others we do not (e.g. super-constant time for £,
estimation for p # 2 [KNPW11] and heavy hitters problems [CCFC04, CMO05]), and we do not
have proofs precluding the possibility that a fast algorithm exists. Indeed, the only previous
update time lower bounds for streaming problems are those of Clifford and Jalsenius [CJ11] and
Clifford, Jalsenius, and Sach [CJS13| for streaming multiplication and streaming Hamming distance
computation, respectively. These problems are significantly harder than e.g. ¢, estimation (the
lower bounds proved apply even for super-linear space usage) and there appears to be no way
of extending their approach to obtain lower bounds for the problems above. Also, the time lower
bounds in [CJ11}|CJS13] are for the sum of the update and query time, whereas in many applications
such as network traffic monitoring, updates are much more frequent and thus it is more acceptable
for queries to be slower. Lastly but importantly, the problems considered in [CJ11,|CJS13] were
not in the turnstile model.

A natural model for upper bounds in the streaming literature (and also for data structures in
general), is the word RAM model: basic arithmetic operations on machine words of w bits each cost
one unit of time. In the data structure literature, one of the strongest lower bounds that can be
proven is in the cell probe model [MP69,Fre78, Yao81|, where one assumes that the data structure is
broken up into S words each of size w bits and cost is only incurred when the user reads a memory
cell from the data structure (S is the space). Lower bounds proven in this model hold against
any algorithm operating in the word RAM model. In recent years there has been much success
in proving data structure lower bounds in the cell probe model (see for example |Pat08| Larl3])
using techniques from communication complexity and information theory. Can these techniques be
imported to obtain time lower bounds for clasically studied turnstile streaming problems?



Question 1. Can we use techniques from cell probe lower bound proofs to lower bound the update
time complexity for classical streaming problems?

Indeed the lower bounds for streaming multiplication and Hamming distance computation were
proved using the information transfer technique of Patragcu and Demaine [PDO06|, but as men-
tioned, this approach appears useless against the turnstile streaming problems above.

There are a couple of obvious problems to attack for Question For example, for many
streaming problems one can move from, say, 2/3 success probability to 1 — § success probability by
running ©(log(1/0)) instantiations of the algorithm in parallel then outputting the median answer.
This is possible whenever the output of the algorithm is numerical, such as for example distinct
elements, moment estimation, entropy estimation, point query, or several other problems. Note that
doing so increases both the space and update time complexity of the resulting streaming algorithm
by a O(log(1/d)) factor. Is this necessary? It was shown that the blowup in space is necessary for
several problems by Jayram and Woodruff [JW13], but absolutely nothing is known about whether
the blowup in time is required. Thus, any non-trivial lower bound in terms of 4 would be novel.

Another problem to try for Question [I| is the heavy hitters problem. Consider the ¢; heavy
hitters problem: a vector v receives turnstile updates, and during a query we must report all 7 such
that |v;| > ellv]|1. Our list is allowed to contain some false positives, but not “too false”, in the
sense that any 7 output should at least satisfy |v;| > (¢/2)|v||1. Algorithms known for this problem
using non-trivially small space, both randomized [CMO05] and deterministic [GMO7,NNW14], require

Q(logn) update time. Can we prove a matching lower bound?

Our Results. In this paper we present the first update time lower bounds for a range of classical
turnstile streaming problems. The lower bounds apply to a restricted class of randomized streaming
algorithms that we refer to as randomized non-adaptive algorithms. We say that a randomized
streaming algorithm is non-adaptive if:

e Before processing any elements of the stream, the algorithm may toss some random coins.

e The memory words read/written to (henceforth jointly referred to as probed) on any update
operation (i, A) are completely determined from ¢ and the initially tossed random coins.

Thus a non-adaptive algorithm may not decide which memory words to probe based on the current
contents of the memory words. Note that in this model of non-adaptivity, the random coins can
encode e.g. a hash function chosen (independent of the stream) from a desirable family of hash
functions and the update algorithm can choose what to probe based on the hash function. It
is only the input-specific contents of the probed words that the algorithm may not use to decide
which words to probe. To the best of our knowledge, all the known algorithms for classical turnstile
streaming problems are indeed non-adaptive, in particular linear sketches (i.e. maintaining ITv in
memory for some r x n matrix II, » < n). We further remark that our lower bounds only require
the update procedure to be non-adaptive and still apply if adaptivity is used to answer queries.
For the remainder of the paper, for ease of presentation we assume that the update increments
are (possibly negative) integers bounded by some M < poly(n) in magnitude, and that the number
of updates in the stream is also at most poly(n). We further assume the trans-dichotomous model
[FWO3,[FW94], i.e. that the machine word size w is ©(logn) bits. This is a natural assumption,
since typically the streaming literature assumes that basic arithmetic operations on a value |v;],



the index of the current position in the stream, or an index 7 into v can be performed in constant
time.

We prove lower bounds for the following types of queries in turnstile streams. For each problem
listed, the query function takes no input (other than point query, which takes an input i € [n]).
Each query below is accompanied by a description of what the data structure should output.

e /1 heavy hitter: return an index ¢ such that |v;| > ||v||ec — ||v|l1/2.

Point query: given i at query time, returns v; & [|v]|1/2.

£,/¢, norm estimation (1< ¢ < p < o) returns o], = [[u],/2

Entropy estimation. returns a 2-approximation of the entropy of the distribution which
assigns probability v;/||v||1 to i for each i € [n].

The lower bounds we prove for non-adaptive streaming algorithms are as follows (n_o(l) <6<
1/2 — Q(1) is the failure probability of a query):

e Any randomized non-adaptive streaming algorithm for point query, ¢,/¢, estimation with
1 < g <p < oo, and entropy estimation, must have worst case update time

log(1/6
b of s\
V1ognlog(eS/t,)
We also show that any deterministic non-adaptive streaming algorithm for the same problems
must have worst case update time ¢, = Q(logn/log(eS/t.)).

e Any randomized non-adaptive streaming algorithm for ¢; heavy hitters, must have worst case

update time
o log(1/4) log(1/9)
w log(eS/ty)’ \/1og ty - log(eS/ty,) '

Any deterministic non-adaptive streaming algorithm for the same problem must have worst

. 1
case update time t, = {2 <%>'

Remark 2. The deterministic bound above for point query matches two previous upper bounds
for point query [NNW14], which use error-correcting codes to yield deterministic point query data
structures. Specifically, for space S = O(logn), our lower bound implies ¢, = Q(logn), matching
an upper bound based on random codes. For space O((logn/loglogn)?), our lower bound implies
t, = Q(logn/loglogn), matching an upper bound based on Reed-Solomon codes. Similarly, the
deterministic bound above for deterministic ¢2/¢; norm estimation matches the previous upper
bound for this problem [NNW14], showing that for the optimal space S = ©(logn), the fastest
query time of non-adaptive algorithms is ¢, = ©(logn).

These deterministic upper bounds are also in the cell probe model. In particular, the point
query data structure based on random codes and the norm estimation data structure require access
to combinatorial objects that are shown to exist via the probabilistic method, but for which we
do not have explicit constructions. The point query structure based on Reed-Solomon codes can
be implemented in the word RAM model with ¢, = O(logn) using fast multipoint evaluation of



polynomials. This is because performing an update, in addition to accessing O(logn/loglogn)
memory cells of the data structure, requires evaluating a degree-O(logn/loglogn) polynomial on
O(logn/loglogn) points to determine which memory cells to access (see [NNW14] for details).

Remark 3. The best known randomized upper bounds are S = ¢, = O(log(1/d)) for point
query [CMO5] and ¢,/¢, estimation for p < 2 [TZ12,KNPW11]. For entropy estimation the best
upper bound has S = t, = O((logn)?log(1/6)) [HNOOS]. For ¢; heavy hitters the best known
upper bound (in terms of S and ¢,) has S = t,, = O(log(n/§)).

In addition to being the first non-trivial turnstile update time lower bounds, we also managed
to show that the update time has to increase polylogarithmically in 1/§ as the error probability §
decreases, which is achieved with the typical reduction using log(1/6) independent copies.

Our lower bounds can also be viewed in another light. If one is to obtain constant update time
algorithms for the above problems, then one has to design algorithms that are adaptive. Since all
known upper bounds have non-adaptive updates, this would require a completely new strategy to
designing turnstile streaming algorithms.

Technique. As suggested by Question [l we prove our lower bounds using recent ideas in cell
probe lower bound proofs. More specifically, we use ideas from the technique now formally known
as cell sampling |GMO3,[PTW10,Lar12]. This technique derives lower bounds based on one key
observation: if a data structure/streaming algorithm probes ¢ memory words on an update, then
there is a set C' of ¢ memory words such that at least m/S" updates probe only memory words
in C, where m is the number of distinct updates in the problem (for data structure lower bound
proofs, we typically consider queries rather than updates, and we obtain tighter lower bounds by
forcing C' to have near-linear size).

We use this observation in combination with the standard one-way communication games typ-
ically used to prove streaming space lower bounds. In these games, Alice receives updates to a
streaming problem and Bob receives a query. Alice runs her updates through a streaming algo-
rithm for the corresponding streaming problem and sends the resulting Sw bit memory footprint
to Bob. Bob then answers his query using the memory footprint received from Alice. By proving
communication lower bounds for any communication protocol solving the one-way communication
game, one obtains space lower bounds for the corresponding streaming problem.

At a high level, we use the cell sampling idea in combination with the one-way communication
game as follows: if Alice’s non-adaptive streaming algorithm happens to “hash” her updates such
that they all probe the same ¢ memory cells, then she only needs to send Bob the contents of those ¢
cells. If t < S, this gives a communication saving over the standard reduction above. We formalize
this as a general sketch-compression theorem, allowing us to compress the memory footprint of
any non-adaptive streaming algorithm at the cost of increasing the error probability. This general
theorem has the advantage of allowing us to re-use previous space lower bounds that have been
proved using the standard reduction to one-way communication games, this time however obtaining
lower bounds on the update time. We demonstrate these ideas in Section [2| and also give a more
formal definition of the classic one-way communication game.



2 Sketch Compression

In the following, we present a general theorem for compressing non-adaptive sketches. Consider a
streaming problem in which we are to maintain an ng-dimensional vector v. Let U be the update
domain, where each element of U is a pair (i, A) € [n] x {—M,..., M} for some M = poly(n). We
interpret an update (i, A) € U as having the effect v[i] < v[i]+A. Initially all entries of v are 0. We
also define the query domain Q = {qi,...,q }, where each ¢; € @ is a function ¢; : Z™ — R. With
one-way communication games in mind, we define the input to a streaming problem as consisting of
two parts. More specifically, the pre-domain Dy, C U® consists of sequences of a update operations.
The post-domain Dpoe € {U U Q}b consists of sequences of b updates and/or queries. Finally, the
input domain D C Dpre X Dpost denotes the possible pairings of a initial updates followed by b
intermixed queries and updates. The set D defines a streaming problem Pp.

We say that a randomized streaming algorithm for a problem Pp uses S words of space if the
maximum number of memory words used when processing any d € D is .S. Here a memory word
consists of w = ©(logn) bits. The worst case update time ¢, is the maximum number of memory
words read/written to upon processing an update operation for any d € D. The error probability
0 is defined as the maximum probability over all d € D and queries ¢; € d N Q, of returning an
incorrect results on query ¢; after the updates preceding it in the sequence d.

A streaming problem Pp of the above form naturally defines a one-way communication game:
on an input (di,d2) € D, Alice receives d; (the first a updates) and Bob receives da (the last b
updates and/or queries). Alice may now send a message to Bob based on her input and Bob must
answer all queries in his input as if streaming through the concatenated sequence of operations
di o ds. The error probability of a communication protocol is defined as the maximum over all
d € D and ¢; € {d N Q}, of returning an incorrect results on ¢; when receiving d as input.

Traditionally, the following reduction is used:

Theorem 4. If there is a randomized streaming algorithm for Pp with space usage S and error
probability 0, then there is a public coin protocol for the corresponding one-way communication
game in which Alice sends Sw bits to Bob and the error probability is 6.

Proof. Alice simply runs the streaming algorithm on her input and sends the memory image to
Bob. Bob continues the streaming algorithm and outputs the answers. |

Recall from Section [If that a randomized streaming algorithm is non-adaptive if:
e Before processing any elements of the stream, the algorithm may toss some random coins.

e The memory words read/written to (henceforth jointly referred to as probed) on any update
operation (i, A) is completely determined from ¢ and the initially tossed random coins.

We show that for non-adaptive algorithms, one can efficiently reduce the communication by in-
creasing the error probability. We require some additional properties of the problem however: we
say that a streaming problem Pp is permutation invariant if:

e For any permutation 7 : [n] — [n], it holds that m(g;(v)) = (7(¢)(w(v))) for all ¢; € Q. Here
m(v) is the n-dimensional vector with value v[i] in entry =[i], m(¢;) maps all indices (if any)
in the definition of the query ¢; wrt. 7 and 7(g;(v)) maps all indices in the answer g;(v) (if
any) wrt. .



Observe that point query, £, estimation, entropy estimation and heavy hitters all are permutation
invariant problems. For point query, we have 7(g;(v)) = ¢;(v) since answers contain no indices,
but 7(g;) might differ from g¢; since queries are defined from indices. For ¢, estimation and entropy
estimation, we simply have 7(¢;(v)) = ¢;(v) and m(g;) = ¢ since neither queries or answers involve
indices. For heavy hitters we have m(¢;) = ¢; (there is only one query), but we might have that
7(qi(v)) # gi(v) since the answer to the one query is an index. We now have the following:

Theorem 5. If there is a randomized non-adaptive streaming algorithm for a permutation invariant
problem Pp with a < \/n, having space usage S, error probability 6, and worst case update time
tu < (1/2)(logn/log(eS/ty)), then there is a private coin protocol for the corresponding one-way
communication game in which Alice sends at most aloge + t,alog(eS/t,) + loga+ loglog(en/a) +
2t,w + 1 bits to Bob and the error probability is 2¢* - (eS/t,)4.

Before giving the proof, we present the two main ideas. First observe that once the random
choices of a non-adaptive streaming algorithm have been made, there must be a large collection
of indices I C [n] for which all updates (i, A), where i € I, probe the same small set of memory
words (there are at most (ti ) distinct sets of ¢, words to probe). If all of Alice’s updates probed
only the same set of t,, words, then Alice could simply send those words to Bob and we would have
reduced the communication to t,w bits. To handle the case where Alice’s updates probe different
sets of words, we make use of the permutation invariant property. More specifically, we show that
Alice and Bob can agree on a collection of k& permutations of the input indices, such that one of
these permutes all of Alice’s updates to a new set of indices that probe the same t,, memory cells.
Alice can then send this permutation to Bob and they can both alter their input based on the
permutation. Therefore Alice and Bob can solve the communication game with log k + t,w bits
of communication. The permutation of indices unfortunately increases the error probability as we
shall see below. With these ideas in mind, we now give the proof of Theorem

Proof (of Theorem . Alice and Bob will permute their communication problem and use the
randomized non-adaptive streaming algorithm on this transformed instance to obtain an efficient
protocol for the original problem.

By Yao’s principle, we have that the randomized complexity of a private coin one-way com-
munication game with error probability ¢ equals the complexity of the best deterministic algo-
rithm with error probability ¢ over the worst distribution. Hence we show that for any distribu-
tion g on D C Dyre X Dpost, there exists a deterministic one-way communication protocol with
tualog S +loga + loglog n + t,w bits of communication and error probability 2e% - (eS/t,)%5. We
let 11 denote the marginal distribution over D). and uo the marginal distribution over Dp,s;.

Let p = (1, p2) be a distribution on D. Define from this a new distribution v = (71, 72): pick
a uniform random permutation 7 of [n]. Now draw an input d from g and permutate all indices
of updates (and queries if defined for such) using the permutation 7. The resulting sequence
m(d) is given to Alice and Bob as before, which defines the new distribution v = (y1,72). We
use A ~ py to denote the r.v. providing Alice’s input drawn from distribution p; and 7(A) ~ 7
denotes the random variable providing Alice’s transformed input. We define B ~ p9 and w(B) ~ 72
symmetrically.

Recall we want to solve the one-way communication game on A and B. To do this, first observe
that by fixing the random coins, the randomized non-adaptive streaming algorithm gives a non-
adaptive and deterministic streaming algorithm that has error probability § and space usage S



under distribution 7. Before starting the communication protocol on A and B, Alice and Bob both
examine the algorithm (it is known to both of them). Since it is non-adaptive and deterministic,
they can find a set of ¢, memory words C, such that at least

>/n>a

n n
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indices i € [n] satisfy that any update (i, A) probes only memory words in C. We let I¢ denote
the set of all such indices (again, I¢ is known to both Alice and Bob). Alice and Bob also agree
on a set of permutations {p1, ..., pr} (we determine a value for k later), such that for any set of at
most a indices, I’, that can occur in Alice’s updates, there is at least one permutation p; where:

e pi(j) eI forall jeI

e Let I(A) denote the (random) indices of the updates in A. Then the probability that the
non-adaptive and deterministic protocol errs on input p;(A), conditioned on I(A) = I, is at
most 2e? - (eS/t, )% - e 1(A)=r where £7(4)—ps is the error probability of the deterministic and
non-adaptive streaming algorithm on distribution ~, conditioned on I(A) =1I'.

Again, this set of permutations is known to both players. The protocol is now simple: upon
receiving A, Alice finds the index i of a permutation p; satisfying the above for the indices I(A).
She then sends this index to Bob and runs the deterministic and non-adaptive algorithm on p;(A).
She forwards the addresses and contents of all memory words in C' as well. This costs a total
of logk + |C|(w + log S(n)) < logk + 2t,(n)w bits. Note that no words outside C' are updated
during Alice’s updates. Bob now remaps his input B according to p; and runs the deterministic and
non-adaptive streaming algorithm on his updates and queries. Observe that for each query ¢; € B,
Bob will get the answer p;(g;)(p;(v)) if the algorithm does not err, where v is the “non-permuted”
vector after processing all of Alice’s updates A and all updates in B preceeding the query ¢;. For
each such answer, he computes p; *(pi(g;)(pi(v))). Since Pp is permutation invariant, we have
p; Y (pi(g;)(pi(v)) = p; H(pi(g;(v))) = g;(v). The final error probability (over u) is hence at most
2% - (eS/ty)"* - & since Ep e(ay—p = 0.

We only need a bound on k. For this, fix one set I’ of at most a indices in [n] and consider
drawing k uniform random permutations. For each such random permutation I', note that I'(I") is
distributed as I(mw(A)) conditioned on I(A) = I’. Hence, the expected error probability when using
the map I' (expectation over choice of I') is precisely & 1(A)=r- We also have

By Markov’s inequality and a union bound, we have both I'(I") C I® and error probability at most
2¢% - (eS/ty)"™* - er(ay=p with probability at least e~ - (eS/t,) "*/2 d:efp over the choice of I'.
Thus if we pick k = (1/p)alog(en/a) > (1/p) - log (7) and use that 1 + = < e® for all real z, then
setting the probability that all permutations I' chosen fail to have the desired failure probability
and T'(I') C I¢ is at most (1 — p)* < 1/(7). Thus by a union bound over all () size-a subsets of
indices, we can conclude that the desired set of permutations exists. |




3 Implications

In this section, we present the (almost) immediate implications of Theorem All these result
follow by re-using the one-way communication game lower bounds originally proved to obtain space
lower bounds of heavy hitters. Consider the generic protocol in Figure [1} For different streaming
problems, we will show the different ways to implement the function Check(t, j) using the updates
and queries of the problems, where Check(t, j) is supposed to be able to tell if ¢ is equal to i; with
failure probability §. We show first that if this is the case, we obtain a lower bound on the update
time t,. The lower bounds then follow from the implementation of Check(t, j).

1. Alice chooses a indices 41, ..., i, randomly without replacement in [n].

2: Alice performs updates v[ij] < v[i;] + C7 for j = 1,...,a, where C is a large constant.
3: Alice sends her memory state to Bob.

4: for j from a down to 1 do > Bob decodes ig, ..., from Alice’s message.
5: for all ¢t € [n] do

6 if Check(t,j) then

7 Bob declares i; = t.

8 Bob performs the update v[i;] + v[i;] — C7

9 end if

10: end for

11: end for

Figure 1: The communication protocol for Alice to send a random numbers in [n] to Bob.

Theorem 6. Any randomized non-adaptive streaming algorithm that can implement all the Check(t, )
calls using no more than k < n°W queries with failure probability n= 1) < § < 1/2 — Q(1) each,

must have worst case update time t, = ) <min{ loéo(i;;f RV 1}?? 1/(6S/t )})
u og klog(eS/ty

Proof. We first prove the lower bound for the case where % is the smaller of the two

terms. This is the case at least from n~®1) < § < k3. Assume for contradiction that such a
randomized non-adaptive algorithm exists with ¢, = o(y/log(1/6)/log(eS/t,)). Set a = cot,, for a
sufficiently large constant cy. We invoke Theorem [5| to conclude that Alice can send her memory
state to Bob using aloge + t,alog(eS/t,) + loga + loglog(en/a) + 2t,w + 1 bits while increasing
the failure probability of Bob’s k queries to

2e® . (eS/tu)tua5 < (eS/tu)coti(sl_o(l) < 51—0(1) < k_2

each. By a union bound, the answer to all Bob’s queries are correct with probability at least
1—1/k > 9/10, so Bob can recover i1,...,i, with probability 9/10. By Fano’s inequality, Alice
must send Bob at least Q(H (i1, ...,i,)) = Q(alog(n/a)) > cocit, logn bits for some constant ¢
(where ¢; does not depend on ¢p). But the size of her message was

aloge + tyalog(eS/t,) +loga + loglog(en/a) + 2t w + 1 < cot? log(eS/t,) + 2t,w + o(t, logn).

We assumed t, = O(Jlog(l/é)/log(eS/tu)) = o(Vlogn/log(eS/tu)) and thus the above is
bounded by 2t,w + o(t,logn). Setting ¢y high enough, we get that 2w > (cocqlogn)/2 and
thus we have reached a contradiction.



For the case k=3 < § < 1/2 — Q(1), observe that we can decrease the failure probability to k=3
by increasing the space, update time and query time by a factor a = O(log; /6 k): simply run «
independent copies of the streaming algorithm and return the majority answer on a query. Hence
the lower bound becomes

log k
log(eSa/(tua)) | log1/d
[ Yleeea/ta) ) _ g :
a Vlog klog(eS/t,)

Theorem 7. Any deterministic non-adaptive streaming algorithm that can implement Check(t, j)
must have worst case update time
logn
ty=Q —————~ .
b <log(65/tu))

Proof. The proof is similar to that of Theorem[6] Assume for contradiction there is a deterministic
non-adaptive streaming algorithm with ¢, = o(logn/log(eS/t,)). Choose a = cot,, for sufficiently
large constant ¢y. By Theorem [5], Alice can send her memory state to Bob using

aloge + tyalog(eS/t,) + loga + loglog(en/a) + 2t,w + 1 < cot? log(eS/ty) + 2tyw + o(t, logn)
< 2t,w + o(ty, logn)

bits and Bob can still answer every query correctly. Since Bob can recover i1, ...,14,, Alice must
send Bob at least H (i1, ...,i,) = Q(alog(n/a)) = cocit, logn for some constant ¢; (independent
of ¢p). Setting ¢y large enough gives 2w > (cgcy logn)/2, thus deriving the contradiction. |

Corollary 8. Any randomized non-adaptive streaming algorithm for point query, £, estimation
with 1 < p < 2, and entropy estimation with failure probability n= 1) < § < 1/2 — Q(1) must have

worst case update time
oo test/e) )
Vlognlog(eS/t,)

Any deterministic non-adaptive streaming algorithm for the same problems must have worst case
update time t, = Q(logn/log(eS/ty,)).

Proof. We just need to show implementations of Check(t,j) that use nPW queries in total
and apply Theorem [0] to get the stated bound for randomized algorithms. The stated bound for
deterministic algorithms follows from applying Theorem [7| instead.

3.1 Applications to specific problems

Point query. We can implement each Check(t,j) by simply querying for the value of v[t] and
check if the returned value is at least C7/3. By the guarantee of the algorithm, if it does not fail,
the returned value is within a factor 3 from the right value and thus, C'heck(t, j) can correctly tell
if t = v;. Thus we run a total of na = n9W) queries to implement all Check(t, j)’s.

10



¢,/l, estimation. We can implement Check(t, j) as follows.
o v[t] + v[t] — CY
e Check if ||v|, is at most C7/3
o v[t] « v[t] + CY

By the guarantee of the algorithm, if it does not fail, the estimated ¢, /¢, norm is at most 3C7~! <
C7/3 if t = i; and it is greater than C7/3 if t # i;. Thus, Check(t,j) can correctly tell if ¢t = v;.
Again we used n°M) queries in total.

Entropy estimation. We can implement Check(t, j) as follows.
o v[t] + v[t] — CY
e Check if the entropy is at most 1/3
o v[t] « v[t] + CJ

Consider the case the algorithm does not fail. First, if ¢ = 4; then the entropy is at most

I i 1 j j+1
(C—-1) C’J+ — _;  Cl(C-1) crt - C
; Ci+l — ¢ Z C]—H g2C7 " + Citl — O log Ci(C—-1)
logC ci(c-1) «ci-cC log C
< . - — < 1/1
SO Y amize oo =0 <Y

On the other hand, if ¢ # 4; then after the first operation, |[v|; < % < 3C7 so the entropy
is at least the binary entropy of whether the index 4; is picked, which is greater than H(1/3) > 0.9.
Thus, by the guarantee of the algorithm, Check(t, j) correctly tells if ¢ = v; using n°® queries. M

Corollary 9. Any randomized non-adaptive streaming algorithm for {1 heavy hitters with failure
probability n= M) < § < 1/2 — Q(1) must have worst case update time

oo (i [ 1088 os(1/3) |
log(eS/tu)” \/logt, -log(eS/t,)
Any deterministic non-adaptive streaming algorithm for the same problems must have worst case

. _ log
update time t, = §2 (m)

Proof. We use a slightly different decoding procedure for Bob. Instead of running Check(t, j) all
indices ¢t € [n], in iteration j, Bob can simply query for the heavy hitter to find i;. Note that in

iteration j, we have ||v||; = ngl =¢ < 207 = 2v[ij] so if the algorithm is correct, Bob will find the

index ;. We have thus implemented all the Check(t, j)’s using only a queries. Recall from the
proof of Theorem [f] that a = O(ty,). [
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