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Abstract
A wide variety of problems in machine learning,
including exemplar clustering, document sum-
marization, and sensor placement, can be cast
as constrained submodular maximization prob-
lems. Unfortunately, the resulting submodular
optimization problems are often too large to be
solved on a single machine. We consider a dis-
tributed, greedy algorithm that combines previ-
ous approaches with randomization. The result
is an algorithm that is embarrassingly parallel
and achieves provable, constant factor, worst-
case approximation guarantees. In our exper-
iments, we demonstrate its efficiency in large
problems with different kinds of constraints with
objective values always close to what is achiev-
able in the centralized setting.

1. Introduction
A set function f : 2V → R≥0 on a ground set V is sub-
modular if f(A) + f(B) ≥ f(A∩B) + f(A∪B) for any
two sets A,B ⊆ V . Several problems of interest can be
modeled as maximizing a submodular objective function
subject to certain constraints:

max f(A) subject to A ∈ C,

where C ⊆ 2V is the family of feasible solutions. In-
deed, the general meta-problem of optimizing a constrained
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submodular function captures a wide variety of problems
in machine learning applications, including exemplar clus-
tering, document summarization, sensor placement, image
segmentation, maximum entropy sampling, and feature se-
lection.

At the same time, in many of these applications, the amount
of data that is collected is quite large and it is growing at
a very fast pace. For example, the wide deployment of
sensors has led to the collection of large amounts of mea-
surements of the physical world. Similarly, medical data
and human activity data are being captured and stored at an
ever increasing rate and level of detail. This data is often
high-dimensional and complex, and it needs to be stored
and processed in a distributed fashion.

In these settings, it is apparent that the classical algorith-
mic approaches are no longer suitable and new algorithmic
insights are needed in order to cope with these challenges.
The algorithmic challenges stem from the following com-
peting demands imposed by huge datasets: the computa-
tions need to process the data that is distributed across sev-
eral machines using a minimal amount of communication
and synchronization across the machines, and at the same
time deliver solutions that are competitive with the central-
ized solution on the entire dataset.

The main question driving the current work is whether
these competing goals can be reconciled. More precisely,
can we deliver very good approximate solutions with min-
imal communication overhead? Perhaps surprisingly, the
answer is yes; there is a very simple distributed greedy
algorithm that is embarrassingly parallel and it achieves

1The authors are listed alphabetically.
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provable, constant factor, worst-case approximation guar-
antees. Our algorithm can be easily implemented in a par-
allel model of computation such as MapReduce (Dean &
Ghemawat, 2004).

1.1. Background and Related Work

In the MapReduce model, there are m independent ma-
chines. Each of the machines has a limited amount of mem-
ory available. In our setting, we assume that the data is
much larger than any single machine’s memory and so must
be distributed across all of the machines. At a high level, a
MapReduce computation proceeds in several rounds. In a
given round, the data is shuffled among the machines. After
the data is distributed, each of the machines performs some
computation on the data that is available to it. The output
of these computations is either returned as the final result
or becomes the input to the next MapReduce round. We
emphasize that the machines can only communicate and
exchange data during the shuffle phase.

In order to put our contributions in context, we briefly dis-
cuss two distributed greedy algorithms that achieve com-
plementary trade-offs in terms of approximation guarantees
and communication overhead.

Mirzasoleiman et al. (2013) give a distributed algorithm,
called GREEDI, for maximizing a monotone submod-
ular function subject to a cardinality constraint. The
GREEDI algorithm partitions the data arbitrarily on the
machines and on each machine it then runs the classi-
cal GREEDY algorithm to select a feasible subset of the
items assigned to that machine. The GREEDY solutions
on these machines are then placed on a single machine
and the GREEDY algorithm is used once more to select
the final solution from amongst the resulting set of items.
The GREEDI algorithm is very simple and embarrassingly
parallel, but its worst-case approximation guarantee2 is
1/Θ(min{

√
k,m}), where m is the number of machines

and k is the cardinality constraint. Mirzasoleiman et al.
show that the GREEDI algorithm achieves very good ap-
proximations for datasets with geometric structure, and
performs well in practice for a wide variety of experiments.

Kumar et al. (2013) give distributed algorithms for maxi-
mizing a monotone submodular function subject to a cardi-
nality or more generally, a matroid constraint. Their algo-
rithm combines the Threshold Greedy algorithm of (Gupta
et al., 2010) with a sample and prune strategy. In each
round, the algorithm samples a small subset of the elements

2Mirzasoleiman et al. (2013) give a family of instances where
the approximation achieved is only 1/min {k,m} if the solution
picked on each of the machines is the optimal solution for the set
of items on the machine. These instances are not hard for the
GREEDI algorithm. We show in the supplement that the GREEDI

algorithm achieves a 1/Θ(min{
√
k,m}) approximation.

that fit on a single machine and runs the Threshold Greedy
algorithm on the sample in order to obtain a feasible so-
lution. This solution is then used to prune some of the
elements in the dataset and reduce the size of the ground
set. The SAMPLE&PRUNE algorithms achieve constant
factor approximation guarantees but they incur a higher
communication overhead. For a cardinality constraint, the
number of rounds is a constant but for more general con-
straints such as a matroid constraint, the number of rounds
is Θ(log ∆), where ∆ is the maximum increase in the ob-
jective due to a single element. The maximum increase ∆
can be much larger than even the number of elements in
the entire dataset, which makes the approach infeasible for
massive datasets.

On the negative side, Indyk et al. (2014) studied coreset
approaches to develop distributed algorithms for finding
representative and yet diverse subsets in large collections.
While succeeding in several measures, they also showed
that their approach provably does not work for k-coverage,
which is a special case of submodular maximization with a
cardinality constraint.

1.2. Our Contribution

In this paper, we analyze a variant of the distributed
GREEDI algorithm of (Mirzasoleiman et al., 2013), and
show that one can achieve both the communication effi-
ciency of the GREEDI algorithm and a provable, constant
factor approximation guarantee. Our analysis relies cru-
cially on the following modification: instead of partitioning
the dataset arbitrarily onto the machines, we perform this
initial partitioning randomly. Our analysis thus provides
some theoretical justification for the very good empirical
performance of the GREEDI algorithm that was established
previously in the extensive experiments of (Mirzasoleiman
et al., 2013). Moreover, we show that this approach deliv-
ers provably good performance in much wider settings than
originally envisioned.

The GREEDI algorithm was originally studied in the spe-
cial case of monotone submodular maximization under
a cardinality constraint. In contrast, our analysis holds
for any hereditary constraint. Specifically, we show that
the randomized variant of the GREEDI algorithm achieves
a constant factor approximation for any hereditary, con-
strained problem for which the classical (centralized)
GREEDY algorithm achieves a constant factor approxima-
tion. This is the case not only for cardinality constraints,
but also for matroid constraints, knapsack constraints, and
p-system constraints (Jenkyns, 1976), which generalize the
intersection of p matroid constraints. Table 1 gives the ap-
proximation ratio α obtained by the GREEDY algorithm on
a variety of problems, and the corresponding constant fac-
tor obtained by the randomized GREEDI algorithm.
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Table 1. New approximation bounds for randomized GREEDI for constrained monotone and non-monotone submodular maximization

Constraint Centralized GREEDY GREEDI Monotone GREEDI Non-Monotone

cardinality 1− 1
e (Nemhauser et al., 1978) 1

2 (1− 1
e ) 1

10

matroid 1
2 (Fisher et al., 1978) 1

4
1
10

knapsack ≈ 0.35 (Wolsey, 1982)3 ≈ 0.17 1
14

p-system 1
p+1 (Fisher et al., 1978) 1

2(p+1)
1

2+4(p+1)

Additionally, we show that if the greedy algorithm satisfies
a slightly stronger technical condition, then our approach
gives a constant factor approximation for constrained non-
monotone submodular maximization. The resulting ap-
proximation ratios for non-monotone maximization prob-
lems are given in the last column of Table 1.

1.3. Preliminaries

MapReduce Model. In a MapReduce computation, the
data is represented as 〈key, value〉 pairs and it is distributed
across m machines. The computation proceeds in rounds.
In a given round, the data is processed in parallel on each of
the machines by map tasks that output 〈key, value〉 pairs.
These pairs are then shuffled by reduce tasks; each reduce
task processes all the 〈key, value〉 pairs with a given key.
The output of the reduce tasks either becomes the final out-
put of the MapReduce computation or it serves as the input
of the next MapReduce round.

Submodularity. As noted in the introduction, a set func-
tion f : 2V → R≥0 is submodular if, for all setsA,B ⊆ V ,

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

A useful alternative characterization of submodularity can
be formulated in terms of diminishing marginal gains.
Specifically, f is submodular if and only if:

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B)

for all A ⊆ B ⊆ V and e /∈ B.

The Lovász extension f− : [0, 1]V → R≥0 of a submodular
function f is given by:

f−(x) = E
θ∈U(0,1)

[f({i : xi ≥ θ})].

For any submodular function f , the Lovász extension f−

satisfies the following properties: (1) f−(1S) = f(S) for
all S ⊆ V , (2) f− is convex, and (3) f−(c ·x) ≥ c · f−(x)
for any c ∈ [0, 1]. These three properties immediately give
the following simple lemma:

3Wolsey’s algorithm satisfies all technical conditions required
for our analysis (in particular, those for Lemma 2).

Lemma 1. Let S be a random set, and suppose that
E[1S ] = c · p (for c ∈ [0, 1]). Then, E[f(S)] ≥ c · f−(p).

Proof. We have:

E[f(S)] = E[f−(1S)]

≥ f−(E[1S ]) = f−(c · p) ≥ c · f−(p),

where the first equality follows from property (1), the first
inequality from property (2), and the final inequality from
property (3).

Hereditary Constraints. Our results hold quite generally
for any problem which can be formulated in terms of a
hereditary constraint. Formally, we consider the problem

max{f(S) : S ⊆ V, S ∈ I}, (1)

where f : 2V → R≥0 is a submodular function and
I ⊆ 2V is a family of feasible subsets of V . We require
that I be hereditary in the sense that if some set is in I,
then so are all of its subsets. Examples of common hered-
itary families include cardinality constraints (I = {A ⊆
V : |A| ≤ k}), matroid constraints (I corresponds to the
collection independent sets of the matroid), knapsack con-
straints (I = {A ⊆ V :

∑
i∈A wi ≤ b}), as well as combi-

nations of such constraints. Given some constraint I ⊆ 2V ,
we shall also consider restricted instances in which we are
presented only with a subset V ′ ⊆ V , and must find a set
S ⊆ V ′ with S ∈ I that maximizes f . We say that an algo-
rithm is an α-approximation for maximizing a submodular
function subject to a hereditary constraint I if, for any sub-
modular function f : 2V → R≥0 and any subset V ′ ⊆ V
the algorithm produces a solution S ⊆ V ′ with S ∈ I,
satisfying f(S) ≥ α · f(OPT), where OPT ∈ I is any
feasible subset of V ′.

2. The Standard Greedy Algorithm
Before describing our general algorithm, let us recall the
standard greedy algorithm, GREEDY, shown in Algorithm
1. The algorithm takes as input 〈V, I, f〉, where V is a
set of elements, I ⊆ 2V is a hereditary constraint, repre-
sented as a membership oracle, and f : 2V → R≥0 is a
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Algorithm 1 The standard greedy algorithm GREEDY

S ← ∅
loop

Let C = {e ∈ V \ S : S ∪ {e} ∈ I}
Let e = arg maxe∈C{f(S ∪ {e})− f(S)}
if C = ∅ or f(S ∪ {e})− f(S) < 0 then

return S
end if

end loop

non-negative submodular function, represented as a value
oracle. Given 〈V, I, f〉, GREEDY iteratively constructs a
solution S ∈ I by choosing at each step the element maxi-
mizing the marginal increase of f . For someA ⊆ V , we let
GREEDY(A) denote the set S ∈ I produced by the greedy
algorithm that considers only elements from A.

The greedy algorithm satisfies the following property:

Lemma 2. Let A ⊆ V and B ⊆ V be two disjoint sub-
sets of V . Suppose that, for each element e ∈ B, we have
GREEDY(A ∪ {e}) = GREEDY(A). Then GREEDY(A ∪
B) = GREEDY(A).

Proof. Suppose for contradiction that GREEDY(A ∪B) 6=
GREEDY(A). We first note that, if GREEDY(A ∪ B) ⊆ A,
then GREEDY(A ∪ B) = GREEDY(A); this follows from
the fact that each iteration of the Greedy algorithm chooses
the element with the highest marginal value whose addition
to the current solution maintains feasibility for I. There-
fore, if GREEDY(A ∪ B) 6= GREEDY(A), the former so-
lution contains an element of B. Let e be the first element
of B that is selected by Greedy on the input A ∪ B. Then
Greedy will also select e on the inputA∪{e}, which contra-
dicts the fact that GREEDY(A ∪ {e}) = GREEDY(A).

3. A Randomized, Distributed Greedy
Algorithm for Monotone Submodular
Maximization

Algorithm. We now describe the specific variant of the
GREEDI algorithm of Mirzasoleiman et al. that we con-
sider. The algorithm, shown in Algorithm 2, proceeds ex-
actly as GREEDI, except we perform the initial partition-
ing of V randomly.4 Specifically, we suppose that each
e ∈ V is assigned to a machine chosen independently
and uniformly at random. On each machine i, we execute
GREEDY(Vi) to select a feasible subset Si of the elements
on that machine. In the second round, we place all of these

4Indeed, this was the case in several of the experiments per-
formed by (Mirzasoleiman et al., 2013), and so our results provide
some explanation for the gap between their worst-case bounds and
experimental performance.

Algorithm 2 The distributed algorithm RANDGREEDI

for e ∈ V do
Assign e to a machine i chosen uniformly at random.

end for
Let Vi be the elements assigned to machine i
Run GREEDY(Vi) on each machine i to obtain Si
Place S =

⋃
i Si on machine 1

Run ALG(S) on machine 1 to obtain T
Let S′ = arg maxi{f(Si)}
return arg max{f(T ), f(S′)}

selected subsets on a single machine, and run some algo-
rithm ALG on this machine in order to select a final so-
lution T . Finally, we return whichever is better: the final
solution T or the best solution amongst all the Si from the
first phase. We call the resulting algorithm RANDGREEDI,
to emphasize our assumption that the initial partitioning is
performed randomly.

Analysis. We devote the rest of this section to the analy-
sis of the RANDGREEDI algorithm. Fix 〈V, I, f〉, where
I ⊆ 2V is a hereditary constraint, and f : 2V → R≥0
is any non-negative, monotone submodular function. Sup-
pose that GREEDY is an α-approximation and ALG is a
β-approximation for the associated constrained monotone
submodular maximization problem of the form (1). Let
n = |V | and suppose that OPT = arg maxA∈I f(A) is
a feasible set maximizing f .

Let V(1/m) denote the distribution over random subsets
of V where each element is included independently with
probability 1/m. Let p ∈ [0, 1]n be the following vector.
For each element e ∈ V , we have

pe =

 Pr
A∼V(1/m)

[e ∈ GREEDY(A ∪ {e})] if e ∈ OPT

0 otherwise

Our main theorem follows from the next two lemmas,
which characterize the quality of the best solution from the
first round and that of the solution from the second round,
respectively. Recall that f− is the Lovász extension of f .
Lemma 3. For each machine i, E[f(Si)] ≥ α ·
f− (1OPT − p) .

Proof. Consider machine i. Let Vi denote the set of ele-
ments assigned to machine i in the first round. Let Oi =
{e ∈ OPT: e /∈ GREEDY(Vi ∪ {e})}. We make the fol-
lowing key observations.

We apply Lemma 2 with A = Vi and B = Oi \ Vi to
obtain that GREEDY(Vi) = GREEDY(Vi∪Oi) = Si. Since
OPT ∈ I and I is hereditary, we must have Oi ∈ I as
well. Since GREEDY is an α-approximation, it follows that

f(Si) ≥ α · f(Oi).
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Since the distribution of Vi is the same as V(1/m), for each
element e ∈ OPT, we have

Pr[e ∈ Oi] = 1− Pr[e /∈ Oi] = 1− pe
E[1Oi ] = 1OPT − p.

By combining these observations with Lemma 1, we obtain

E[f(Si)] ≥ α · E[f(Oi)] ≥ α · f− (1OPT − p) .

Lemma 4. E[f(ALG(S))] ≥ β · f−(p).

Proof. Recall that S =
⋃
i GREEDY(Vi). Since OPT ∈ I

and I is hereditary, S ∩ OPT ∈ I. Since ALG is a β-
approximation, we have

f(ALG(S)) ≥ β· f(S ∩OPT). (2)

Consider an element e ∈ OPT. For each machine i, we
have

Pr[e ∈ S | e is assigned to machine i]
= Pr[e ∈ GREEDY(Vi) | e ∈ Vi]
= Pr
A∼V(1/m)

[e ∈ GREEDY(A) | e ∈ A]

= Pr
B∼V(1/m)

[e ∈ GREEDY(B ∪ {e})]

= pe.

The first equality follows from the fact that e is included in
S if and only if it is included in GREEDY(Vi). The second
equality follows from the fact that the distribution of Vi is
identical to V(1/m). The third equality follows from the
fact that the distribution of A ∼ V(1/m) conditioned on
e ∈ A is identical to the distribution of B ∪ {e} where
B ∼ V(1/m). Therefore, Pr[e ∈ S ∩ OPT] = pe and so
E[1S∩OPT] = p. Lemma 1 thus implies that

E[f(ALG(S))] ≥ β·E[f(S ∩OPT)] ≥ β · f−(p).

Combining Lemma 4 and Lemma 3 gives us our main the-
orem.

Theorem 5. Suppose that GREEDY is an α-approximation
algorithm and ALG is a β-approximation algorithm for
maximizing a monotone submodular function subject to a
hereditary constraint I. Then RANDGREEDI is (in ex-
pectation) an αβ

α+β -approximation algorithm for the same
problem.

Proof. Let Si = GREEDY(Vi), S =
⋃
i Si be the set of

elements on the last machine, and T = ALG(S) be the
solution produced on the last machine. Then, the output
D of RANDGREEDI satisfies f(D) ≥ maxi {f(Si)} and
f(D) ≥ f(T ). Thus, from Lemmas 3 and 4 we have:

E[f(D)] ≥ α · f−(1OPT − p) (3)

E[f(D)] ≥ β · f−(p). (4)

By combining (3) and (4), we obtain

(β + α)E[f(D)] ≥ αβ
(
f−(p) + f−(1OPT − p)

)
≥ αβ · f−(1OPT) = αβ · f(OPT).

In the second inequality, we have used the fact that f− is
convex and f−(c·x) ≥ cf−(x) for any c ∈ [0, 1].

If we use the standard GREEDY algorithm for ALG, we ob-
tain the following simplified corollary of Theorem 5.

Corollary 6. Suppose that GREEDY is anα-approximation
algorithm for maximizing a monotone submodular func-
tion, and use GREEDY as the algorithm ALG in RAND-
GREEDI. Then, the resulting algorithm is (in expectation)
an α

2 -approximation algorithm for the same problem.

4. Non-Monotone Submodular Functions
We consider the problem of maximizing a non-monotone
submodular function subject to a hereditary constraint. Our
approach is a slight modification of the randomized, dis-
tributed greedy algorithm described in Section 3, and it
builds on the work of (Gupta et al., 2010). Again, we show
how to combine the standard GREEDY algorithm, together
with any algorithm ALG for the non-monotone case in or-
der to obtain a randomized, distributed algorithm for non-
monotone submodular maximization.

Algorithm. Our modified algorithm, NMRANDGREEDI,
works as follows. As in the monotone case, in the first
round we distribute the elements of V uniformly at ran-
dom amongst the m machines. Then, we run the stan-
dard greedy algorithm twice to obtain two disjoint solutions
S1
i and S2

i on each machine. Specifically, each machine
first runs GREEDY on Vi to obtain a solution S1

i , then runs
GREEDY on Vi \ S1

i to obtain a disjoint solution S2
i . In the

second round, both of these solutions are sent to a single
machine, which runs ALG on S =

⋃
i(S

1
i ∪S2

i ) to produce
a solution T . The best solution amongst T and all of the
solutions S1

i and S2
i is then returned.

Analysis. We devote the rest of this section to the anal-
ysis of the algorithm. In the following, we assume that
we are working with an instance 〈V, I, f〉 of non-negative,
non-monotone submodular maximization for which the
GREEDY algorithm satisfies the following property (for
some γ):

For all S ∈ I: f(GREEDY(V )) ≥ γ · f(GREEDY(V ) ∪ S)
(GP)

The standard analyses of the GREEDY algorithm show that
(GP) is satisfied with γ = 1

2 for cardinality and matroid
constraints, γ = 1

3 for knapsack constraints, and γ = 1
p+1

for p-system constraints.



The Power of Randomization: Distributed Submodular Maximization on Massive Datasets

The analysis is similar to the approach from the previous
section. We define V(1/m) as before, but modify the def-
inition of the vector p as follows: for each e ∈ V \ OPT
we let pe = 0 and for each e ∈ OPT, we let pe be:

Pr
A∼V(1/m)

[
e ∈ GREEDY(A ∪ {e}) or

e ∈ GREEDY((A ∪ {e})\GREEDY(A ∪ {e}))
]
.

We now give analogues of Lemmas 3 and 4. The proof of
the Lemma 8 is similar to that of Lemma 4, and is deferred
to the supplement.

Lemma 7. Suppose that GREEDY satisfies (GP). For each
machine i, E

[
max{f(S1

i ), f(S2
i )}
]
≥ γ

2 · f
−(1OPT − p).

Proof. Consider machine i and let Vi be the set of elements
assigned to machine i in the first round. Let

Oi = {e ∈OPT: e /∈ GREEDY(Vi ∪ {e}) and
e /∈ GREEDY((Vi ∪ {e}) \ GREEDY(Vi ∪ {e}))}

Note that, since OPT ∈ I and I is hereditary, we have
Oi ∈ I. It follows from Lemma 2 that

S1
i = GREEDY(Vi) = GREEDY(Vi ∪Oi),
S2
i = GREEDY(Vi \ S1

i ) = GREEDY((Vi \ S1
i ) ∪Oi).

By combining the equations above with the greedy property
(GP), we obtain

f(S1
i ) ≥ γ· f(S1

i ∪Oi), (5)

f(S2
i ) ≥ γ· f(S2

i ∪Oi). (6)

Now we observe that the submodularity and non-negativity
of f , together with S1

i ∩ S2
i = ∅, imply

f(S1
i ∪Oi) + f(S2

i ∪Oi) ≥ f(Oi). (7)

By combining (5), (6), and (7), we obtain

f(S1
i ) + f(S2

i ) ≥ γ· f(Oi). (8)

Since the distribution of Vi is the same as V(1/m), for each
element e ∈ OPT, we have

Pr[e ∈ Oi] = 1− Pr[e /∈ Oi] = 1− pe,
E[1Oi ] = 1OPT − p. (9)

By combining (8), (9), and Lemma 1, we obtain

E[f(S1
i ) + f(S2

i )] ≥ γ·E[f(Oi)] ≥ γ· f−(1OPT − p),

which immediately implies the desired inequality.

Lemma 8. E[f(ALG(S))] ≥ β · f−(p).

Lemmas 7 and 8 imply our main result for non-monotone
submodular maximization (the proof is similar to that of
Theorem 5).

Theorem 9. Consider the problem of maximizing a sub-
modular function under some hereditary constraint I, and
suppose that GREEDY satisfies (GP) and ALG is a β-
approximation algorithm for this problem. Then NM-
RANDGREEDI is (in expectation) an γβ

γ+2β -approximation
algorithm for the same problem.

We remark that one can use the following approach on
the last machine (Gupta et al., 2010). As in the first
round, we run GREEDY twice to obtain two solutions T1 =
GREEDY(S) and T2 = GREEDY(S \ T1). Additionally,
we select a subset T3 ⊆ T1 using an unconstrained sub-
modular maximization algorithm on T1, such as the Dou-
ble Greedy algorithm of (Buchbinder et al., 2012), which
is a 1

2 -approximation. The final solution T is the best solu-
tion among T1, T2, T3. If GREEDY satisfies property (GP),
then it follows from the analysis of (Gupta et al., 2010) that
the resulting solution T satisfies f(T ) ≥ γ

2(1+γ) ·f(OPT).
This gives us the following corollary of Theorem 9.

Corollary 10. Consider the problem of maximizing a sub-
modular function subject to some hereditary constraint I
and suppose that GREEDY satisfies (GP) for this prob-
lem. Let ALG be the algorithm described above. Then
NMRANDGREEDI achieves (in expectation) an γ

4+2γ -
approximation for the same problem.

5. Experiments
We experimentally evaluate and compare the following dis-
tributed algorithms for maximizing a monotone submodu-
lar function subject to a cardinality constraint: the random-
ized variant of the GREEDI algorithm described in Sec-
tions 3 and 4, a deterministic variant of the GREEDI al-
gorithm that assigns elements to machines in consecutive
blocks of size |V |/m, and the SAMPLE&PRUNE algorithm
of (Kumar et al., 2013). We run these algorithms in several
scenarios and we evaluate their performance relative to the
centralized GREEDY solution on the entire dataset.

Exemplar based clustering. Our experimental setup is
similar to that of (Mirzasoleiman et al., 2013). Our goal
is to find a representative set of objects from a dataset
by solving a k-medoid problem (Kaufman & Rousseeuw,
2009) that aims to minimize the sum of pairwise dissimi-
larities between the chosen objects and the entire dataset.
Let V denote the set of objects in the dataset and let
d : V × V → R be a dissimilarity function; we assume
that d is symmetric, that is, d(i, j) = d(j, i) for each
pair i, j. Let L : 2V → R be the function such that
L(A) = 1

|V |
∑
v∈V mina∈A d(a, v) for each set A ⊆ V .

We can turn the problem of minimizing L into the prob-
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(a) Kosarak dataset
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(b) accidents dataset
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(c) 10K tiny images
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(d) Kosarak dataset
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(e) accidents dataset
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(f) 10K tiny images
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(g) synthetic diverse-yet-relevant instance
(n = 10000, λ = n/k)
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(h) synthetic hard instance for GREEDI
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Figure 1. Experiment Results (I)

lem of maximizing a monotone submodular function f
by introducing an auxiliary element v0 and by defining
f(S) = L({v0})− L(S ∪ {v0}) for each set S ⊆ V .

Tiny Images experiments: In our experiments, we used a
subset of the Tiny Images dataset consisting of 32 × 32
RGB images (Torralba et al., 2008), each represented as
3, 072 dimensional vector. We subtracted from each vec-
tor the mean value and normalized the result, to obtain a
collection of 3, 072-dimensional vectors of unit norm. We
considered the distance function d(x, y) = ‖x − y‖2 for
every pair x, y of vectors. We used the zero vector as the
auxiliary element v0 in the definition of f .

In our smaller experiments, we used 10,000 tiny images,
and compared the utility of each algorithm to that of the
centralized GREEDY. The results are summarized in Fig-
ures 1(c) and 1(f).

In our large scale experiments, we used one million tiny
images, and m = 100 machines. In the first round of
the distributed algorithm, each machine ran the GREEDY
algorithm to maximize a restricted objective function f ,
which is based on the average dissimilarity L taken over
only those images assigned to that machine. Similarly, in
the second round, the final machine maximized an objec-
tive function f based on the total dissimilarity of all those
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images it received . We also considered a variant similar
to that described by (Mirzasoleiman et al., 2013), in which
10,000 additional random images from the original dataset
were added to the final machine. The results are summa-
rized in Figure 1(i).

Remark on the function evaluation. In decomposable cases
such as exemplar clustering, the function is a sum of dis-
tances over all points in the dataset. By concentration re-
sults such as Chernoff bounds, the sum can be approxi-
mated additively with high probability by sampling a few
points and using the (scaled) empirical sum. The random
subset each machine receives can readily serve as the sam-
ples for the above approximation. Thus the random par-
tition is useful for evaluating the function in a distributed
fashion, in addition to its algorithmic benefits.

Maximum Coverage experiments. We ran several experi-
ments using instances of the Maximum Coverage problem.
In the Maximum Coverage problem, we are given a collec-
tion C ⊆ 2V of subsets of a ground set V and an integer k,
and the goal is to select k of the subsets in C that cover as
many elements as possible.

Kosarak and accidents datasets: We evaluated and com-
pared the algorithms on the datasets used in (Kumar et al.,
2013). In both cases, we computed the optimal central-
ized solution using CPLEX, and calculated the actual per-
formance ratio attained by the algorithms. The results are
summarized in Figures 1(a), 1(d), 1(b), 1(e).

Synthetic hard instances: We generated a synthetic dataset
with hard instances for the deterministic GREEDI. We de-
scribe the instances in the supplement. We ran the GREEDI
algorithm with a worst-case partition of the data. The re-
sults are summarized in Figure 1(h).

Finding diverse yet relevant items. We evaluated the ran-
domized algorithm NMRANDGREEDI described in Sec-
tion 4 on the following instance of non-monotone sub-
modular maximization subject to a cardinality constraint.
We used the objective function of (Lin & Bilmes, 2009):
f(A) =

∑
i∈V

∑
j∈A sij − λ

∑
i,j∈A sij , where λ is a re-

dundancy parameter and {sij}ij is a similarity matrix. We
generated an n × n similarity matrix with random entries
sij ∈ U(0, 100) and we set λ = n/k. The results are sum-
marized in Figure 1(g).

Matroid constraints. In order to evaluate our algorithm
on a matroid constraint, we considered the following vari-
ant of maximum coverage: we are given a space containing
several demand points and n facilities (e.g. wireless access
points or sensors). Each facility can operate in one of r
modes, each with a distinct coverage profile. The goal is to
find a subset of at most k facilities to activate, along with
a single mode for each activated facility, so that the total
number of demand points covered is maximized. In our ex-
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(a) matroid coverage (n = 900, r = 5)
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Figure 2. Experiment Results (II)

periment, we placed 250,000 demand points in a grid in the
unit square, together with a grid of n facilities. We mod-
eled coverage profiles as ellipses centered at each facility
with major axes of length 0.1`, minor axes of length 0.1/`
rotated by ρ where ` ∈ N (3, 13 ) and ρ ∈ U(0, 2π) are cho-
sen randomly for each ellipse. We performed two series
of experiments. In the first, there were n = 900 facili-
ties, each with r = 5 coverage profiles, while in the second
there were n = 100 facilities, each with r = 100 coverage
profiles.

The resulting problem instances were represented as
ground set comprising a list of ellipses, each with a des-
ignated facility, together with a partition matroid constraint
ensuring that at most one ellipse per facility was chosen.
Here, we compared the randomized GREEDI algorithm to
two deterministic variants that assigned elements to ma-
chines in consecutive blocks and in round robin order, re-
spectively. The results are summarized in Figures 2(a) and
2(b).
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A. Improved analysis for the GreeDI
algorithm with an arbitrary partition

Let OPT be an arbitrary collection of k elements from V ,
and letM be the set of machines that have some element of
OPT placed on them. For each j ∈M let Oj be the set of
elements of OPT placed on machine j, and let rj = |Oj |
(note that

∑
j∈M rj = k). Similarly, let Sj be the set of

elements returned by the greedy algorithm on machine j.
Let eij ∈ Sj denote the element chosen in the ith round of
the greedy algorithm on machine j, and let Sij denote the
set of all elements chosen in rounds 1 through i. Finally,
let S = ∪j∈MSj and Si = ∪jSij .

In the following, we use fA(B) to denote f(A∪B)−f(A).
We consider the marginal values:

xij = fSi−1
j

(eij) = f(Sij)− f(Si−1j )

yij = fSi−1
j

(Oj) = f(Si−1j ∪Oj)− f(Oj),

for each 1 ≤ i ≤ k. Additionally, it will be convenient to
define xk+1

j = yk+1
j = 0 and Sk+1

j = Skj for all j ∈M .

Because the elements eij are selected greedily on each ma-
chine, the sequence x1j , . . . , x

k
j is non-increasing for all

j ∈ M . Furthermore, we note that because each element
eij was selected by in the ith round of the greedy algorithm
on machine j, we must have

xij ≥ max
o∈Oj\Si−1

j

fSi−1
j

(o)

for all j ∈ M and i ∈ [k]. Additionally, by submodularity,
we have:

yij = f(Si−1j ∪Oj)− f(Oj)

≤
∑

o∈Oj\Si−1
j

fSi−1
j

(o)

≤ rj · max
o∈Oj\Si−1

j

f i−1Sj
(o).

Therefore,
yij ≤ rj · xij (10)

for all j ∈M and i ∈ [k].

We want to show that the set of elements S placed on the
final machine contain a solution that is relatively good com-
pared to OPT. We begin by proving the following lemma,
which relates the value of f(OPT) to the total value of the
elements from the ith partial solutions produced on each of
the machines.

Lemma 11. For every i ∈ [k] and every machine j ∈M ,

f(OPT) ≤ f(Si) +
∑
j∈M

fSi
j
(Oj).

Proof. We have

f(OPT) ≤ f(OPT ∪ Si)
= f(Si) + fSi(OPT)

≤ f(Si) +
∑
j∈M

fSi(Oj)

≤ f(Si) +
∑
j∈M

fSi
j
(Oj),

where the first inequality follows from monotonicity of f ,
and the last two from submodularity of f .

In order to obtain a bound on f(OPT), it suffices to upper
bound each term on the right hand side of the inequality
from Lemma 11. We proceed step by step, according to
the following intuition: if in all steps i the gain f(Si) −
f(Si−1) is small compared to

∑
j∈M xij , then we can use

Lemma 11 and (10) to argue that f(OPT) must also be
relatively small. On the other hand, if f(Si) − f(Si−1) is
large compared to

∑
j∈M xij , then Si\Si−1 is a reasonably

good solution that is available on the final machine.

We proceed by balancing these two cases for a particular
critical step i. Specifically, fix i ≤ k be the smallest value
such that:∑

j∈M
rj · xi+1

j ≤
√
k ·
[
f(Si+1)− f(Si)

]
. (11)

Note that some such value i must exist, since for i = k,
both sides of (11) are equal to zero. We now derive a bound
on each term on the right of Lemma 11. Let ˜OPT ⊆ S be
a set of k elements from S that maximizes f .

Lemma 12. f(Si) ≤
√
k · f( ˜OPT).

Proof. Because i is the smallest value for which (11) holds,
we must have∑
j∈M

rj · x`j >
√
k ·
[
f(S`)− f(S`−1)

]
, for all ` ≤ i.

Therefore,

∑
j∈M

rj · f(Sij) =
∑
j∈M

i∑
`=1

rj ·
[
f(S`j)− f(S`−1j )

]
=
∑
j∈M

i∑
`=1

rj · x`j

=

i∑
`=1

∑
j∈M

rj · x`j

>

i∑
`=1

√
k ·
[
f(S`)− f(S`−1)

]
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=
√
k · f(Si),

and so,

f(Si) <
1√
k

∑
j∈M

rj · f(Sij)

≤ 1√
k

∑
j∈M

rj · f(Sj) (By monotonicity)

≤ 1√
k

∑
j∈M

rj · f( ˜OPT) (Sj ⊆ S is feasible)

=
√
k · f( ˜OPT).

Lemma 13.
∑
j∈M fSi

j
(Oj) ≤

√
k · f( ˜OPT).

Proof. We consider two cases:

Case: i < k. We have i + 1 ≤ k, and by (10) we have
fSi

j
(Oj) = yi+1

j ≤ rj · xi+1
j for every machine j. There-

fore:∑
j∈M

fSi
j
(Oj) ≤

∑
j∈M

rj · xi+1
j

≤
√
k · (f(Si+1)− f(Si))

(By definition of i)

≤
√
k · f(Si+1 \ Si) (By submodularity)

≤
√
k · f( ˜OPT),

where the final line follows from the fact that |Si+1 \Si| ≤
k and so Si+1 \ Si is a feasible solution.

Case: i = k. By submodularity of f and (10), we have

fSi
j
(Oj) = fSk

j
(Oj) ≤ fSk−1

j
(Oj) = ykj ≤ rj · xkj .

Moreover, since the sequence x1j , . . . , x
k
j is non-increasing

for all j,

xkj ≤
1

k

k∑
`=1

x`j =
1

k
· f(Sj).

Therefore,∑
j∈M

fSi
j
(Oj) ≤

∑
j∈M

rj · xkj

≤
∑
j∈M

rj
k
· f(Sj)

≤
∑
j∈M

rj
k
· f( ˜OPT) (Sj ⊆ S is feasible)

= f( ˜OPT).

Thus, in both cases, we have
∑
j∈M fSi

j
(Oj) ≤

√
k ·

f( ˜OPT) as required.

Our main theorem then follows directly from Lemmas 11,
12, and 13:

Theorem 14. f(OPT) ≤ 2
√
kf( ˜OPT).

Because the standard greedy algorithm executed on the last
machine is a (1−1/e)-approximation, we have the follow-
ing corollary.

Corollary 15. The distributed greedy algorithm gives a
(1−1/e)
2
√
k

approximation for maximizing a monotone sub-
modular function subject to a cardinality constraint k, re-
gardless of how the elements are distributed.

B. A tight example for the GreeDI algorithm
with an arbitrary partition

Here we give a family of examples that show that the
GreeDI algorithm of Mirzasoleiman et al. cannot achieve
an approximation better than 1/

√
k if the partition of the

elements onto the machines is arbitrary.

Consider the following instance of Max k-Coverage. We
have `2 + 1 machines and k = ` + `2. Let N be a ground
set with `2 + `3 elements, N =

{
1, 2, . . . , `2 + `3

}
. We

define a coverage function on a collection S of subsets of
N as follows. In the following, we define how the sets of
S are partitioned on the machines.

On machine 1, we have the following ` sets from OPT:
O1 = {1, 2, . . . , `}, O2 = {`+ 1, . . . , 2`}, . . . , O` ={
`2 − `+ 1, . . . , `2

}
. We also pad the machine with copies

of the empty set.

On machine i > 1, we have the following sets. There is a
single set from OPT, namely

O′i =
{
`2 + (i− 1)`+ 1, `2 + (i− 1)`+ 2, . . . , `2 + i`

}
.

Additionally, we have ` sets that are designed to
fool the greedy algorithm; the j-th such set is Oj ∪{
`2 + (i− 1)`+ j

}
. As before, we pad the machine with

copies of the empty set.

The optimal solution is O1, . . . , O`, O′1, . . . , O
′
`2 and it has

a total coverage of `2 + `3.

On the first machine, Greedy picks the ` sets O1, . . . , Om
from OPT and `2 copies of the empty set. On each
machine i > 1, Greedy first picks the ` sets Aj =
Oj ∪

{
`2 + (i− 1)`+ j

}
, since each of them has marginal

value greater than O′i. Once Greedy has picked all of the
Aj’s, the marginal value of O′i becomes zero and we may
assume that Greedy always picks the empty sets instead of
O′i.

Now consider the final round of the algorithm where we
run Greedy on the union of the solutions from each of
the machines. In this round, regardless of the algorithm,
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the sets picked can only cover
{

1, . . . , `2
}

(using the set
O1, . . . , O`) and one additional item per set for a total of
2`2 elements. Thus the total coverage of the final solu-
tion is at most 2`2. Hence the approximation is at most
2`2

`2+`3 = 2
1+` ≈

1√
k

.

C. The algorithm of Wolsey for
non-monotone functions

In this section, we consider the algorithm of Wolsey (1982)
for submodular maximization subject to a knapsack con-
straint. Let V denote the set of items. Let wi ∈ Z≥0 denote
the weight of item i. Let b ∈ Z≥0 be the capacity of the
knapsack and f : 2V → R≥0 be a submodular function
satisfying f(∅) = 0. We wish to solve the problem:

max{f(S) : S ⊆ V,w(S) ≤ b},

where w(S) =
∑
i∈S wi is the total weight of the items

in S. We emphasize that the function f is not necessarily
monotone.

Wolsey’s algorithm works exactly as the standard greedy
algorithm shown in Algorithm 1, with two modifications:
(1) at each step it takes the element i with highest non-
negative marginal profit density θS(i) = f(S∪{i})−f(S)

wi
,

and (2) it returns either the greedy solution S or the best
singleton solution {e}, whichever has the higher function
value.

It is easily verified that the Lemma 2 holds for the resulting
algorithm. In the following, we show that the algorithm
satisfies the property (GP) with γ = 1

3 . More precisely, we
will show that

f(T ) ≥ 1

3
f(T ∪O),

where T is the solution constructed by Wolsey’s algorithm,
and O ⊆ V is any feasible solution.

Let S denote the Greedy solution, let {e} denote the best
singleton solution; the solution T is the better of the two
solutions S and {e}. Let

j = arg max
i∈O\S

θS(i).

We have

f(S ∪O) ≤ f(S) +
∑
i∈O\S

(f(S ∪ {i})− f(S))

= f(S) +
∑
i∈O\S

wiθS(i)

≤ f(S) +
∑
i∈O\S

wiθS(j)

≤ f(S) + b · θS(j),

where the inequality on the first line follows from submod-
ularity of f , the inequality on the third line from the defi-
nition of j, and the inequality on the last line from the fact
that O (and hence O \ S) is feasible.

Thus, in order to complete the proof, it suffices to show that
b · θS(j) ≤ 2 max {f(S), f({e})}. We consider two cases
based on the weight of j.

Suppose that wj > b/2. We have

b · θS(j) < 2wj · θS(j)

= 2(f(S ∪ {j})− f(S))

≤ 2f({j}) ≤ 2f({e}),

as desired.

Therefore we may assume that wj ≤ b/2. Let ei denote the
i-th element selected by the Greedy algorithm and let Si =
{e1, e2, . . . , ei}. Note that we may assume that θS(j) ≥ 0,
since otherwise we would be done. Thus θSi(j) ≥ θS(j) ≥
0 for all i.

Let t be the largest index such that w(St) ≤ b − wj ; note
that t < |S|, since otherwise S ∪ {j} is a feasible solution
with value greater than f(S), which is a contradiction. We
have w(St+1) > b− wj ≥ b/2.

In each iteration i ≤ t, it was feasible to add j to the current
solution; since the Greedy algorithm did not pick j, we
must have θSi−1(ei) ≥ θSi−1(j).

Finally, f(S) ≥ f(St+1), since the Greedy algorithm only
adds elements with non-negative marginal value. Therefore
we have

f(S) ≥ f(St+1)

=

t+1∑
i=1

(f(Si)− f(Si−1))

=

t+1∑
i=1

weiθSi−1(ei)

≥
t+1∑
i=1

weiθSi−1(j)

≥
t+1∑
i=1

weiθS(j)

= w(St+1) · θS(j)

≥ b

2
· θS(j).

Thus b · θS(j) ≤ 2f(S), as desired.
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