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Abstract

Sketching is a powerful dimensionality reduction tool for accelerating statistical
learning algorithms. However, its applicability has been limited to a certain extent
since the crucial ingredient, the so-called oblivious subspace embedding, can only
be applied to data spaces with an explicit representation as the column span or row
span of a matrix, while in many settings learning is done in a high-dimensional
space implicitly defined by the data matrix via a kernel transformation. We pro-
pose the first fast oblivious subspace embeddings that are able to embed a space
induced by a non-linear kernel without explicitly mapping the data to the high-
dimensional space. In particular, we propose an embedding for mappings in-
duced by the polynomial kernel. Using the subspace embeddings, we obtain the
fastest known algorithms for computing an implicit low rank approximation of the
higher-dimension mapping of the data matrix, and for computing an approximate
kernel PCA of the data, as well as doing approximate kernel principal component
regression.

1 Introduction

Sketching has emerged as a powerful dimensionality reduction technique for accelerating statisti-
cal learning techniques such as `p-regression, low rank approximation, and principal component
analysis (PCA) [12, 5, 14]. For natural settings of parameters, this technique has led to the first
asymptotically optimal algorithms for a number of these problems, often providing considerable
speedups over exact algorithms. Behind many of these remarkable algorithms is a mathematical ap-
paratus known as an oblivious subspace embedding (OSE). An OSE is a data-independent random
transform which is, with high probability, an approximate isometry over the embedded subspace,
i.e. ‖Sx‖ = (1 ± ε)‖x‖ simultaneously for all x ∈ V where S is the OSE, V is the embedded
subspace and ‖ · ‖ is some norm of interest. For the OSE to be useful in applications, it is crucial
that applying it to a vector or a collection of vectors (a matrix) can be done faster than the intended
downstream use.

So far, all OSEs proposed in the literature are for embedding subspaces that have a representation
as the column space or row space of an explicitly provided matrix, or close variants of it that admit
a fast multiplication given an explicit representation (e.g. [1]). This is quite unsatisfactory in many
statistical learning settings. In many cases the input may be described by a moderately sized n-by-
d sample-by-feature matrix A, but the actual learning is done in a much higher (possibly infinite)
dimensional space, by mapping each row of A to an high dimensional feature space. Using the
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kernel trick one can access the high dimensional mapped data points through an inner product space,
and thus avoid computing the mapping explicitly. This enables learning in the high-dimensional
space even if explicitly computing the mapping (if at all possible) is prohibitive. In such a setting,
computing the explicit mapping just to compute an OSE is usually unreasonable, if not impossible
(e.g., if the feature space is infinite-dimensional).

The main motivation for this paper is the following question: is it possible to design OSEs that
operate on the high-dimensional space without explicitly mapping the data to that space?

We propose the first fast oblivious subspace embeddings for spaces induced by a non-linear kernel
without explicitly mapping the data to the high-dimensional space. In particular, we propose an OSE
for mappings induced by the polynomial kernel. We then show that the OSE can be used to obtain
faster algorithms for the polynomial kernel. Namely, we obtain faster algorithms for approximate
kernel PCA and principal component regression.

We now elaborate on these contributions.

Subspace Embedding for Polynomial Kernel Maps. Let k(x, y) = (〈x, y〉+ c)q for some con-
stant c ≥ 0 and positive integer q. This is the degree q polynomial kernel function. Without loss
of generality we assume that c = 0 since a non-zero c can be handled by adding a coordinate of
value

√
c to all of the data points. Let φ(x) denote the function that maps a d-dimensional vector x

to the dq-dimensional vector formed by taking the product of all subsets of q coordinates of x, i.e.
φ(v) = v⊗ . . .⊗v (doing⊗ q times), and let φ(A) denote the application of φ to the rows ofA. φ is
the map that corresponds to the polynomial kernel, that is k(x, y) = 〈φ(x), φ(y)〉, so learning with
the data matrix A and the polynomial kernel corresponds to using φ(A) instead of A in a method
that uses linear modeling.

We describe a distribution over dq×O(3qn2/ε2) sketching matrices S so that the mapping φ(A) ·S
can be computed in O(nnz(A)q) + poly(3qn/ε) time, where nnz(A) denotes the number of non-
zero entries of A. We show that with constant probability arbitrarily close to 1, simultaneously for
all n-dimensional vectors z, ‖z · φ(A) · S‖2 = (1 ± ε)‖z · φ(A)‖2, that is, the entire row-space of
φ(A) is approximately preserved. Additionally, the distribution does not depend on A, so it defines
an OSE.

It is important to note that while the literature has proposed transformations for non-linear kernels
that generate an approximate isometry (e.g. Kernel PCA), or methods that are data independent (like
the Random Fourier Features [17]), no method previously had both conditions, and thus they do not
constitute an OSE. These conditions are crucial for the algorithmic applications we propose (which
we discuss next).

Applications: Approximate Kernel PCA, PCR. We say an n × k matrix V with orthonormal
columns spans a rank-k (1 + ε)-approximation of an n × d matrix A if ‖A − V V TA‖F ≤ (1 +
ε)‖A−Ak‖F , where ‖A‖F is the Frobenius norm of A and Ak = arg minX of rank k ‖A−X‖F . We
state our results for constant q.

InO(nnz(A))+n·poly(k/ε) time an n×kmatrix V with orthonormal columns can be computed, for
which ‖φ(A)−V V Tφ(A)‖F ≤ (1 + ε)‖φ(A)− [φ(A)]k‖F , where [φ(A)]k denotes the best rank-k
approximation to φ(A). The k-dimensional subspace V of Rn can be thought of as an approximation
to the top k left singular vectors of φ(A). The only alternative algorithm we are aware of, which
doesn’t take time at least dq , would be to first compute the Gram matrix φ(A) · φ(A)T in O(n2d)
time, and then compute a low rank approximation, which, while this computation can also exploit
sparsity in A, is much slower since the Gram matrix is often dense and requires Ω(n2) time just to
write down.

Given V , we show how to obtain a low rank approximation to φ(A). Our algorithm computes three
matrices V,U, and R, for which ‖φ(A) − V · U · φ(R)‖F ≤ (1 + ε)‖φ(A) − [φ(A)]k‖F . This
representation is useful, since given a point y ∈ Rd, we can compute φ(R) · φ(y) quickly using
the kernel trick. The total time to compute the low rank approximation is O(nnz(A)) + (n + d) ·
poly(k/ε). This is considerably faster than standard kernel PCA which first computes the Gram
matrix of φ(A).
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We also show how the subspace V can be used to regularize and speed up various learning algorithms
with the polynomial kernel. For example, we can use the subspace V to solve regression problems
of the form minx ‖V x− b‖2, an approximate form of principal component regression [8]. This can
serve as a form of regularization, which is required as the problem minx ‖φ(A)x − b‖2 is usually
underdetermined. A popular alternative form of regularization is to use kernel ridge regression,
which requires O(n2d) operations. As nnz(A) ≤ nd, our method is again faster.

Our Techniques and Related Work. Pagh recently introduced the TENSORSKETCH algo-
rithm [14], which combines the earlier COUNTSKETCH of Charikar et al. [3] with the Fast Fourier
Transform (FFT) in a clever way. Pagh originally applied TENSORSKETCH for compressing matrix
multiplication. Pham and Pagh then showed that TENSORSKETCH can also be used for statistical
learning with the polynomial kernel [16].

However, it was unclear whether TENSORSKETCH can be used to approximately preserve entire
subspaces of points (and thus can be used as an OSE). Indeed, Pham and Pagh show that a fixed
point v ∈ Rd has the property that for the TENSORSKETCH sketching matrix S, ‖φ(v) · S‖2 =
(1 ± ε)‖φ(v)‖2 with constant probability. To obtain a high probability bound using their results,
the authors take a median of several independent sketches. Given a high probability bound, one
can use a net argument to show that the sketch is correct for all vectors v in an n-dimensional
subspace of Rd. The median operation results in a non-convex embedding, and it is not clear how
to efficiently solve optimization problems in the sketch space with such an embedding. Moreover,
since n independent sketches are needed for probability 1 − exp(−n), the running time will be at
least n · nnz(A), whereas we seek only nnz(A) time.

Recently, Clarkson and Woodruff [5] showed that COUNTSKETCH can be used to provide a subspace
embedding, that is, simultaneously for all v ∈ V , ‖φ(v) · S‖2 = (1± ε)‖φ(v)‖2. TENSORSKETCH
can be seen as a very restricted form of COUNTSKETCH, where the additional restrictions enable
its fast running time on inputs which are tensor products. In particular, the hash functions in TEN-
SORSKETCH are only 3-wise independent. Nelson and Nguyen [13] showed that COUNTSKETCH
still provides a subspace embedding if the entries are chosen from a 4-wise independent distribution.
We significantly extend their analysis, and in particular show that 3-wise independence suffices for
COUNTSKETCH to provide an OSE, and that TENSORSKETCH indeed provides an OSE.

We stress that all previous work on sketching the polynomial kernel suffers from the drawback de-
scribed above, that is, it provides no provable guarantees for preserving an entire subspace, which is
needed, e.g., for low rank approximation. This is true even of the sketching methods for polynomial
kernels that do not use TENSORSKETCH [10, 7], as it only provides tail bounds for preserving the
norm of a fixed vector, and has the aforementioned problems of extending it to a subspace, i.e.,
boosting the probability of error to be enough to union bound over net vectors in a subspace would
require increasing the running time by a factor equal to the dimension of the subspace.

After we show that TENSORSKETCH is an OSE, we need to show how to use it in applications. An
unusual aspect is that for a TENSORSKETCH matrix S, we can compute φ(A) · S very efficiently,
as shown by Pagh [14], but computing S · φ(A) is not known to be efficiently computable, and
indeed, for degree-2 polynomial kernels this can be shown to be as hard as general rectangular
matrix multiplication. In general, even writing down S · φ(A) would take a prohibitive dq amount
of time. We thus need to design algorithms which only sketch on one side of φ(A).

Another line of research related to ours is that on random features maps, pioneered in the seminal
paper of Rahimi and Recht [17] and extended by several papers a recent fast variant [11]. The goal in
this line of research is to construct randomized feature maps Ψ(·) so that the Euclidean inner product
〈Ψ(u),Ψ(v)〉 closely approximates the value of k(u, v) where k is the kernel; the mapping Ψ(·) is
dependent on the kernel. Theoretical analysis has focused so far on showing that 〈Ψ(u),Ψ(v)〉 is
indeed close to k(u, v). This is also the kind of approach that Pham and Pagh [16] use to analyze
TENSORSKETCH. The problem with this kind of analysis is that it is hard to relate it to downstream
metrics like generalization error and thus, in a sense, the algorithm remains a heuristic. In contrast,
our approach based on OSEs provides a mathematical framework for analyzing the mappings, to
reason about their downstream use, and to utilize various tools from numerical linear algebra in
conjunction with them, as we show in this paper. We also note that in to contrary to random feature
maps, TENSORSKETCH is attuned to taking advantage of possible input sparsity. e.g. Le et al. [11]
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method requires computing the Walsh-Hadamard transform, whose running time is independent of
the sparsity.

2 Background: COUNTSKETCH and TENSORSKETCH

We start by describing the COUNTSKETCH transform [3]. Let m be the target dimension. When
applied to d-dimensional vectors, the transform is specified by a 2-wise independent hash function
h : [d] → [m] and a 2-wise independent sign function s : [d] → {−1,+1}. When applied to v, the
value at coordinate i of the output, i = 1, 2, . . . ,m is

∑
j|h(j)=i s(j)vj . Note that COUNTSKETCH

can be represented as a m×d matrix in which the j-th column contains a single non-zero entry s(j)
in the h(j)-th row.

We now describe the TENSORSKETCH transform [14]. Suppose we are given a point v ∈ Rd
and so φ(v) ∈ Rdq , and the target dimension is again m. The transform is specified using q 3-
wise independent hash functions h1, . . . , hq : [d] → [m], and q 4-wise independent sign functions
s1, . . . , sq : [d] → {+1,−1}. TENSORSKETCH applied to v is then COUNTSKETCH applied to
φ(v) with hash function H : [dq]→ [m] and sign function S : [dq]→ {+1,−1} defined as follows:

H(i1, . . . , iq) = h1(i1) + h2(i2) + · · ·+ hq(iq) mod m,

and
S(i1, . . . , iq) = s1(i1) · s2(i1) · · · sq(iq).

It is well-known that if H is constructed this way, then it is 3-wise independent [2, 15]. Unlike the
work of Pham and Pagh [16], which only used that H was 2-wise independent, our analysis needs
this stronger property of H .

The TENSORSKETCH transform can be applied to v without computing φ(v) as follows. First,
compute the polynomials

p`(x) =

B−1∑
i=0

xi
∑

j|h`(j)=i

vj · s`(j),

for ` = 1, 2, . . . , q. A calculation [14] shows
q∏
`=1

p`(x) mod (xB − 1) =

B−1∑
i=0

xi
∑

(j1,...,jq)|H(j1,...,jq)=i

vj1 · · · vjqS(j1, . . . , jq),

that is, the coefficients of the product of the q polynomials mod (xm − 1) form the value
of TENSORSKETCH(v). Pagh observed that this product of polynomials can be computed in
O(qm logm) time using the Fast Fourier Transform. As it takes O(q nnz(v)) time to form the q
polynomials, the overall time to compute TENSORSKETCH(v) is O(q(nnz(v) +m logm)).

3 TENSORSKETCH is an Oblivious Subspace Embedding

Let S be the dq × m matrix such that TENSORSKETCH(v) is φ(v) · S for a randomly selected
TENSORSKETCH. Notice that S is a random matrix. In the rest of the paper, we refer to such a
matrix as a TENSORSKETCH matrix with an appropriate number of columns i.e. the number of
hash buckets. We will show that S is an oblivious subspace embedding for subspaces in Rdq for
appropriate values of m. Notice that S has exactly one non-zero entry per row. The index of the
non-zero in the row (i1, . . . , iq) is H(i1, . . . , iq) =

∑q
j=1 hj(ij) mod m. Let δa,b be the indicator

random variable of whether Sa,b is non-zero. The sign of the non-zero entry in row (i1, . . . , iq) is
S(i1, . . . , iq) =

∏q
j=1 sj(ij). Our main result is that the embedding matrix S of TENSORSKETCH

can be used to approximate matrix product and is a subspace embedding (OSE).
Theorem 1 (Main Theorem). Let S be the dq ×m matrix such that TENSORSKETCH(v) is φ(v)S
for a randomly selected TENSORSKETCH. The matrix S satisfies the following two properties.

1. (Approximate Matrix Product:) Let A and B be matrices with dq rows. For m ≥ (2 +
3q)/(ε2δ), we have

Pr[‖ATSSTB −ATB‖2F ≤ ε2‖A‖2F ‖B‖2F ] ≥ 1− δ
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2. (Subspace Embedding:) Consider a fixed k-dimensional subspace V . If m ≥ k2(2 +
3q)/(ε2δ), then with probability at least 1− δ, ‖xS‖ = (1± ε)‖x‖ simultaneously for all
x ∈ V .

We establish the theorem via two lemmas. The first lemma proves the approximate matrix product
property via a careful second moment analysis.
Lemma 2. Let A and B be matrices with dq rows. For m ≥ (2 + 3q)/(ε2δ), we have

Pr[‖ATSSTB −ATB‖2F ≤ ε2‖A‖2F ‖B‖2F ] ≥ 1− δ

Proof. Let C = ATSSTB. We have

Cu,u′ =

m∑
t=1

∑
i,j∈[d]q

S(i)S(j)δi,tδj,tAi,uBj,u′ =

m∑
t=1

∑
i 6=j∈[d]q

S(i)S(j)δi,tδj,tAi,uBj,u′+(ATB)u,u′

Thus, E[Cu,u′ ] = (ATB)u,u′ .

Next, we analyze E[((C −ATB)u,u′)
2]. We have

((C −ATB)u,u′)
2 =

m∑
t1,t2=1

∑
i1 6=j1,i2 6=j2∈[d]q

S(i1)S(i2)S(j1)S(j2) · δi1,t1δj1,t1δi2,t2δj2,t2 ·

Ai1,uAi2,uBj1,u′Bj2,u′

For a term in the summation on the right hand side to have a non-zero expectation, it must be the case
that E[S(i1)S(i2)S(j1)S(j2)] 6= 0. Note that S(i1)S(i2)S(j1)S(j2) is a product of random signs
(possibly with multiplicities) where the random signs in different coordinates in {1, . . . , q} are inde-
pendent and they are 4-wise independent within each coordinate. Thus, E[S(i1)S(i2)S(j1)S(j2)] is
either 1 or 0. For the expectation to be 1, all random signs must appear with even multiplicities. In
other words, in each of the q coordinates, the 4 coordinates of i1, i2, j1, j2 must be the same number
appearing 4 times or 2 distinct numbers, each appearing twice. All the subsequent claims in the
proof regarding i1, i2, j1, j2 agreeing on some coordinates follow from this property.

Let S1 be the set of coordinates where i1 and i2 agrees. Note that j1 and j2 must also agree in all
coordinates in S1 by the above argument. Let S2 ⊂ [q] \S1 be the coordinates among the remaining
where i1 and j1 agrees. Finally, let S3 = [q] \ (S1 ∪ S2). All coordinates in S3 of i1 and j2 must
agree. Similarly as before, note that i2 and j2 agree on all coordinates in S2 and i2 and j1 agree
on all coordinates in S3. We can rewrite i1 = (a, b, c), i2 = (a, e, f), j1 = (g, b, f), j2 = (g, e, c)
where a, g ∈ [d]S1 , b, e ∈ [d]S2 , c, f ∈ [d]S3 .

First we show that the contribution of the terms where i1 = i2 or i1 = j2 is bounded by
2‖Au‖2‖Bu′‖

2

m , where Au is the uth column of A and Bu′ is the u′th column of B. Indeed, con-
sider the case i1 = i2. As observed before, we must have j1 = j2 to get a non-zero contribution.
Note that if t1 6= t2, we always have δt1,i1δt2,i2 = 0 as H(i1) cannot be equal to both t1 and t2.
Thus, for fixed i1 = i2, j1 = j2,

E[

m∑
t1,t2=1

S(i1)S(i2)S(j1)S(j2) · δi1,t1δj1,t1δi2,t2δj2,t2 ·Ai1,uAi2,uBj1,u′Bj2,u′ ]

= E[

m∑
t1=1

δ2i1,t1δ
2
j1,t1A

2
i1,uB

2
j1,u′ ] =

A2
i1,u

B2
j1,u′

m

Summing over all possible values of i1, j1, we get the desired bound of ‖Au‖2‖Bu′‖
2

m . The case
i1 = j2 is analogous.

Next we compute the contribution of the terms where i1 6= i2, j1, j2 i.e. there are at least 3 distinct
numbers among i1, i2, j1, j2. Notice that E[δi1,t1δj1,t1δi2,t2δj2,t2 ] ≤ 1

m3 because the δi,t’s are 3-
wise independent. For fixed i1, j1, i2, j2, there arem2 choices of t1, t2 so the total contribution to the
expectation from terms with the same i1, j1, i2, j2 is bounded bym2· 1

m3 ·|Ai1,uAi2,uBj1,u′Bj2,u′ | =
1
m |Ai1,uAi2,uBj1,u′Bj2,u′ |.
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Therefore,

E[((C −ATB)u,u′)
2]

≤ 2‖Au‖2‖Bu′‖2

m
+

1

m

∑
partition S1,S2,S3

∑
a,g∈[d]S1 ,b,e∈[d]S2 ,c,f∈[d]S3

|A(a,b,c),uB(g,b,f),u′A(a,e,f),uB(g,e,c),u′ |

≤ 2‖Au‖2‖Bu′‖2

m
+

3q

m

∑
a,b,c,g,e,f

|A(a,b,c),uB(g,b,f),u′A(a,e,f),uB(g,e,c),u′ |

≤ 2‖Au‖2‖Bu′‖2

m
+

3q

m

∑
g,e,f

(∑
a,b,c

A2
(a,b,c),u

)1/2(∑
a,b,c

B2
(g,b,f),u′A

2
(a,e,f),uB

2
(g,e,c),u′

)1/2

=
2‖Au‖2‖Bu′‖2

m
+

3q‖Au‖
m

∑
g,e,f

(∑
b

B2
(g,b,f),u′

)1/2(∑
a,c

A2
(a,e,f),uB

2
(g,e,c),u′

)1/2

≤ 2‖Au‖2‖Bu′‖2

m
+

3q‖Au‖
m

∑
e

(∑
b,g,f

B2
(g,b,f),u′

)1/2( ∑
a,c,g,f

A2
(a,e,f),uB

2
(g,e,c),u′

)1/2

=
2‖Au‖2‖Bu′‖2

m
+

3q‖Au‖ · ‖Bu′‖
m

∑
e

(∑
a,f

A2
(a,e,f),u

)1/2(∑
g,c

B2
(g,e,c),u′

)1/2

≤ 2‖Au‖2‖Bu′‖2

m
+

3q‖Au‖ · ‖Bu′‖
m

(∑
a,e,f

A2
(a,e,f),u

)1/2(∑
g,e,c

B2
(g,e,c),u′

)1/2

=
(2 + 3q)‖Au‖2‖Bu′‖2

m
,

where the second inequality follows from the fact that there are 3q partitions of [q] into 3 sets. The
other inequalities are from Cauchy-Schwarz.

Combining the above bounds, we have E[((C − ATB)u,u′)
2] ≤ (2+3q)‖Au‖2‖Bu′‖

2

m . For m ≥
(2 + 3q)/(ε2δ), by the Markov inequality, ‖ATSTSB −ATB‖2F ≤ ε2 with probability 1− δ.

The second lemma proves that the subspace embedding property follows from the approximate
matrix product property.
Lemma 3. Consider a fixed k-dimensional subspace V . If m ≥ k2(2 + 3q)/(ε2δ), then with
probability at least 1− δ, ‖xS‖ = (1± ε)‖x‖ simultaneously for all x ∈ V .

Proof. Let B be a dq × k matrix whose columns form an orthonormal basis of V . Thus, we have
BTB = Ik and ‖B‖2F = k. The condition that ‖xS‖ = (1± ε)‖x‖ simultaneously for all x ∈ V is
equivalent to the condition that the singular values of BTS are bounded by 1± ε. By Lemma 2, for
m ≥ (2 + 3q)/((ε/k)2δ), with probability at least 1− δ, we have

‖BTSSTB −BTB‖2F ≤ (ε/k)2‖B‖4F = ε2

Thus, we have ‖BTSSTB − Ik‖2 ≤ ‖BTSSTB − Ik‖F ≤ ε. In other words, the squared singular
values of BTS are bounded by 1± ε, implying that the singular values of BTS are also bounded by
1± ε. Note that ‖A‖2 for a matrix A denotes its operator norm.

4 Applications

4.1 Approximate Kernel PCA and Low Rank Approximation

We say an n × k matrix V with orthonormal columns spans a rank-k (1 + ε)-approximation of an
n × d matrix A if ‖A − V V TA‖F ≤ (1 + ε)‖A − Ak‖F . Algorithm k-Space (Algorithm 1) finds
an n× k matrix V which spans a rank-k (1 + ε)-approximation of φ(A).

Before proving the correctness of the algorithm, we start with two key lemmas.
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Algorithm 1 k-Space
1: Input: A ∈ Rn×d, ε ∈ (0, 1], integer k.
2: Output: V ∈ Rn×k with orthonormal columns which spans a rank-k (1 + ε)-approximation to
φ(A).

3: Set the parameters m = Θ(3qk2 + k/ε) and r = Θ(3qm2/ε2).
4: Let S be a dq ×m TENSORSKETCH and T be an independent dq × r TENSORSKETCH.
5: Compute φ(A) · S and φ(A) · T .
6: Let U be an orthonormal basis for the column space of φ(A) · S.
7: Let W be the m× k matrix containing the top k left singular vectors of UTφ(A)T .
8: Output V = UW .

Lemma 4. Let S ∈ Rdq×m be a randomly chosen TENSORSKETCH matrix with m = Ω(3qk2 +
k/ε). Let UUT be the n×n projection matrix onto the column space of φ(A)·S. Then if [UTφ(A)]k
is the best rank-k approximation to matrix UTφ(A), we have

‖U [UTφ(A)]k − φ(A)‖F ≤ (1 +O(ε))‖φ(A)− [φ(A)]k‖F .

Proof. The proof is the same as Theorem 4.2 of Clarkson and Woodruff [4], which is in turn based
on Theorem 3.2 of the same work. While that theorem is stated for a different family of sketching
matrices S, the only properties used about S in the proof are that with constant probability:

1. (Subspace Embedding:) For any k× dq matrix V T with orthonormal rows, for all z ∈ Rn,
‖zV TS‖2 = (1 ± ε0)‖zV T ‖2, where ε0 is a sufficiently small constant. That is, S is a
subspace embedding for the rowspace of V T , and

2. (Approximate Matrix Product:) For any two matricesA,BT with dq columns, ‖ASSTB−
AB‖F ≤

√
ε
k · ‖A‖F ‖B‖F .

For S being a TENSORSKETCH and our choice ofm, the first property follows from Lemma 3, while
the second property follows from Lemma 2. Applying the conclusion of the said Theorem 4.2, we
have that the column space of φ(A)S contains a subspace V of dimension k which V spans a rank-k
(1+ε)-approximation of φ(A). Finally, applying Lemma 4.3 of Clarkson and Woodruff [4], if UUT
is the n× n projection matrix onto the column space of φ(A)S, then

‖U [UTφ(A)]k − φ(A)‖F ≤ (1 +O(ε))‖φ(A)− [φ(A)]k‖F ,

as required.

Lemma 5. Let UUT be as in Lemma 4. Let T ∈ Rdq×r be a randomly chosen TENSORSKETCH
matrix with r = O(3qm2/ε2), where m = Ω(3qk2 + k/ε). Suppose W is the m× k matrix whose
columns are the top k left singular vectors of UTφ(A)T . Then,

‖UWWTUTφ(A)− φ(A)‖F ≤ (1 + ε)‖φ(A)− [φ(A)]k‖F .

Proof. The proof is implicit in the proof of Theorem 1.5 of Kannan et al. [9]. Namely, Theorem 4.1
of Kannan et al. [9] applied to the matrix UTφ(A) implies that ‖WWTUTφ(A) − UTφ(A)‖2F ≤
(1 + O(ε))‖[UTφ(A)]k − UTφ(A)‖2F . This then implies, using the same derivation of equations
(2), (3), (4), (5), (6), and (7) of the proof of Theorem 1.5 of [9] that ‖UWWTUTφ(A)−φ(A)‖F ≤
(1 + ε)‖φ(A)− [φ(A)]k‖F .

Theorem 6. (Polynomial Kernel Rank-k Space.) For the polynomial kernel of degree q, in
O(nnz(A)q) + n · poly(3qk/ε) time, Algorithm k-SPACE finds an n × k matrix V which spans
a rank-k (1 + ε)-approximation of φ(A).

Proof. By Lemma 4 and Lemma 5, the output V = UW spans a rank-k (1 + ε)-approximation to
φ(A). It only remains to argue the time complexity. The sketches φ(A) · S and φ(A) · T can be
computed in O(nnz(A)q) + n · poly(3qk/ε) time. In n · poly(3qk/ε) time, the matrix U can be
obtained from φ(A) · S and the product UTφ(A)T can be computed. Given UTφ(A)T , the matrix
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W of top k left singular vectors can be computed in poly(3qk/ε) time, and in n · poly(3qk/ε) time
the product V = UW can be computed. Hence the overall time is O(nnz(A)q) + n · poly(3qk/ε),
and the theorem follows.

We now show how to find a low rank approximation to φ(A).
Theorem 7. (Polynomial Kernel PCA and Low Rank Factorization) For the polynomial kernel of
degree q, inO(nnz(A)q)+(n+d)·poly(3qk/ε) time, we can find an n×k matrix V , a k×poly(k/ε)
matrix U , and a poly(k/ε)× d matrix R for which

‖V · U · φ(R)−A‖F ≤ (1 + ε)‖φ(A)− [φ(A)]k‖F .

The success probability of the algorithm is at least .6, which can be amplified with independent
repetition.

Proof. By Theorem 6, in O(nnz(A)q) + npoly(3qk/ε) time we can find an n× k matrix V which
spans a rank-k (1+ ε)-approximation of φ(A) with probability at least .9. We now apply a sampling
theorem of Drineas, Mahoney, and Muthukrishnan:

Fact 8. (Theorem 5 of [6], restated) Suppose V is an n × k matrix with orthonormal columns,
B ∈ Rn×m, and ε ∈ (0, 1]. Define sampling probabilities pi = 1

k‖Vi‖
2
2, where Vi is the i-th row of

V and i ∈ [n]. Consider the following algorithm:

1. Randomly sample a set of 3200k2/ε2 rows of V . Create an n × n diagonal matrix S for
which Si,i = 0 if Vi is not sampled, and Si,i = 1/

√
pi if Vi is sampled.

2. Output X̃ = (SV )+SB.

Then with probability at least .7,

‖B − V X̃‖F ≤ (1 + ε) min
X∈Rk×m

‖B − V X‖F .

We apply Fact 8 with our matrix V which spans a rank-k (1 + ε)-approximation of φ(A) and with
the matrix B equal to φ(A). With these parameters Fact 8 and a union bound implies that with
probaility at least .6,

‖φ(A)− V ((SV )+S)φ(A)‖F ≤
(1 + ε) min

X∈Rk×m
‖φ(A)− V X‖F ≤

(1 + ε)2‖φ(A)− [φ(A)]k‖F ,

and so in our low rank decomposition V · U · φ(R) we set U = (SV )+S and R to be the subset
of 3200k2/ε2 rows of A that are sampled by the algorithm in φ(A). As (1 + ε)2 = 1 + O(ε), the
correctness guarantee follows by rescaling ε by a constant factor.

We can perform the sampling in O(nk) time, from which we can form the matrix S and the matrix
R. The total time is O(nnz(A)q) + (n+ d) · poly(3qk/ε).

Note that Theorem 7 implies the rowspace of φ(R) contains a k-dimensional subspaceLwith dq×dq
projection matrix LLT for which ‖φ(A)LLT − φ(A)‖F ≤ (1 + ε)‖φ(A) − [φ(A)]k‖F , that is, L
provides an approximation to the space spanned by the top k principal components of φ(A).

4.2 Regularizing Learning With the Polynomial Kernel

Consider learning with the polynomial kernel. Even if d� n it might be that even for low values of
q we have dq � n. This makes a number of learning algorithms underdetermined, and increases the
chance of overfitting. The problem is even more severe if the input matrix A has a lot of redundancy
in it (noisy features).

To address this, many learning algorithms add a regularizer, e.g., ridge terms. Here we propose to
regularize by using rank-k approximations to the matrix (where k is the regularization parameter
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that is controlled by the user). With the tools developed in the previous subsection, this not only
serves as a regularization but also as a means of accelerating the learning.

We now show that two different methods that can be regularized using this approach.

4.2.1 Approximate Kernel Principal Component Regression

If dq > n the linear regression with φ(A) becomes underdetermined and exact fitting to the right
hand side is possible, and in more than one way. One form of regularization is Principal Component
Regression (PCR), which first uses PCA to project the data on the principal component, and then
continues with linear regression in this space.

We now introduce the following approximate version of PCR.
Definition 9. In the Approximate Principal Component Regression Problem (Approximate PCR),
we are given an n× d matrix A and an n× 1 vector b, and the goal is to find a vector x ∈ Rk and
an n × k matrix V with orthonormal columns spanning a rank-k (1 + ε)-approximation to A for
which x = argminx‖V x− b‖2.

Notice that if A is a rank-k matrix, then Approximate PCR coincides with ordinary least squares
regression with respect to the column space of A. While PCR would require solving the regression
problem with respect to the top k singular vectors of A, in general finding these k vectors exactly
results in unstable computation, and cannot be found by an efficient linear sketch. This would
occur, e.g., if the k-th singular value σk of A is very close (or equal) to σk+1. We therefore relax
the definition to only require that the regression problem be solved with respect to some k vectors
which span a rank-k (1 + ε)-approximation to A.

The following is our main theorem for Approximate PCR.
Theorem 10. (Polynomial Kernel Approximate PCR.) For the polynomial kernel of degree q, in
O(nnz(A)q) + n · poly(3qk/ε) time one can solve the approximate PCR problem, namely, one
can output a vector x ∈ Rk and an n × k matrix V with orthonormal columns spanning a rank-k
(1 + ε)-approximation to φ(A), for which x = argminx‖V x− b‖2.

Proof. Applying Theorem 6, we can find an n× k matrix V with orthonormal columns spanning a
rank-k (1+ ε)-approximation to φ(A) inO(nnz(A)q)+n ·poly(3qk/ε) time. At this point, one can
solve solve the regression problem argminx‖V x− b‖2 exactly in O(nk) time since the minimizer is
x = V T b.

4.2.2 Approximate Kernel Canonical Correlation Analysis

In Canonical Correlation Analysis (CCA) we are given two matrices A, B and we wish to find
directions in which the spaces spanned by their columns are correlated. A formal linear algebraic
definition of CCA is as follows.
Definition 11. Let A ∈ Rm×n and B ∈ Rm×`, and assume that p = rank(A) ≥ rank(B) = q.
The canonical correlations σ1 (A,B) ≥ σ2 (A,B) ≥ · · · ≥ σq (A,B) of the matrix pair (A,B) are
defined recursively by the following formula:

σi (A,B) = max
x∈Ai,y∈Bi

σ (Ax,By) =: σ (Axi, Byi) ,

i = 1, . . . , q

where

• σ (u, v) = |uT v|/ (‖u‖2‖v‖2),

• Ai = {x : Ax 6= 0,Ax ⊥ {Ax1, . . . ,Axi−1}},

• Bi = {y : By 6= 0,By ⊥ {By1, . . . ,Byi−1}}.

The unit vectors Ax1/‖Ax1‖2, . . . , Axq/‖Axq‖2, By1/‖By1|2, . . . , Byq/‖Byq‖2 are
called the canonical or principal vectors. The vectors x1/‖Ax1‖2, . . . , xq/‖Axq‖2,
y1/‖By1|2, . . . , yq/‖Byq|2 are called canonical weights (or projection vectors). Note that
the canonical weights and the canonical vectors are not uniquely defined.
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CCA finds correlations between any parts of the spectrum. Potentially, random correlation between
noise might be found, skewing the results. The problem is aggravated in the kernel setting (where
we find correlations between φ(A) and φ(B)): if dq > n then there is exact correlation between the
subspaces. One common way to address this is to add ridge terms.

We consider a different form of regularization: finding the correlations between the dominant sub-
spaces of A and B (their principal components). We now introduce an approximate version of it:

Definition 12. In the Approximate Principal Component CCA Problem (Approximate PC-CCA),
we are given an n × d1 matrix A and an n × d2 matrix B, and the goal is to find two n × k
orthonormal matrices U and V , where U spans a rank-k approximation to A and V spans a rank-k
approximation to B, and output the CCA between U and V .

Theorem 13. (Polynomial Kernel Approximate PCR.) For the polynomial kernel of degree q, in
O((nnz(A) + nnz(B))q) + n · poly(3qk/ε) time one can solve the approximate PC-CCA problem
on φ(A) and φ(B).

Proof. Applying Theorem 6, we can find an n× k matrix V with orthonormal columns spanning a
rank-k (1 + ε)-approximation to φ(A) in O(nnz(A)q) + n · poly(3qk/ε) time, a n × k matrix U
with orthonormal columns spanning a rank-k (1 + ε)-approximation to φ(B) in O(nnz(B)q) + n ·
poly(3qk/ε) time. At this point, we simply compute the CCA between U and V , which amounts to
computing an SVD on UTV . This takes O(nk2) time.

5 Experiments

We report two sets of experiments whose goal is to demonstrate that the k-Space algorithm (Algo-
rithm 1) is useful as a feature extraction algorithm. We use standard classification and regression
datasets.

In the first set of experiments, we compare ordinary `2 regression to approximate principal compo-
nent `2 regression, where the approximate principal components are extracted using k-Space (we
use RLSC for classification). Specifically, as explained in Section 4.2.1, we use k-Space to compute
V and then use regression on V (in one dataset we also add an additional ridge regularization). To
predict, we notice that V = φ(A) ·S ·R−1 ·W , where R is the R factor of φ(A) ·S, so S ·R−1 ·W
defines a mapping to the approximate principal components. So, to predict on a matrix At we first
compute φ(At) · S ·R−1 ·W (using TENSORSKETCH to compute φ(At) · S fast) and then multiply
by the coefficients found by the regression. In all the experiments, φ(·) is defined using the kernel
k(u, v) = (uT v + 1)3.

While k-Space is efficient and gives an embedding in time that is faster than explicitly expanding the
feature map, or using kernel PCA, there is still some non-negligible overhead in using it. Therefore,
we also experimented with feature extraction using only a subset of the training set. Specifically, we
first sample the dataset, and then use k-Space to compute the mapping S · R−1 ·W . We apply this
mapping to the entire dataset before doing regression.

The results are reported in Table 1. Since k-Space is randomized, we report the mean and standard
deviation of 5 runs. For all datasets, learning with the extracted features yields better generalized
errors than learning with the original features. Extracting the features using only a sample of the
training set results in only slightly worse generalization errors. With regards to the MNIST dataset,
we caution the reader not to compare the generalization results to the ones obtained using the poly-
nomial kernel (as reported in the literature). In our experiments we do not use the polynomial kernel
on the entire dataset, but rather use it to extract features (i.e., do principal component regularization)
using only a subset of the examples (only 5,000 examples out of 60,000). One can expect worse re-
sults, but this is a more realistic strategy for very large datasets. On very large datasets it is typically
unrealistic to use the polynomial kernel on the entire dataset, and approximation techniques, like the
ones we suggest, are necessary.

We use a similar setup in the second set of experiments, now using linear SVM instead of regression
(we run only on the classification datasets). The results are reported in Table 2. Although the gap is
smaller, we see again that generally the extracted features lead to better generalization errors.
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Table 1: Comparison of testing error with using regression with original features and with features extracted using k-Space. In the table, n

is number of training instances, d is the number of features per instance and nt is the number of instances in the test set. “Regression” stands

for ordinary `2 regression. “PCA Regression” stand for approximate principal component `2 regression. “Sample PCA Regression” stands

approximate principal component `2 regression where only ns samples from the training set are used for computing the feature extraction. In

“PCA Regression” and “Sample PCA Regression” k features are extracted. In k-Space we use m = O(k) and r = O(k) with the ratio

between m and k and r and k as detailed in the table. For classification tasks, the percent of testing points incorrectly predicted is reported.

For regression tasks, we report ‖yp − y‖2/‖y‖ where yp is the predicted values and y is the ground truth.

Dataset Regression PCA Regression Sampled PCA Regression
MNIST 14% Out of 7.9%± 0.06%
classification Memory k = 500, ns = 5000
n = 60, 000, d = 784 m/k = 2
nt = 10, 000 r/k = 4
CPU 12% 4.3%± 1.0% 3.6%± 0.1%
regression k = 200 k = 200, ns = 2000
n = 6, 554, d = 21 m/k = 4 m/k = 4
nt = 819 r/k = 8 r/k = 8
ADULT 15.3% 15.2%± 0.1% 15.2%± 0.03%
classification k = 500 k = 500, ns = 5000
n = 32, 561, d = 123 m/k = 2 m/k = 2
nt = 16, 281 r/k = 4 r/k = 4
CENSUS 7.1% 6.5%± 0.2% 6.8%± 0.4%
regression k = 500 k = 500, ns = 5000
n = 18, 186, d = 119 m/k = 4 m/k = 4
nt = 2, 273 r/k = 8 r/k = 8

λ = 0.001 λ = 0.001
USPS 13.1% 7.0%± 0.2% 7.5%± 0.3%
classification k = 200 k = 200, ns = 2000
n = 7, 291, d = 256 m/k = 4 m/k = 4
nt = 2, 007 r/k = 8 r/k = 8

Table 2: Comparison of testing error with using SVM with original features and with features extracted using k-Space.. In the table, n is

number of training instances, d is the number of features per instance and nt is the number of instances in the test set. “SVM” stands for linear

SVM. “PCA SVM” stand for using k-Space to extract features, and then using linear SVM. “Sample PCA SVM” stands for using only ns

samples from the training set are used for computing the feature extraction. In “PCA SVM” and “Sample PCA SVM” k features are extracted.

In k-Space we use m = O(k) and r = O(k) with the ratio between m and k and r and k as detailed in the table. For classification tasks,

the percent of testing points incorrectly predicted is reported.

Dataset SVM PCA SVM Sampled PCA SVM
MNIST 8.4% Out of 6.1%± 0.1%
classification Memory k = 500, ns = 5000
n = 60, 000, d = 784 m/k = 2
nt = 10, 000 r/k = 4
ADULT 15.0% 15.1%± 0.1% 15.2%± 0.1%
classification k = 500 k = 500, ns = 5000
n = 32, 561, d = 123 m/k = 2 m/k = 2
nt = 16, 281 r/k = 4 r/k = 4
USPS 8.3% 7.2%± 0.2% 7.5%± 0.3%
classification k = 200 k = 200, ns = 2000
n = 7, 291, d = 256 m/k = 4 m/k = 4
nt = 2, 007 r/k = 8 r/k = 8

We remark that it is not our goal to show that k-Space is the best feature extraction algorithm of
the classification algorithms we considered (RLSC and SVM), or that it is the fastest, but rather
that it can be used to extract features of higher quality than the original one. In fact, in our experi-
ments, while for a fixed number of extracted features, k-Space produces better features than simply
using TENSORSKETCH, it is also more expensive in terms of time. If that additional time is used
to do learning or prediction with TENSORSKETCH with more features, we overall get better gen-
eralization error (we do not report the results of these experiments). However, feature extraction is
widely applicable, and there can be cases where having fewer high quality features is beneficial, e.g.
performing multiple learning on the same data, or a very expensive learning tasks.
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6 Conclusions and Future Work

Sketching based dimensionality reduction has so far been limited to linear models. In this paper,
we describe the first oblivious subspace embeddings for a non-linear kernel expansion (the polyno-
mial kernel), opening the door for sketching based algorithms for a multitude of problems involving
kernel transformations. We believe this represents a significant expansion of the capabilities of
sketching based algorithms. However, the polynomial kernel has a finite-expansion, and this finite-
ness is quite useful in the design of the embedding, while many popular kernels induce an infinite-
dimensional mapping. We propose that the next step in expanding the reach of sketching based
methods for statistical learning is to design oblivious subspace embeddings for non-finite kernel
expansions, e.g., the expansions induced by the Gaussian kernel.
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