
Approximate Line Nearest Neighbor in High Dimensions

Alexandr Andoni
MIT

andoni@mit.edu

Piotr Indyk
MIT

indyk@mit.edu

Robert Krauthgamer∗

Weizmann Institute of Science
robert.krauthgamer@weizmann.ac.il

Huy L. Nguyen
MIT

hlnguyen@mit.edu

Abstract

We consider the problem of approximate nearest neigh-
bors in high dimensions, when the queries are lines. In
this problem, given n points in Rd, we want to con-
struct a data structure to support efficiently the follow-
ing queries: given a line L, report the point p closest to
L. This problem generalizes the more familiar nearest
neighbor problem. From a practical perspective, lines,
and low-dimensional flats in general, may model data
under linear variation, such as physical objects under
different lighting.

For approximation 1 + ϵ, we achieve a query time
of d3n0.5+t, for arbitrary small t > 0, with a space of
d2nO(1/ϵ2+1/t2). To the best of our knowledge, this is the
first algorithm for this problem with polynomial space
and sub-linear query time.

1 Introduction

Nearest neighbor problem is one of the fundamental ge-
ometric problems, with a wide range of applications.
Given a set S of n points in a d-dimensional Euclidean
space, the goal of the problem is to build a data struc-
ture which, given a query point, returns the data point
closest to the query. Efficient algorithms for this prob-
lem exist if the data dimension is “low” [Cla88, Mei93].
In the high-dimensional case, efficient solutions exist as
well, provided that the data structure is allowed to re-
port an approximate nearest neighbor, whose distance
to the query is at most some factor c = 1+ ϵ > 1 larger
than the distance from the query to the actual near-
est neighbor. In particular, several data structures with

query time of (d+log n+1/ϵ)O(1) using n(1/ϵ)O(1)

space
are known [IM98, KOR98, HP01].

When the query is more complex than a point, how-
ever, the complexity of the problem is much less under-
stood. Perhaps the simplest such case is when the query
is allowed to be a k-dimensional flat, for some small
value of k; we call this the Approximate k-Flat Near-

∗Part of this work was done while at IBM Almaden. This
research was supported in part by The Israel Science Foundation
(grant #452/08).

est Neighbor problem. This is a natural generalization
of the approximate nearest neighbor problem, where
k = 0. From a practical perspective, low-dimensional
flats are often used to model data subject to linear vari-
ations. For example, one could capture the appearance
of a physical object under different lighting or view-
point [BHZ07].

It is therefore quite surprising that, for the case
of high dimension d, there has been no prior work on
this problem. For the ”dual” version of the problem,
where the query is a point but the data set consists
of k-flats, two results are known [BHZ07, Mag07]1.
The first algorithm is essentially heuristic (although it
allows some control of the quality of approximation).
The second algorithm provides provable guarantees
and very fast query time of (d + log n + 1/ϵ)O(1).
Unfortunately, the space requirement of the algorithm

is super-polynomial, of the form 2(logn)O(1)

.
In this paper we provide the first non-trivial algo-

rithm for the approximate flat nearest neighbor prob-
lem, for the case when the query is a 1-flat, i.e., a
line. Our data structure has query time sublinear in
n and uses polynomial space. Thus, it demonstrates
that the flat version of the approximate nearest neigh-
bor problem supports efficient solutions, even in high
dimensions.

Specifically, for 1 + ϵ approximation, we ob-
tain a query time of O(d3n0.5+t) with a space of

d2nO(1/ϵ2+1/t2) for any desired t > 0.

1.1 Preliminaries and Definitions A line ℓ in Rd

is described as ℓ = {a + λ · u | λ ∈ R}, where a is a
vector in Rd and u is a unit-length vector in Rd.

For a point p ∈ Rd and a line q in Rd, we let d(q, p)
be the Euclidean distance from p to q, which is the
distance from p to the projection of p onto q.

We use the term cylinder, with axis ℓ and radius
R, to denote the set {p | d(p, ℓ) ≤ R}. Any plane
perpendicular to ℓ will be called base (or bottom) of

1It is plausible that both algorithms could be adapted to our
problem without sacrificing their complexity.

the cylinder. Furthermore, abusing notation, we will
also use the notion of cylinder to denote the part
of the (unbounded) cylinder contained between two
hyperplanes perpendicular to ℓ, or, in other words, a
set {p | d(p, ℓ) ≤ R ∧ x1 ≤ prℓ(p) ≤ x2} for some reals
x1, x2 ∈ R where prℓ(p) is the projection of p into ℓ. In
such case, we say the height of the cylinder is x2 − x1

(otherwise, the height is infinite).
For c = 1 + ϵ, we define the problem of c-

approximate line nearest neighbor (LNN) as follows.
Given a dataset S ⊂ Rd of n points, construct a data
structure, which, given a query line q, reports a point p̃
such that d(q, p̃) ≤ c · d(q, p) for all p ∈ S.

We use abbreviations LNN for approximate line
nearest neighbor and NN for (standard) approximate
nearest neighbor, instead of potentially more natural
ALNN and ANN, to make the two acronyms easier to
distinguish.

2 Approximate Line Nearest Neighbor

In this section, we describe our algorithm for solving
the approximate line nearest neighbor. Our algorithm is
mainly based on two data structures, treating two differ-
ent cases. We call these data structures Cylinder-DS
and Projection-DS , and we describe their implemen-
tation in later sections.

We first describe a high-level approach to the prob-
lem. For simplicity, suppose we are solving a simpler
problem of approximate near-neighbor search2 . In the
latter problem, we are given a radius r > 0 in advance,
and the algorithm has to find a point p at distance at
most (1 + ϵ)r from the query line q, if there exists a
point p∗ at distance at most r from q. For this problem,
our algorithm is as follows. Let t > 0 be a small con-
stant. During preprocessing, we repeatedly find (and
remove from the data set) cylinders of radius rnt that
contain at least m =

√
n points. We continue doing so

until no such cylinder can be found anymore. For each
of these cylinders we construct a “cylinder structure”,
Cylinder-DS . For the remaining points, we construct
a “low-dimensional LNN structure”, Projection-DS .

The query algorithm then queries each Cylinder-
DS structure, as well as the Projection-DS structure.
For each cylinder Ci, the algorithm tries to find a point
p ∈ Ci that is at distance at most (1 + ϵ)r if a point
at distance ≤ r exists. Each such query will take Õ(nt)
time. Since there are at most n/m =

√
n cylinders in

total, we obtain a Õ(n0.5+t) time bound for this step.

2It is known that if the query is a point, then the approxi-

mate near and nearest neighbor problems are equivalent up to
polylogarithmic factors in the query time and space complex-
ity [IM98, HP01]. Unfortunately, the reduction does not gen-
eralize to higher-dimensional queries.

The query algorithm also queries once the
Projection-DS structure. This structure finds an (ex-
act) r-near neighbor, but under the condition that there
are at most m =

√
n points at distance rnt from the

query line. Note that this condition holds since we re-
moved all cylinders of radius rnt that contain more than
m points. The Projection-DS structure has query
time of m · poly(d, log n) = Õ(

√
n) and the space re-

quirement is nO(1/t2).
We now state precise conditions that we require of

the structures Cylinder-DS and Projection-DS .
We construct them in later sections.

Lemma 2.1. (Cylinder-DS) There exists a data
structure with the following guarantees. The input to
the preprocessing stage is an m-point set C ⊂ Rd, which
is contained at distance at most R from an axis line ℓ.
It is also given an approximation factor 1+ ϵ for ϵ > 0.
The data structure supports the following query:

• for a query line q, if the closest point p⋆ is at
distance at least R/2n2t, then the structure returns
a point p ∈ C at distance at most (1 + ϵ)d(q, p⋆).

Cylinder-DS has space and preprocessing time bound
of Õ(d2mO(1/ϵ2)). The query time is Õ(n2td3) and
achieves a constant success probability.

Lemma 2.2. (Projection-DS) There exists a data
structure with the following guarantees. The input to
the preprocessing stage is an n-point set S ⊂ Rd and an
approximation factor T = nt/2 for constant t ∈ (0, 1/8].
The data structure supports two types of queries:

• T -approximate line nearest neighbor: for a query
line q, report a point p ∈ S that is a T -approximate
nearest neighbor;

• T -approximate line near neighbor reporting: for a
query line q and threshold R, report a set W ⊂ S
that includes all points at distance R from q but
does not include any point p ∈ S at distance more
than T ·R from q.

Projection-DS has space and preprocessing time
bound of Õ(nO(1/t2)+dn). The query time is d logO(1) n

for the query of the first type and |W | · d logO(1) n for
the query of the second type. Each query algorithm has
a constant success probability.

2.1 Full Algorithm Our actual algorithm differs
only slightly from the above description. First, we find
cylinders as above by considering only cylinders whose
axis passes through pairs of points in the dataset S. As
we will show later, it is enough to consider such cylinders
only.

The second difference is that we need to solve
nearest neighbor problem and, thus, we do not have
an estimate of r in advance. Instead, we use a
Projection-DS structure to find a nt-approximate
nearest neighbor p̃ ∈ S. The distance from p̃ to the
query line q, denoted r̃, is a very rough estimate for r.
Additionally, we remove the dependence on r in the con-
struction of cylinder structures. To accomplish this, we
construct cylinders as follows: pick the thinnest cylinder
that contains m points and remove it from the dataset;
then pick the next thinnest cylinder and so forth. Fi-
nally, for each “suffix” of cylinders (thickest x cylinders),
we construct a Projection-DS structure on the points
contained in these cylinders. During the query stage, we
use the computed value r̃ to “zoom in” on the correct
(prefix of) cylinders and the correct Projection-DS
structure containing the rest of the points.

The resulting preprocessing and query algorithms
are described in Algorithms 1 and 2.

Preprocessing(S):
1 U ← S
2 for i ∈ {1, 2, . . . n/m} do
3 For every two points p1 and p2 in U , consider

the line ℓp1,p2 going through p1 and p2, and
let Fℓp1,p2

be the minimum radius of the
cylinder with axis ℓp1,p2 containing precisely
m points

4 Choose the line ℓ = ℓp1,p2 that minimizes
Fℓp1,p2

and set Ri = Fℓp1,p2

5 Remove from U the set Ai of all the points in
U within distance Ri from ℓ

6 Construct Cylinder-DS structure Ci for
the cylinder (ℓ, Ri) on the set Ai

7 end
8 For each i ∈ {0, 1, . . . n/m}, construct a
Projection-DS structure Li on points

∪n/mj=i+1Aj

Algorithm 1: Preprocessing algorithm. The
input is a set S ⊂ Rd and an approximation ratio
1 + ϵ.

2.2 Correctness and Run-time Analysis
Correctness. We argue that the algorithm returns

a (1 + ϵ)-approximate nearest neighbor. Let p⋆ be the
closest point to q, and let r⋆ = d(q, p⋆). Then, by the
guarantee of Projection-DS , we conclude that r̃ such
that r̃/nt ≤ r⋆ ≤ r̃.

Suppose p⋆ is in a cylinder Ci with i ≤ i∗−1. Then
Ri ≤ r̃ · nt and thus r⋆ ≥ r̃/nt ≥ Ri/n

2t. In this case
the structure Cylinder-DS Ci guarantees to return a
c-approximate nearest neighbor.

Query-Processing(q):
1 Query Projection-DS structure L0 to find an
nt-approximate nearest neighbor p̃

2 Let r̃ be the distance from q to p̃
3 Let i∗ be the minimum i ∈ [n/m] such that
Ri > r̃nt or set i∗ = n/m+ 1 if no such i exists

4 for i ∈ {1, 2, . . . , i∗ − 1} do
5 Query Cylinder-DS structure Ci

6 end
7 Query Projection-DS structure Li∗−1 to find

all nt

2 -approximate line near neighbors for
threshold r̃

8 Output the point nearest to q from the ones
found above

Algorithm 2: Query algorithm. The input is a
line q and the output is a point p that is a (1+ ϵ)-
approximate line nearest neighbor.

Now suppose p⋆ belongs to a cylinder Ci for i ≥ i∗.
Then the structure Projection-DS Li∗ is guaranteed
to report the exact nearest neighbor p⋆.

Runtime. First we prove the following lemma.

Lemma 2.3. If there is a line ℓ within distance R from
a set A of m points then there is a line through two of
the points that is within distance 2R from all m points.

Proof. Consider the cylinder of radius R with axis at
ℓ, and, w.l.o.g., assume ℓ coincides with the x-axis.
Take the point a ∈ A with the smallest x-value and
the point b ∈ A with the largest x-value. Let line ℓ′ be
the line passing through a and b. We claim that any
point c ∈ A is within distance 2R from ℓ′. Consider
the point z obtained through the intersection of the
line ℓ′ and the plane through c perpendicular to x-
axis. This point z is inside the cylinder, and thus,
d(c, ℓ′) ≤ d(c, z) ≤ d(c, ℓ) + d(z, ℓ) ≤ 2R. �

The first query to Projection-DS structure, and
the queries to Cylinder-DS structure, each run in time
Õ(n2t). Since there are at most n/m =

√
n calls to

Cylinder-DS structure, these calls take Õ(d3n.5+2t)
time. It remains to argue that the last call to
Projection-DS takes Õ(dn.5+2t) time. Indeed, con-
sider the structure Projection-DS Li∗ . By the con-
struction of the cylinder Ci∗ and above lemma, we
know that there is no line ℓ that contains more than
m points from Li∗ within distance Ri∗/2 ≥ r̃ · nt/2.

The guarantee of the Projection-DS structure for nt

2 -
approximate reporting then says that the run-time of
the query is at most Õ(dm) = Õ(d

√
n).

We note that the space is bounded by the space used
by at most O(

√
n) Cylinder-DS and Projection-DS

structures, giving a total of Õ(d2nO(1/ϵ2+1/t2)) space.

3 Data Structure Cylinder-DS for Cylinder
Case

In this section, we consider the problem of finding a
c-approximate line nearest neighbor of a query line q
among m points inside a cylinder C1 of radius R with
axis ℓ assuming that the nearest neighbor p⋆ is at least
R

2n2t away from q. We first describe the preprocessing
and query answering algorithms in Section 3.1. We then
prove their correctness and analyze the query time and
space usage in Section 3.2. Finally, we show how the
resulting algorithm yields Lemma 2.1.

3.1 The Algorithm In this section, we describe the
algorithm for the cylinder case. At a high level, the al-
gorithm works as follows. It first computes the intersec-
tion of the query line q and a bigger cylinder containing
C1 and then extends the intersection region so as to in-
clude all c-LNNs in the extended region. This extended
region is then divided into Õ(n2t) smaller regions so
that the part of q in each region is “small” enough to
be approximated by a single point with a small addi-
tive approximation error. For each smaller region, the
algorithm queries a standard data structure for finding
approximate nearest neighbors (NN) of points, to find a
c-approximate nearest neighbor within that region. Fi-
nally, it reports the point closest to q among the ones
it finds. We choose to use a data structure for find-
ing approximate nearest neighbor of query points with
an efficient query time of O(d2(logm + 1

ϵ)
O(1)) using

d2mO(1/ϵ2) space (e.g., [KOR98]).
There are two additional technical problems that

the algorithm needs to take care of. First, it is not
known at preprocessing time where the intersection
between q and the cylinder is. This problem can be
rectified as follows. Assume that the points are sorted
by their projections on the cylinder axis and labeled
1, 2, . . . ,m accordingly. A dyadic interval is an interval
of the form [i2l + 1, (i + 1)2l] for some i, l satisfying
0 ≤ l ≤ logm, 0 ≤ i ≤ ⌈m/2l⌉ − 1. It is well-
known that any interval can be divided into O(logm)
dyadic intervals. At preprocessing time, for each dyadic
interval, we build a separate data structure for points
whose labels constitute that interval. At query time, the
algorithm can just query O(logm) of them to get the
answer. Second, there needs to be a special treatment
when the nearest neighbor is very far from the query
line. It turns out that this case can be reduced to finding
the nearest neighbor in one-dimensional space, which
can be solved easily.

See algorithms 3 and 4, as well as figures 1 and 2,
for a detailed description.

3.2 Correctness and Running Time Analysis
When q is parallel to ℓ, the distance between a point
and q is exactly the same as the distance between
their projections on the subspace orthogonal to ℓ so the
correctness follows from the correctness of the NN data
structure. For the rest of the section, we consider the
case when q is not parallel to ℓ.

Let r⋆ be the distance between q and the nearest
point p⋆ ∈ A. Recall that we are only finding a c-LNN
when r⋆ > R

2n2t . There are two cases of r⋆ we need to
deal with. In section 3.2.1, we solve the problem when
r⋆ is “small”. In section 3.2.2, we solve the problem
when r⋆ is “large”. Finally, we give a concluding remark
for the cylinder case in section 3.3.

3.2.1 Small r⋆ In this section, we consider the case
r⋆ < 3R

ϵ .

Lemma 3.1. Compute E as in algorithm 4. We claim
that all c-LNNs of q are contained in E.

Proof. We prove by showing the contra-positive. Let p
be a point in C1 but outside of E. The distance between
p and the part of q outside of C2 (i.e., set q \ C2) is at

least 7R
ϵ − R > 3R(1+ϵ)

ϵ > r⋆(1 + ϵ) for all ϵ < 1. The
distance between p and the part of q inside C2 is at

least 3R(1+ϵ)
ϵ > r⋆(1 + ϵ) because E was extended on

both ends by 3R(1+ϵ)
ϵ . Thus, p cannot be a c-LNN of q.

�

We distinguish two cases for the height of E: E can
be either long or short compared to the cylinder radius.
Firstly, consider the case E is short i.e. the height of E
isM ≤ 252R logn

ϵ . We start by showing that the distance
being used in steps 14 and 15 of algorithm 4 is a good
approximation to the true distance. See Figure 1 for
reference. Let G be defined as in step 14.

Lemma 3.2. Let ϵ be a constant smaller than 1. We
claim that when M ≤ 252R logn

ϵ , a (1 + ϵ− 1
logn)-NN of

an end point of some sub-segment from G is a (1 + ϵ)-
LNN of q.

Proof. The radius of C2 is 7R
ϵ so the segment of q

limited by two hyperplanes containing the two faces of

E has length at most O(R(logn+d)
ϵ). This segment of q

is divided into Θ(dn
2t log2 n

ϵ) sub-segments so each sub-

segment has length at most R
6n2t logn . Therefore, using

an end point as an approximation for any point on the
same sub-segment only distorts distance by an additive
term of at most R

6n2t logn . Since r⋆ > R
2n2t , the distance

between any point p in S and the closest sub-segment
end point is a (1+ 1

3 logn)-approximation of the distance

CylinderDS-Preprocessing(A):
1 Sort the points in A by their projections on ℓ and label them 1, 2, . . . ,m accordingly
2 for D ∈ dyadic intervals do
3 Consider the section of C1 that contains the points whose labels constitute D, and partition D into

252n2t logn
ϵ sub-cylinders of equal heights

4 For each sub-cylinder, project all the points in it onto the sub-cylinder’s bottom face and build a data
structure for finding NN of query points among the projections onto the bottom face

5 end

6 Build a standard NN data structure, denoted NNall, on all points in A ⊂ Rd

7 Project the set A onto the subspace orthogonal to ℓ, and build a standard NN data structure, denoted
NNorthogonal, on the resulting points (in a (d− 1)-dimensional space)

Algorithm 3: Algorithm for building Cylinder-DS . Input is a set of points A.

CylinderDS-Query-Processing(q):
1 if q and ℓ are parallel then
2 Query NNorthogonal to find a (1 + ϵ− 1

logn)-NN of the projection of q (a point) in the subspace
orthogonal to ℓ

3 else
4 Let C2 be an infinite cylinder with the same axis ℓ as C1 and with radius 7R

ϵ . Compute the section of

C2 containing the intersection of q and C2. Extend that section by 3R(1+ϵ)
ϵ on both ends and call the

resulting extended cylinder E. Let M be the height of cylinder E
5 if M > 252R logn

ϵ then
6 Use binary search to find the interval I of labels of points inside E
7 Decompose I into at most O(logm) dyadic intervals
8 for D ∈ above dyadic intervals do
9 for C ∈ sub-cylinders of the cylinder containing the points whose labels constitute D do

1010 Query the NN structure of the bottom face of C to find a (1 + ϵ− 1
logn)-NN of the

intersection of q and the bottom face.
11 end

12 end

13 else

1414 Divide the segment of q inside E into Θ(dn
2t log2 n

ϵ) sub-segments of equal length, and let G be the
set of the resulting sub-segments

1515 Query NNall to find a (1 + ϵ− 1
logn)-NN of each end point of each segment in G

16 end
1717 Find the point p1 on ℓ that is closest to q. Use binary search to find the point in A whose projection

on ℓ is closest to p1
18 Return the point nearest to q among the points found above
19 end

Algorithm 4: Query algorithm for Cylinder-DS of a cylinder C1 with axis ℓ and radius R. The input is
a query line q and the output is a c-LNN of q among the points inside C1.

between p and q. Therefore, a (1 + ϵ− 1
logn)-NN of the

end point closest to p⋆ is a (1 + ϵ)-LNN of q. �

We can now show that steps 14 and 15 of algorithm
4 finds a c-LNN efficiently when M ≤ 252R logn

ϵ .

Lemma 3.3. When M ≤ 252R logn
ϵ , a c-LNN of q can

be found in Õ(d3n2t) time.

Proof. By lemma 3.2, one can find a c-LNN of q by
finding a (1 + ϵ − 1

logn)-NN of each end point of sub-
segments of the intersection of q and E and returning
the point closest to q. Finding each (1 + ϵ − 1

logn)-NN
requires one query to the NNall data structure, which

q

M

E

R`

C1

C2

7R

ε3R(1+ε)
ε

Figure 1: Query algorithm for Cylinder-DS when r⋆ < 3R
ϵ and M ≤ 252R logn

ϵ . C1 is the unbounded cylinder

with axis ℓ and radius R. C2 is the unbounded cylinder of radius 7R
ϵ . E is a cylinder of radius 7R

ϵ and height M .
The dots on the query line q are the endpoints of the segments in G for which we query the NNall data structure.

takes O(d2(log n+ 1
ϵ)

O(1)) time. There are Õ(dn2t) end

points so the total running time is Õ(d3n2t). �

Now consider the case E is long i.e. M > 252R logn
ϵ .

We first show the distance being used in step 10
of algorithm 4 is a good approximation of the true
distance. See Figure 2 for reference.

Lemma 3.4. Consider the case M > 252R logn
ϵ . As in

algorithm 4, we project the points in S and the segment
of q inside a sub-cylinder onto the sub-cylinder’s bottom
face. We claim that the distance between a point p and
an end point of the segment of q in the projection space
is a (1 + 1

3 logn)-approximation of the distance between
p and q in the original space.

Proof. Let P be the hyperplane containing p and or-
thogonal to ℓ. Let v be the vector from p to the inter-
section of hyperplane P and line q. Decompose v into v∥

and v⊥, where v∥ is the component parallel to q and v⊥

is perpendicular to q. Note that v⊥ is the distance be-
tween p and q. Let u and i be the unit vectors on ℓ and
q, respectively. Decompose u into u∥ and u⊥ in the same
way as v. Let α be the angle between u and i, where
0 ≤ α ≤ π

2 . By the definition of α, we have u∥ = cosα·i,
and ||u⊥||2 = sinα. Because v is orthogonal to ℓ, we
have 0 = u·v = u∥ ·v∥+u⊥ ·v⊥. By the Cauchy-Schwarz
inequality, |u⊥ · v⊥| ≤ ||u⊥||2||v⊥||2 = sinα||v⊥||2.
Therefore, cosα||v∥||2 = |u∥ ·v∥| ≤ sinα||v⊥||2. In other

words, ||v∥||2
||v⊥||2 ≤ tanα.

Since M > 252R logn
ϵ and the diameter of the

cylinder C2 is 14R
ϵ , we have that tanα < 1

9 logn . Thus,

||v∥||2
||v⊥||2 < 1

9 logn and ||v||2 is a 1± 1
9 logn -approximation of

||v⊥||2. The length of the segment of q in the projection
space is at most 1

252n2t log n
ϵ

· 14Rϵ = R
18n2t logn < r⋆

9 logn .

Therefore, using the projection of an end point of the
segment of q as an approximation for the projection of
the intersection of q and hyperplane P further distorts
distance by at most a factor of 1 + 1

9 logn . Combining
the two approximation steps, we get the desired claim.
�

We can now show that step 10 of algorithm 4 can
find a c-LNN of q efficiently when M > 252R logn

ϵ .

Lemma 3.5. When M > 252R logn
ϵ , a c-LNN of q can

be found in Õ(d2n2t) time.

Proof. By lemma 3.4, one can find a c-LNN of q inside
each sub-cylinder by finding a (1 + ϵ− 1

logn)-NN of the
projection of q on the bottom face of the sub-cylinder.
This can be done by making one query to the NN data
structure, which takes O(d2(log n+ 1

ϵ)
O(1)) time. There

are Õ(n2t) sub-cylinders so the total running time is
Õ(d2n2t). �

3.2.2 Large r⋆ In this section, we consider the case
r⋆ ≥ 3R

ϵ . We will show that in this case, step 17 of
algorithm 4 finds a c-LNN of q efficiently.

R

7R

ε

q

`

C1

C2 E

p

v⊥

P

D

C

v

pr(p)

FC
q ∩ FC

3R(1+ε)
ε

Figure 2: Query algorithm for Cylinder-DS when r⋆ < 3R
ϵ and M > 252R logn

ϵ . While we partition E into up to
O(logm) dyadic intervals, we illustrate just one such cylinder, D. The cylinder D is further partitioned in equal
height cylinders. For a particular such sub-cylinder, the algorithm projects points and the line to the plane P .

Lemma 3.6. If r⋆ ≥ 3R
ϵ , a c-LNN of q can be found in

O(log n) time.

Proof. The distance between a point and the cylinder
axis is at most R so replacing a point by its projection
on ℓ only distorts distance by at most a factor of 1 + ϵ

3 .
Assume that the parametric equation of ℓ and q are
uℓ + tℓvℓ and uq + tqvq, respectively, where tℓ, tq ∈ R
and uℓ, vℓ, uq, vq are vectors in Rd. For any value of tℓ,
we can find the value of tq corresponding to the point
on q that is nearest to the point uℓ + tℓvℓ. The solution

is tq =
vq·(uℓ+tℓvℓ−uq)

||vq||2 , which is linear in tℓ. Thus,

the square of the distance between uℓ + tℓvℓ and q is
a quadratic function in tℓ and the minimum is achieved
at some t⋆ℓ . Therefore, we can find the nearest neighbor
of q among points on ℓ by finding the point closest to
the point uℓ+t⋆ℓvℓ. This can be done by a simple binary
search, as in step 17. �

3.3 Summary of the data structure for
Cylinder-DS Combining two cases, we have an al-
gorithm for r⋆ > R

2n2t . We can now finalize the proof of
Lemma 2.1.

Proof. [Proof of Lemma 2.1] This lemma follows directly
from combining Lemmas 3.3, 3.5, and 3.6. The running
time is dominated by the case R

2n2t < r⋆ < 3R
ϵ so

the total running time is Õ(d3n2t). As described in
algorithm 3, we have Õ(n2t) NN data structures so the

total space is O(d2n2t+O(1/ϵ2)). �

4 Data Structure Projection-DS

In this section, we describe the structure Projection-
DS , proving Lemma 2.2. First we give the algorithm
and then prove its correctness.

The outline of the data structure is as follows. First
we perform a random projection of the set S into a space
of constant dimension, namely dimension k = 2/t + 1.
Then, we solve the exact version of line nearest neighbor
problem in the obtained k-dimensional space. For the
second step, we follow the approach given by Magen
in [Mag07, Section 5].

For completeness, we describe Magen’s approach for
solving low-dimensional (exact) line nearest neighbor
problem. (We note that Magen’s approach addresses
the dual version of this sub-problem, but it adapts
to our case nonetheless.) The idea is to reduce the
problem to a ray-shooting problem in some dimension
k′ = O(k2). Namely, we transform each point p ∈
S into a hyperplane Hp ⊂ Rk′

such that the first
k′ − 1 coordinates encode “all possible” lines and the
last coordinate encodes the distance-squared from the
corresponding line to the point p. The hyperplane Hp

is obtained as follows. Fix the point p and consider a
line ℓ = {a + uλ | λ ∈ R} for some vector a ∈ Rk and
unit-length vector u ∈ Rk. Then, the distance-squared

from p to ℓ is equal to

d2(p, ℓ) =
∑
i

(ai − pi + ui

∑
j

(pj − aj)uj)
2

=

∑
j

(pj − aj)uj

2

+
∑
i

(ai − pi)
2 +

+2
∑
i

(ai − pi)ui

∑
j

(pj − aj)uj

which is a degree-6 polynomial in variables ai, ui, i =
1, 2, . . . k, with O(k2) monomials. We can linearize
this polynomial by assigning a variable to each mono-
mial, and thus view d2(p, ℓ) as a linear function fp
of O(k2) monomials (of degree at most 6) of ui, ai’s.
The hyperplane Hp is simply defined by the equation
fp(x1, . . . xk′−1) = xk′ . Now to find the closest point p
to a query line ℓ (given by a, u ∈ Rk), we first com-
pute the corresponding monomials to obtain a point
qℓ ∈ Rk′−1, and then shoot a ray from (qℓ,−∞) to-
wards (qℓ,+∞). Then the first intersected hyperplane
Hp gives the closest point p to ℓ. Similarly, to ob-
tain all R-near neighbors of ℓ, we report all hyper-
planes intersected by the semi-line from (qℓ,−∞) to
(qℓ, R

2). To solve the ray-shooting problem in Rk′
it-

self, we use a data structure of Meiser [Mei93] that gives

O(nk′+1) = O(nO(1/t2)) space and poly(k, log n) query
time.

It remains to argue that the initial random projec-
tion step preserves the distances sufficiently well. We
note that we do a dimensionality reduction into a very
low dimensional space, and thus we will obtain some
high distortions. Nonetheless, we show that this distor-
tion is still bounded by T = nt/2, a factor polynomial
in n.

The main part of the analysis for this case is thus
the following lemma. We note that Magen [Mag07]
proves a similar lemma for small approximations, c =
1 + ϵ.

Lemma 4.1. Consider a point p and a line l in Rd. For
k ≥ 5, let P ∈Mk,d(R) be a random projection from Rd

to Rk, scaled by 1
2

√
d
k . Let p′ = Pp be the projection of

p and line l′ ⊂ Rk is the projection of l under P . Let ∆
be the distance between p and q and ∆′ be the distance
between p′ and l′. Then, for any c > 10, we have that:

• Pr[∆′ ≤ ∆] ≥ 1− e−k/2, and

• Pr[∆/c ≤ ∆′] ≥ 1− (c/15)−k/2.

Before proving the lemma, we complete the correct-
ness analysis of the algorithm. Indeed, the above lemma
implies that:

• if p∗ is the distance to nearest point to q, then
the distance to p∗ does not increase under the
projection with constant probability;

• all points p at distance > TR from the line q
remain at distance at least R in the projected space
since each one remains at distance at least R with
probability ≥ 1− (nt/15)−k/2 ≥ 1− n−1−t/4.

The above allows us to conclude Lemma 2.2. It only
remains to prove Lemma 4.1.

Proof. [Proof of Lemma 4.1] To simplify the proof, we
assume here that the random projection is scaled by√
d/k (without the 1/2 factor). Then we need to prove

that Pr[∆′ ≤ 2∆] ≥ 1 − e−k/2 and Pr[∆′ ≥ ∆/c] ≥
1− (c/7.5)−k/2.

We use standard Johnson-Lindenstrauss Lemma to
prove our claim. We note that we use JL lemma for
high-distortion regime, as opposed to the more usual
1 + ϵ approximation regime. We use the following form
of JL lemma (see, e.g., [DG99] or [IM98]):

Lemma 4.2. (JL Lemma) Let P ∈ Mk,d be a random

projection matrix, scaled by
√

d/k. Then, for every
unit-length vector x, and every scalar β ≥ 2, we have
that:

• Pr[∥Px∥2 ≥ β] ≤ O(k) · exp[−k/2 · (β − (1+ lnβ))]
and

• Pr[∥Px∥2 ≤ 1/β] ≤ O(k) · exp[−k/2 · (lnβ − 1)].

We prove that ∆′ ≤ 2∆ with the desired probability.
Let p̂ be the projection of p onto l (in Rd), and let
p̂′ = P p̂ be the projection of p̂ under P . Then, by
the above lemma, d(p′, l′) ≤ d(p′, p̂′) ≤ 2d(p, l) with
probability at least 1− e−Ω(k).

Now we prove that ∆′/c ≤ ∆ with the desired
probability. By rescaling, we can assume, wlog, that
d(p, l) = 1. Take q ∈ l to be a point on l at distance
1
c2 from p̂. Also, let q′ = Pq. Note that q′ and p̂′

completely define l′ in Rk. Finally, let u = q − p̂ and
u′ = Pu = q′ − p̂′. Then, any point on l′ is equal to
p̂′ + λu′ for some real λ. Note that ∥u′∥ ≤ 1/c with
probability at least 1− e−k/2(c−1−ln c) ≥ 1− e−kc/4.

The proof plan is to first consider a (infinite)
number of dense, equally spaced points on the line l′

and prove that none is close to p′. Then we prove that
p′ cannot be close to a point in between the considered
points on the line l′.

In particular, for i ∈ Z, let qi = p̂ + iu and
q′i = Pqi = p′ + iu′. By JL lemma from above, we
have that d(p′, q′0) = d(p̂′, p′) ≥ 1/c with probability at
least 1 − (e/c)k/2. For i ̸= 0, we have that d(p, qi) ≥
i, and thus d(p′, q′i) ≥ 1/c with probability at least

1 − (e
c|i|)

k/2. By union bound over all points q′i for

i ∈ Z, we have that d(p′, q′i) ≥ 2/c with probability
at least 1−(e/c)k/2 ·(1+

∑
i∈Z 1/|i|k/2) ≥ 1−5(e/c)k/2.

Now suppose none of the “bad” (low-probability)
events from above holds. Then for any point w ∈ l′, we
have that d(p′, w) ≥ d(p′, q′i)− d(q′i, w), where i is such
that q′i is the closest to w. In such case, we have that
d(p′, w) ≥ 2/c− 1/c = 1/c. This concludes the proof of
Lemma 4.1. �

References

[BHZ07] Ronen Basri, Tal Hassner, and Lihi Zelnik-Manor.
Approximate nearest subspace search with applications
to pattern recognition. In Computer Vision and Pat-
tern Recognition (CPRV’07), pages 1–8, June 2007.

[Cla88] K. Clarkson. A randomized algorithm for closest-
point queries. SIAM Journal on Computing, 17:830–
847, 1988.

[DG99] S. Dasgupta and A. Gupta. An elementary proof of
the johnson-lindenstrauss lemma. ICSI technical report
TR-99-006, Berkeley, CA, 1999.

[HP01] S. Har-Peled. A replacement for voronoi diagrams
of near linear size. Proceedings of the Symposium on
Foundations of Computer Science, 2001.

[IM98] P. Indyk and R. Motwani. Approximate nearest
neighbor: towards removing the curse of dimensional-
ity. Proceedings of the Symposium on Theory of Com-
puting, pages 604–613, 1998.

[KOR98] E. Kushilevitz, R. Ostrovsky, and Y. Rabani.
Efficient search for approximate nearest neighbor in
high dimensional spaces. Proceedings of the Symposium
on Theory of Computing, pages 614–623, 1998.

[Mag07] A. Magen. Dimensionality reductions in ℓ2 that
preserve volumes and distance to affine spaces. Dis-
crete and Computational Geometry, 38(1):139–153,
July 2007. Previously in RANDOM’02.

[Mei93] S. Meiser. Point location in arrangements of hyper-
planes. Information and Computation, 106:286–303,
1993.

	Introduction
	Preliminaries and Definitions

	Approximate Line Nearest Neighbor
	Full Algorithm
	Correctness and Run-time Analysis

	Data Structure Cylinder-DS for Cylinder Case
	The Algorithm
	Correctness and Running Time Analysis
	Small r
	Large r

	Summary of the data structure for Cylinder-DS

	Data Structure Projection-DS

