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ABSTRACT
In the turnstile model of data streams, an underlying vector x ∈
{−m,−m+1, . . . ,m−1,m}n is presented as a long sequence of
positive and negative integer updates to its coordinates. A random-
ized algorithm seeks to approximate a function f(x) with constant
probability while only making a single pass over this sequence of
updates and using a small amount of space. All known algorithms
in this model are linear sketches: they sample a matrix A from
a distribution on integer matrices in the preprocessing phase, and
maintain the linear sketchA ·x while processing the stream. At the
end of the stream, they output an arbitrary function of A · x. One
cannot help but ask: are linear sketches universal?

In this work we answer this question by showing that any 1-
pass constant probability streaming algorithm for approximating
an arbitrary function f of x in the turnstile model can also be
implemented by sampling a matrix A from the uniform distribu-
tion on O(n logm) integer matrices, with entries of magnitude
poly(n), and maintaining the linear sketch Ax. Furthermore, the
logarithm of the number of possible states of Ax, as x ranges over
{−m,−m + 1, . . . ,m}n, plus the amount of randomness needed
to store A, is at most a logarithmic factor larger than the space re-
quired of the space-optimal algorithm. Our result shows that to
prove space lower bounds for 1-pass streaming algorithms, it suf-
fices to prove lower bounds in the simultaneous model of commu-
nication complexity, rather than the stronger 1-way model. More-
over, the fact that we can assume we have a linear sketch with
polynomially-bounded entries further simplifies existing lower bounds,
e.g., for frequency moments we present a simpler proof of the
Ω̃(n1−2/k) bit complexity lower bound without using communi-
cation complexity.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems
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1. INTRODUCTION
In the turnstile model of data streams [28, 34], there is an under-

lying n-dimensional vector x which is initialized to ~0 and evolves
through an arbitrary finite sequence of additive updates to its coor-
dinates. These updates are fed into a streaming algorithm, and have
the form x← x+ ei or x← x− ei, where ei is the i-th standard
unit vector. This changes the i-th coordinate of x by an additive
1 or −1. At the end of the stream, x is guaranteed to satisfy the
promise that x ∈ {−m,−m + 1, . . . ,m}n, where throughout we
assume that m ≥ 2n. The goal of the streaming algorithm is to
make one pass over the data and to use limited memory to compute
functions of x, such as the frequency moments [1], the number of
distinct elements [19], the empirical entropy [12], the heavy hitters
[14, 17], and treating x as a matrix, various quantities in numerical
linear algebra such as a low rank approximation [15]. Since com-
puting these quantities exactly or deterministically often requires a
prohibitive amount of space, these algorithms are usually random-
ized and approximate.

Curiously, all known algorithms in the turnstile model have the
following form: they sample an r×n matrix A from a distribution
on integer matrices in a preprocessing phase, and then maintain the
“linear sketch” A · x during the stream1. For known solutions to
the above problems, the sketchA ·x is maintained over the integers
(rather, than say, a finite field). From A · x, the algorithm then
computes an arbitrary function ofA ·x, which should with constant
probability, be a good approximation to the desired function f(x).
Linear sketches are well-suited for turnstile streaming algorithms
since given the state A · x and an additive update x ← x+ ei, the
new state A · (x + ei) can be computed as A · x + Ai, where Ai
is the i-th column of A. This raises the natural question of whether
or not all turnstile streaming algorithms need to in fact be linear
sketches.

Several works already consider the question of lower bounds
on the dimension of linear sketches themselves, rather than try-
ing to obtain bit complexity lower bounds [4, 27, 32, 36]. For in-
stance, Andoni et al. [4] prove a lower bound on the dimension of
a randomized linear sketch for estimating frequency moments and
state “We stress that essentially all known algorithms in the general
streaming model are in fact linear estimators.” The relationship be-
tween the space complexity of the optimal turnstile algorithm and

1There are algorithms in the insertion-only model, where all the
updates are required to be positive, which are not linear sketches,
e.g., the algorithm for frequency moments given by Alon et al. [1].



that of a linear sketch is thus important for understanding the appli-
cability of lower bounds for linear sketches2.

Some progress has been made on the above question. Ganguly
[22] shows that for approximating the `1-heavy hitters, any deter-
ministic streaming algorithm might as well be a linear sketch over
the integers. Ganguly also generalized this reduction to determin-
istic streaming algorithms for approximating the `p-heavy hitters,
for every 1 ≤ p ≤ 2 [23].

In a related work, Feldman et al. [18] introduced the MUD
model for computational tasks, which stands for massive, unordered,
distributed algorithms, which contains linear sketches as a spe-
cial case. The authors show that any deterministic streaming al-
gorithm for computing a symmetric (order-invariant) total single-
valued function exactly can be simulated by a MUD algorithm.
They partially extend this to approximation algorithms, but require
that the approximating function is also a symmetric function of its
input, rather than only requiring that the function being approxi-
mated is symmetric. For randomized algorithms they require that
for each fixed random string, the streaming algorithm computes a
symmetric function of its input.

Thus, existing results on this problem were either for determin-
istic algorithms and specific problems, or did not work for arbitrary
approximation algorithms.

Our Contributions: We show that any 1-pass constant probability
streaming algorithm for approximating an arbitrary function f of x
in the turnstile model can be implemented by sampling a matrix A
from the uniform distribution with support on O(n logm) integer
matrices, each with entries of magnitude poly(n logm), and main-
taining the linear sketch A · x over the integers. Furthermore, the
logarithm of the number of possible states ofA ·x, as x ranges over
{−m,−m + 1, . . . ,m}n, plus the number of random bits needed
to sample A, is at most an O(logm) factor larger than the space
required of the space-optimal algorithm for approximating f in the
turnstile model. Our result helps explain why all known streaming
algorithms in the turnstile model are linear sketches.

We note that the logarithmic factor loss in our result is necessary
for some problems, e.g., for the function f(x) = x1 mod 2. In this
case, the optimal algorithm has two states and maintains x1 mod 2,
while the optimal sketching algorithm Ax over the integers must
have at least logm states since with large constant probability, A ·
(1, 0, . . . , 0) 6= 0, and by scaling, A · (i, 0, . . . , 0) results in a
different state for each i ∈ [m].

While the distribution on sketching matricesA that we create can
be sampled from with an O(logn + log logm) bit random seed,
in general the O(n logm) matrices in its support cannot be repre-
sented in small space. The output function of the sketching algo-
rithm, given A · x and the random bits used to sample A, may also
not be computable in small space. These issues can be handled by
allowing the sketching algorithm to be non-uniform, though there
are other ways of addressing them as well. These are discussed fur-
ther below, and do not affect one of our main applications to lower
bounds described next.

Communication Complexity: One consequence of our result is for
proving lower bounds on the space required of algorithms in the
turnstile model, which is often done using communication com-
plexity. Typically one creates a communication problem in which
there are two or more players P1, . . . , Pk, each with an input Xi,

2We note that for the sketching lower bounds mentioned, they are
for real input vectors, so one would still need to obtain dimension
lower bounds for linear sketches for integer input vectors to apply
them to linear sketches in the turnstile model.

and lower bounds the communication required among the players
to compute a function f(X1, . . . , Xk). For 1-pass lower bounds, it
suffices to consider 1-way communication, in which P1 speaks to
P2 who speaks to P3, etc., and Pk outputs the answer. To obtain
lower bounds in the turnstile model, each player Pi creates a data
stream σi from his/her input Xi. Then P1 runs a data stream al-
gorithm A on σ1, and transmits the memory contents of A to P2,
who continues the computation of A on σ2, etc. At the end, A will
have been executed on the stream σ1 ◦ σ2 ◦ · · · ◦ σk. If the output
of A determines f with constant probability, then the space of the
streaming algorithm is at least the randomized 1-way communica-
tion complexity of f divided by k.

While for some problems randomized 1-way communication lower
bounds are easy via a reduction from the Indexing problem [31],
for other problems such as k-player Set Disjointness and Gap-`∞
[7, 13, 26, 30], 1-way lower bounds are not much easier to prove
than 2-way communication lower bounds with current techniques.
A weaker model than the 1-way model is the simultaneous commu-
nication model. In this model there are k players P1, . . . , Pk, each
with an input Xi, but the communication is even more restricted.
There is an additional player, called the referee, and each of the
players Pi can only send a single message, and only to the referee,
though they may share a common random string. The referee an-
nounces the output, which should equal f(X1, . . . , Xk) with con-
stant probability. Before our work, one could not use randomized
communication lower bounds for f to obtain space lower bounds
for streaming algorithms since there is no simulation in which the
state of a streaming algorithm can be passed sequentially among the
players. However, since our result shows that the optimal stream-
ing algorithm can be implemented using a sketching matrix A, up
to a logarithmic factor, each player Pi can compute A · xi, where
xi is the underlying vector associated with the stream σi that Pi
creates from his/her inputXi to the communication game. The ref-
eree uses linearity to computeA · (x1 +x2 + · · ·+xk) from which
it can compute the output of the streaming algorithm.

Our result thus shows that it suffices to consider simultaneous
communication complexity to prove lower bounds. This makes
progress on Question 19 on Sketching versus Streaming in the IITK
Open Problems in Data Streams from 2006, which asks to show
that any symmetric function that admits a good streaming algorithm
also admits a sketching algorithm. Our result shows this even for
non-symmetric functions (in the turnstile streaming model). One
well-studied problem for which it is easier to prove lower bounds
in the simultaneous model is k-player Set Disjointness, see The-
orem 18 of [6] which predates the lower bound [7] in the one-way
model. This problem is used to prove lower bounds for approxi-
mating the p-th frequency moment Fp =

∑n
i=1 |xi|

p, p > 2, in
the turnstile model, for which it is known that Θ̃(n1−2/p) bits of
space is necessary and sufficient. This problem has a long history
[1, 2, 3, 7, 10, 11, 13, 16, 20, 21, 24, 25, 29, 33, 39]. While we can
use the simultaneous lower bound for k-player Set Disjointness
to prove an Ω̃(n1−2/p) bound for frequency moments, we give an
even simpler proof for linear sketches with polynomially bounded
entries without using communication complexity at all in Appendix
C. By our reduction, this gives a bit complexity lower bound for
turnstile streaming algorithms in general.

Non-uniformity. It may not be possible to represent the sketch-
ing matrix A or compute the output given Ax in small space, even
though A is sampleable with only O(logn + log logm) random
bits. A natural way of addressing this is to allow the streaming al-
gorithm to be non-uniform, meaning for each n it has the uniform
distribution on our O(n logm) matrices A hardwired into a read-



only tape. We could further hardwire the output of Az for each
possible value of Az and each of the O(n logm) possible A. The
number of such outputs is (mn)O(rank(A)), which since the algo-
rithm uses Θ(rank(A) log(mn)) bits of space to maintain Ax, the
algorithm does not need additional space to index into this list of
outputs. This hardwiring is analogous to the distinction between
circuits and Turing machines, and is sometimes the definition used
for streaming algorithms, see, e.g., [9].

A second way of addressing this is, since our procedure for find-
ing these O(n logm) matrices A with associated outputs is con-
structive, when processing an update x ← x + ei the algorithm
could run this procedure to reconstructAi and addAi to the sketch.
This process is consistent across different updates since the algo-
rithm stores the same random seed. Similarly, it could run a con-
structive procedure to compute its output. Before and after pro-
cessing each update or output, the state of the streaming algorithm
consists only of its random seed together with its sketch Ax for
the current x. However, the algorithm is allowed more space while
processing an update or computing the output.

This non-uniformity does not affect our application to using si-
multaneous communication complexity to prove streaming lower
bounds since the parties can locally create the same O(n logm)
matrices A, and use the common random seed to sample an A.
Moreover, the local space and time complexities are not counted in
the communication lower bounds, and so the referee can use addi-
tional space to compute the output.

Our Techniques: Our starting point is an elegant work of Gan-
guly [22] which introduces concepts such as path-reversibility and
path-independence for modeling a streaming algorithm by a deter-
ministic automaton. One property of deterministic automata is that
if the input vector x goes to multiple different states (induced by
distinct input streams), then these states can be “merged” and the
output of the new state can be chosen to be the output of any of the
states being merged. We deal with automata which only have large
success probability on an input distribution and so this is no longer
true, i.e., if the merging is not done carefully our success probabil-
ity could drop dramatically. We instead partition the state space into
connected components and perform random walks in these compo-
nents, where the walks correspond to variable-length streams with
underlying input ~0. Our outputs are defined by samples from the
stationary distribution of these walks.

For each fixed random string of the automaton we obtain a deter-
ministic automaton whose state space is isomorphic to the quotient
module Zn/M for a submoduleM of Zn. In Ganguly’s work [22],
for his specific problem of approximating the `1-heavy hitters he
could then remove torsion from Zn/M so that this quotient mod-
ule is free. This is not possible for general problems (e.g., when
computing x1 mod 2 the quotient module would be Z/2Z and re-
moving torsion would make the quotient module 0). We instead
crucially rely on the Smith Normal Form of Zn/M , which allows
us to write the states of the automaton as Bx mod q for an integer
matrix B with r rows, where q = (q1, . . . , qr) is an integer vector.
The remainder of our proof has two main ingredients. The first is
in showing how to go fromBx mod q to a linear sketchA over the
integers whose number of states is not much larger than the origi-
nal number of states. The main difficulty here is that each of these
states should be the image of an x ∈ {−m,−m + 1, . . . ,m}n,
not of an arbitrary x ∈ Zn, and we do not know how large the
set {Bx mod q | x ∈ {−m,−m + 1, . . . ,m}n} is. The second
ingredient is to show that while the entries of A may be exponen-
tially large, we can construct an integer matrix with polynomially
bounded entries without increasing the number of states by much.

Our procedure reduces the coefficients of random linear combina-
tions of the rows of A modulo random small primes.

2. PRELIMINARIES
Notation. Let Z denote the set of integers and Z|m| = {−m, . . . ,m}.
For a random variableX , we writeX ∼ D ifX is subject to distri-
bution D. We shall denote automata by script letters A,B, . . . and
matrices and modules by the regular italic letters A,B, . . . . We
also define a mod 0 = a for all a ∈ Z and allow us to say that 0 is
divisible by any integer a, denoted as a|0, even for a = 0.

Modules and Smith Normal Forms. Throughout this paper we
assume the ‘scalars’ of a module corresponds to the ring of integers,
Z, and we accordingly tailor the definitions.

DEFINITION 1 (MODULE). A Z-module (or module for short)
is an additive abelian groupA together with a function Z×A→ A
(the image of (r, a) being denoted by ra) such that for all r, s ∈ Z
and a, b ∈ A these four properties hold: (1) r(a + b) = ra + rb,
(2) (r + s)a = ra+ sa, (3) r(sa) = (rs)a, (4) 1a = a.

Notions such as submodules, module homomorphisms and finitely
generated modules can be defined similarly as for groups and we
omit the definitions. Analogously to vector spaces, we can define
the notions of linear independence, basis, submodule spanned by a
set, etc., and we omit the definitions here. However, since Z is not
a field, a Z-module A may not have a basis. In case it has a basis,
we call A a free Z-module, or a free module, for short. Note that
every submodule of a free Z-module is free. Also, if F is a free
module, then any bases of F have the same cardinality. Hence we
can define the dimension (or rank) of F to be the cardinal number
of any basis of F . As in the case of vector spaces, if we have a
linearly independent set of F we can always extend it to a basis of
F .

The following is an important structure theorem of modules.

THEOREM 1 (STRUCTURE THEOREM). LetA be a finitely gen-
erated module over Z. Then A ' Za1 ⊕Za2 ⊕ · · · ⊕Zar ⊕Zt for
some integers a1|a2| · · · |ar . The numbers r, t and a1, . . . , ar are
uniquely determined by A.

The structure of a module is closely related to the Smith Normal
Form. We explore the relation below.

DEFINITION 2. A matrix A ∈ Zn×n is called unimodular if
detA = 1 or −1.

Note that the inverse of a unimodular matrix is an integer matrix
and also unimodular.

THEOREM 2 (SMITH NORMAL FORM). LetA ∈ Zm×n, then
A can be written as A = SDT where S ∈ Zm×m and T ∈
Zn×n are unimodular, and D ∈ Zm×n is a rectangular diago-
nal matrix with diagonal elements a1, . . . , ar, 0, . . . , 0 for some
r ≤ min{m,n} and nonzero a1, . . . , ar with a1| · · · |ar . The ma-
trix D is called the Smith Normal Form of A and the diagonal
entries a1, . . . , ar are uniquely determined by A.

To connect free modules with Theorem 2, consider the following
problem: Suppose that M is a submodule of a free module F . We
want to find a basis {f1, . . . , fn} of F with integers a1, . . . , ar ∈
Z with a1| · · · |ar such that {a1f1, . . . , arfr} is a basis of M . We
say {f1, . . . , fn} is a compatible basis of F and M .

Pick an arbitrary basis e1, . . . , en of F and suppose that M ad-
mits a basis b1, . . . , bm with coefficient matrix A ∈ Zm×n with



respect to e1, . . . , en, that is, bi =
∑
j Aijej . Reduce A to its

Smith Normal Form A = SDT , then b1
...
bm

 = S ·D · T

e1

...
en

 =: S ·D ·

f1

...
fn


whereD is the Smith Normal Form ofA. It is clear that f1, . . . , fn
is a basis of F and easy to check that {a1f1, . . . , arfr} is a basis
of M .

Finally, in connection with Theorem 1, we note that F/M '
Z/(a1) ⊕ · · ·Z/(ar) ⊕ Zn−m. This fact will be repeatedly used
in Section 4. Our convention that 0 divides 0 allows us to write
a1| · · · |ar+n−m, where ar+1 = · · · = ar+n−m = 0, in a more
unified notation, F/M ' Z/(a1)⊕ · · · ⊕ Z/(ar+n−m).

Deterministic Stream Automata. The results in this section are
largely due to Ganguly [22].

We consider only the problems in which the input is a vector
v ∈ Zn but represented as a data stream σ = (σ1, σ2, . . . ) in which
each element σi is an element of Σ = {e1, . . . , en,−ei, . . . ,−en}
(where the ei’s are canonical basis vectors) such that

∑
i σi = v,

and in this case, we write v = freqσ.

DEFINITION 3. A deterministic stream automatonA is a deter-
ministic Turing machine that uses two tapes, a one-way (unidirec-
tional) read-only input tape and a (bidirectional) two way work-
tape. The input tape contains the input stream σ. After processing
its input, the automaton writes an output, denoted by φA(σ), on
the work-tape.

A configuration of a stream automaton A is modeled as a triple
(q, h, w), where, q is a state of the finite control, h the current head
position of the work-tape and w the content of the work-tape. The
set of configurations of a stream automaton A that are reachable
from the initial configuration o on some input stream is denoted
as C(A). A stream automaton is a tuple (n,C, o,⊕, φ), where n
specifies the dimension of the underlying vector,⊕ : C×Σ→ C is
the configuration transition function, o is the initial position of the
automaton and φ : C → Zp(n) is the output function and p(n) is
the dimension of the output. For a stream σ we also write φ(o⊕σ)
as φ(σ) for simplicity.

The set of configurations of an automaton A that is reachable
from the origin o for some input stream σ with ‖ freqσ‖∞ ≤ m is
denoted by C(A,m). The space of the automaton A with stream
parameter m is defined as S(A,m) = log |C(A,m)|.

DEFINITION 4. Let A and B be two stream automata. We say
B is an output restriction of A if for every stream σ there exists a
stream σ′ such that freqσ = freqσ′ and φB(σ) = φA(σ′).

A problem over a data stream is characterized by a family of
binary relations Pn ⊆ Zp(n)×Zn, n ≥ 1. We say an automatonA
solves a problem P (with domain size n) if for every input stream
σ it holds that (φA(σ), freqσ) ∈ Pn. It is clear that if A solves a
problem and B is an output restriction ofA, then B solves the same
problem.

Now we introduce more concepts of different kinds of automata.
Suppose σ and τ are two streams. Let σ ◦ τ be the stream obtained
by concatenating τ to the end of σ, so freq(σ◦τ) = freqσ+freq τ .
The inverse stream of σ is denoted by σ−1 and defined inductively
as follows: e−1

i = −ei, −e−1
i = ei and (σ ◦ τ)−1 = τ−1 ◦ σ−1.

DEFINITION 5. A stream automaton A is said to be path inde-
pendent if for each configuration s and input stream σ, s ⊕ σ is

dependent only on freqσ and s. A stream automaton A is said
to be path-reversible if for every stream σ and configuration s,
s⊕ (σ ◦ σ−1) = s.

Suppose that A is a path independent automaton. We can define
a function + : Zn×C → C as x+ a = a⊕ σ, where freqσ = x.
Since A is a path independent automaton, the function + is well-
defined. In [22] it is proved that

THEOREM 3. Suppose thatA is a path independent automaton
with initial configuration o. Let M = {x ∈ Zn : x+ o = 0 + o},
then M is a submodule of Zn, and the mapping x + M 7→ x +
o is a set isomorphism between Zn/M and the set of reachable
configurations {x+ o : x ∈ Zn}.

The submodule M above is called the kernel of A. The theo-
rem implies that A gives the same output for all vectors in x+M ,
and the transition function ofA is the canonical addition on Zn/M .
Conversely, given a moduleM ⊆ Zn one can construct an automa-
ton A whose states are the cosets of M and the transition function
is the canonical addition on Zn/M . Furthermore, A has poly(n)
states in its finite control. This construction uses the optimal space.

3. RANDOMIZED STREAM AUTOMATA
In this section, we shall extend the notions and results of de-

terministic stream automata to randomized stream automata. The
following definition first appeared in [23] but the author did not
define its space complexity.

DEFINITION 6. A randomized stream automaton is a determin-
istic stream automaton with one additional tape for the random
bits. The random bit string R is initialized on the random bit tape
before any input record is read; thereafter the random bit string
is used in a two way read-only manner. The rest of the execution
proceeds as in a deterministic stream automaton.

A randomized stream automatonA is said to be path-independent
if for each randomness R the deterministic instance AR is path-
independent (path-reversible). The space complexity of A with
stream width parameter m is defined as

S(A,m) = max
R
{|R|+ S(AR,m)} .

Next we show how to reduce a general automaton to a path in-
dependent automaton. The reduction of deterministic automata is
due to Ganguly [22], where he first reduces a general automaton
to a path reversible automaton and thence to a path independent
automaton. We take the same approach for randomized automata.
The difficulty is in defining the output of the reduced automaton.

THEOREM 4. Suppose that a randomized path reversible au-
tomatonA succeeds in solving problem P on any stream with prob-
ability at least 1 − δ. Let Π be an arbitrary distribution over
streams. There exists a deterministic path independent automa-
ton B with S(B,m) ≤ S(A,m) + O(logn) which succeeds with
probability at least 1− 2δ on Π.

PROOF. Let S be the set of all streams of length at mostLwhose
frequency vector is ~0. We choose L large enough such that for any
two states o1 and o2 ofA, if there exists a stream σ with freqσ = ~0
such that o1 ⊕ σ = o2, then at least one such σ is included in S.
A finite bound L = L(C(A,m), n) can be obtained as follows.
A path in the transition graph of A is a linear combination of a
simple path and simple cycles of the graph. Thus, whether there
is freqσ = ~0 such that o1 ⊕ σ = o2 can be reduced to whether



there is a non-negative solution (multiplicities of the simple cycles)
for a system of n linear equations (all frequencies add up to 0).
A bound on the magnitude of the solution can be found in [38].
We also include in S the empty stream. Pick W to be a number
large enough such that a random walk on an undirected graph of
|C(A,m)| vertices and nL edges would mix. An upper bound for
W is 2O((2n)L). Construct a distribution Π′ as follows. For each
stream τ ∈ Π, we include new streams τ ◦ σ1 ◦ · · · ◦ σW in Π′ for
all σ1, . . . , σW ∈ S.

By Yao’s minimax principle, there exists a choice of randomness
R and thus a deterministic automaton AR such that AR succeeds
on Π′ with probability at least 1−δ. LetG be the associated multi-
graph of the states of AR where two vertices o1, o2 are connected
by an arc if there exists σ ∈ S such that o1 ⊕ σ = o2. Since AR
is path reversible, the graph G is undirected. Since S contains the
empty stream, a random walk in a connected component C of G
converges to a stationary distribution πC .

Construct a randomized automaton B as follows. Define a state
of B for each connected component of G. Let o1 and o2 be two
states of AR in the same connected component in G, i.e., there
exists a stream σ ∈ S such that o1 ⊕ σ = o2. Let o3 = o1 ⊕ ei
and o4 = o2 ⊕ ei. Since AR is path reversible, o3 ⊕ −ei = o1,
so o3 ⊕ (−ei ◦ σ ◦ ei) = o4, which implies that o3 and o4 are in
the same connected component. Therefore, the transitions among
states of B are well-defined and it is clear that B is path-reversible.
Furthermore, B is path independent because there is no stream of
frequency~0 changing B from a state to a different state. The output
ofB on a state is picked randomly from the outputs ofA according
to πC .

Fix a σ ∈ Π. We analyze the probability ofAR succeeding over
all choices of s1, . . . , sW . Let C be the connected component ofG
containing the state of AR after processing σ. Because W is large
enough, the distribution of the final state ofAR is close (within δ in
statistical distance) to πC . Thus, the probability that AR succeeds
is at most δ more than the expected success probability of B.

By an averaging argument, there exists a deterministic automa-
ton B achieving success probability at least as high as that of the
randomized B, which is at least 1− 2δ.

THEOREM 5. Suppose that a randomized algorithm A solves
P on any stream with probability at least 1 − δ. Let Π be an ar-
bitrary distribution over streams. There exists a deterministic path
reversible automaton B with S(B,m) ≤ S(A,m) + O(logn)
which solves P with probability at least 1− 3δ on Π.

PROOF. Let S be the set of all streams of length at mostLwhose
frequency vector is ~0. We choose L large enough such that for any
two states o1 and o2 of A, if there exists a stream σ with freqσ =
~0 such that o1 ⊕ σ = o2, then at least one such σ is included
in S. A finite bound for L can be obtained as before. We also
include in S the empty stream. PickW to be a number large enough
such that a lazy random walk from a fixed vertex on a directed
graph of 2S(A,m) vertices and nL edges and a positive probability
of staying in every step would get to within statistical distance δ
from a stationary distribution. Note that for the same graph, the
stationary distribution is dependent on the fixed starting vertex but
this is not a problem for the proof. Construct Π′ as follows. For
each stream τ ∈ Π, we include new streams s1 ◦ s2 ◦ · · · ◦ sW ◦
σ ◦ sW+1 ◦ · · · ◦ s2W in Π′ for all s1, . . . , s2W ∈ S.

Let G be the associated multi-graph of the states of AR where
two vertices o1, o2 are connected by an arc if there exists σ ∈ S
such that o1 ⊕ σ = o2. Since S contains the empty stream, every
vertex in G has a self-loop.

Construct a randomized automaton B as follows. Let G′ =

(V ′, E′) be the directed acyclic graph where each vertex repre-
sents a strongly connected component of G. Let rep : V ′ → V be
a map such that rep(v) is a (fixed) arbitrary vertex in the strongly
connected component v and com : V → V ′ a map from a vertex
v ∈ G to its strongly connected component. We call a strongly
connected component of G (correspondingly a vertex in G′) termi-
nal if there is no edge from it to the rest of the graph. Define a map
α : V ′ → V ′ where α(v) is an arbitrary terminal vertex reachable
from v. Let the states of B be the set of terminal vertices of G′.
Define the transition function ⊕′ on the states of B as

α(s)⊕′ ei = α(com(rep(α(s))⊕ ei)).

It is clear that the transition function⊕′ is well-defined: for any s, t
with α(s) = α(t), we have α(s)⊕′ei = α(t)⊕′ei. It is easy to see
that B is path reversible. The proof is postponed to Appendix A.

LEMMA 6. Consider a terminal vertex u ∈ V ′. We have u ⊕′
ei ◦ −ei = u.

Next we set the initial state of B. Let u0 be the initial state ofAR
and let π be the stationary distribution for the random walk starting
from u0 in G. Note that G is directed so the stationary distribu-
tion is dependent on the initial state. Notice that π is a mixture of
stationary distributions of random walks in terminal components
reachable from that initial state. The initial state of B is picked
randomly from V ′ according to the mixing weight of the terminal
components in π.

Finally, the output of each state of B is picked randomly from
the outputs of the states in the corresponding terminal component
in G according to the stationary distribution of a random walk in
that component.

We now show that the expected failure probability of B is no
more than 3δ. It then follows from an averaging argument that
there exists a deterministic B with failure probability at most 3δ.

We shall further need the following two lemmata, whose proofs
are postponed to Appendix A.

LEMMA 7. Let s be a vertex in a terminal component ofG. For
any stream σ, there is only one terminal component reachable from
s⊕ σ via streams of frequency ~0.

LEMMA 8. If AR starts from a state u ∈ G in a terminal com-
ponentC, and B starts fromC, then after every transition, the state
of B always corresponds to the unique terminal component reach-
able from the state of A via streams of frequency ~0.

Fix σ ∈ Π. We analyze the probability of AR succeeding over
all choices of s1, . . . , s2W . Because of the aforementioned mixing
time of G, the distribution of u0 ⊕ s1 ◦ · · · ◦ sW is within statis-
tical distance δ from π. Thus, the statistical distance between the
marginal distribution of u0⊕s1 ◦ · · · ◦sW over strongly connected
components of G and the distribution of the initial state of B is at
most δ.

Consider a fixing of s1, . . . , sW such that u1 = u0⊕s1 ◦· · · sW
belongs to a terminal component C of G. We compare the success
probability of A with the success probability of B when its initial
state is C. By Lemma 7, there is only one terminal component D
reachable from u1 via streams of frequency~0. Again by the mixing
time of G, the distribution of u1 ⊕ sW+1 ◦ · · · ◦ s2W is within
statistical distance δ from the stationary distribution of the random
walk in D, which, by Lemma 8, is the state of B. Therefore, the
success probability of A and B differ by at most δ.

In summary, over all random choices, the success probability of
A and B differ by at most 2δ and the desirable conclusion fol-
lows.



Both theorems above conclude with the existence of a determin-
istic automaton that succeeds with probability≥ 1−δ on Π for any
given distribution Π over the inputs. By Yao’s minimax theorem,
there exists a randomized automaton that succeeds with probability
≥ 1 − δ on any input. But, the number of random bits needed by
the randomized automaton, i.e., the number of different determin-
istic path independent automata used by the randomized automa-
ton, could be unbounded. However, following an argument due
to Newman [35], it suffices for the randomized automaton to pick
uniformly at random one of O(n logm) deterministic automata.
Therefore, the additional space needed for the random bits is only
O(logn+ log logm). For completeness, we include the argument
below.

THEOREM 9. Let A be a randomized automaton solving prob-
lem P on Zn|m| with failure probability at most δ. There is a ran-
domized automaton B that only needs to pick uniformly at random
one of O(δ−2n logm) deterministic instances of A and solves P
on Zn|m| with failure probability at most 2δ.

PROOF. Let A1, . . . ,AO(nδ−2 logm) be independent draws of
deterministic automata picked by B. Fix an input x ∈ Zn|m|. Let
pA(x) be the fraction of the automata amongA1, . . . , AO(nδ−2 logm)

that solve problem P correctly on x and pB(x) be the probability
that B solves P on x correctly. By a Chernoff bound, we have that
Pr{|pA(x)−pB(x)| ≥ δ} ≤ exp(−O(n logm)) < (2m+1)−2n.
Taking a union bound over all choices of x ∈ Zn|m|, we have
Pr{|pA(x) − pB(x)| ≥ δ for all x} > 0. Therefore, there exists
a set of A1, . . . ,AO(nδ−2 logm) such that |pA(x) − pB(x)| ≤ δ
for all x ∈ Zn|m|. The automaton B simply samples uniformly at
random from this set of deterministic automata.

Combining all theorems in this section immediately yields the
following corollary.

THEOREM 10. Suppose that a randomized algorithm A solves
P on any stream with probability at least 1 − δ. There exists a
randomized automaton B which solve P on Zn|m| with probabil-
ity at least 1 − 7δ such that S(B,m) ≤ S(A,m) + O(logn +
log logm+ log 1

δ
).

4. REDUCTION TO LINEAR SKETCHES

LEMMA 11. Let M ⊆ Zn be a module. Then there exists a
submodule M ′ ⊆M such that

1. For all x, y ∈ Zn|m|, it holds that x+M ′ = y+M ′ whenever
x+M = y +M .

2. M ′ admits a basis b1, . . . , bt such that ‖bi‖∞ ≤ C2im for
some absolute constant C > 0.

The algorithm to find the basis is standard, so the proof is postponed
to Appendix B.

LEMMA 12. Suppose that m ≥ 1 and M ⊆ Zn is a module.
Then there exists a module M ′ ⊃ M such that the following are
true.

1. For all x, y ∈ Zn|m|, it holds that x+M = y+M whenever
x+M ′ = y +M ′.

2. The compatible basis ofM and Zn is also a compatible basis
of M ′ and Zn.

3. Suppose that Zn/M ′ ' Z/(q1) ⊕ Z/(q2) ⊕ · · · ⊕ Z/(qr)
for some q1|q2| · · · |qr , where qi 6= 1 for all i. It then holds
that

∣∣{[x+M ′] : x ∈ Zn|2mn|
}∣∣ ≥ 2r .

Algorithm 1 Extending the module M
// ds+1 = · · · = dn = 0

1: d′i ← di for i = 1, . . . , `
2: for i← `+ 1 to n do
3: Mi ← 〈d′1f1, . . . , d

′
i−1fi−1, difi, d

′
i+1fi+1, . . . , dnfn〉

4: if (kfi +Mi) ∩ Zn|m| = ∅ for all k = 1, . . . , di − 1 then.
When di = 0 it means for all k 6= 0

5: d′i ← 1
6: else
7: d′i ← di
8: end if
9: end for

10: return M ′ ← 〈d′1f1, . . . , d
′
nfn〉

PROOF. Suppose that (f1, . . . , fn) is a compatible basis of M
and Zn, and {d1f1, . . . , dsfs} is a basis ofM , where d1|d2| · · · |ds
and d1 = · · · = d` = 1 for some ` ≤ s. Run Algorithm 1 and we
claim that the returned M ′ is as desired.

We first show that Property 1 is maintained throughout the loop.
In addition to Mi defined on Line 3, we also define

M ′i = 〈d′1f1, . . . , d
′
i−1fi−1, fi, di+1fi+1, . . . , dnfn〉.

If (kfi +Mi) ∩ Zn|2m| = ∅ for all k = 1, . . . , di − 1, then for any
z ∈ Zn|2m| it holds that z ∈ Mi whenever z ∈ M ′i . Suppose that
z ∈M ′i , we write

z = c1d
′
1f1+· · ·+ci−1d

′
i−1fi−1+cifi+ci+1di+1fi+1+· · ·+csdsfs

=: kfi +m,

for some k ∈ {0, . . . , di − 1} and m ∈ Mi. Since (kfi + Mi) ∩
Zn|2m| = ∅ for all k = 1, . . . , di − 1, it must hold that k = 0 and
thus z ∈Mi. Property 1 can be proved inductively using the above
argument as the inductive step. Property 2 is immediate.

Now we prove Property 3. Let S = (f1, . . . , fn)−1 and I = {i :
d′i = di 6= 1} =: {i1, . . . , ir}, then the map g(x) = ((Sx)i1 mod
di1 , . . . , (Sx)ir mod dir ), x ∈ Zn, induces an isomorphism
Zn/M ′ ' Z/(di1) ⊕ · · · ⊕ Z/(dir ), where it holds automati-
cally that di1 |di2 | · · · |dir . To simplify the notation, without loss
of generality, we assume that ij = j for 1 ≤ i ≤ r. For each
j ∈ [r], it follows from the algorithm that there exists some kj ∈
{1, . . . , dij} such that (kjfij +M ′ij )∩Zn|2m| 6= ∅. Pick an arbitrary
xj ∈ (kjfij +M ′ij )∩Zn|2m|, then g(xj) = (0, . . . , 0, kj , 0, . . . , 0).
We then have 2r distinct vectors in Zn|2mn|, namely,

∑r
j=1 σjxj

with σ ∈ {0, 1}r , that correspond to 2r distinct cosets of M ′.

LEMMA 13. Suppose that m ≥ 2n. Given a deterministic
path-independent automaton A, one can construct a deterministic
free automaton B such that

1. B is an output restriction of A on Zn|m/(2n)|;
2. S(B,m/(2n)) ≤ S(A,m) logm+O(logn);
3. The sketching matrix ΦB satisfies ‖ΦB‖max ≤ exp(O(n2 +
n logm)).

PROOF. Let M0 be the kernel of A and dimM0 = d. By
Lemma 11 we may assume that M0 has a basis b1, . . . , bd such
that ‖bi‖∞ = O(2im). Let B = (b1, . . . , bd) ∈ Zn×d and
RBT = diag(c1, . . . , cd) (where c1| · · · |cd) be the Smith Nor-
mal Form of B, where R ∈ Zn×n and T ∈ Zd×d are unimodular
matrices. Now invoking Lemma 12, we can extendM0 to a module
M such that

(a) Zn/M ' Z/(q1)⊕ · · ·Z/(qr)⊕ Zt for some q1|q2| · · · |qr
and q1 ≥ 2,



(b) there are at least 2r+t cosets intersecting Zn|m/(2n)|

(c) there exists a submatrix S ∈ Z(r+t)×n such that the isomor-
phism in (a) is given by

x 7→ ((Sx)1 mod q1, . . . , (Sx)r mod qr, (Sx)r+1, . . . , (Sx)r+t).

From the proof of Lemma 12, we actually have that (q1, . . . , qr)
is a subsequence of (c1, . . . , cd) and S is formed by r + t rows of
R. Without loss of generality, we can further assume that for each
i ≤ r, the entries of i-th row of S are contained in {0, 1, . . . , qi−1}
by taking the remainders modulo qi. Then for each i ≤ r, |Sx|i ≤
qim/2 for all x ∈ Zn|m/(2n)|, so given some 0 ≤ k < qi there are
at most m/2 different (Sx)i such that (Sx)i mod qi = k.

We construct a new automaton B whose states correspond to
XB = {Sx : x ∈ Zn|m/(2n)|}, it is clear that B is a free automaton
and can be made an output restriction ofA. This proves conclusion
1.

LetXA be the set of states ofA. For each (k1, . . . , kr, kr+1, . . . , kt) ∈
XA, where 0 ≤ ki < qi for all 1 ≤ i ≤ r, there are at most
(m/2)r different states Sx of B such that

((Sx)1 mod q1, . . . , (Sx)r mod qr, (Sx)r+1, . . . , (Sx)t)

= (k1, . . . , kr, kr+1, . . . , kr+t).

This implies that |XB| ≤ (m/2)r|XA| and thus

S(B, (m/2n)) ≤ r log(m/2) + log |XA|+O(logn)

≤ log |XA| log(m/2) + log |XA|+O(logn)

≤ S(A,m) logm+O(logn),

where we used the fact (b) that S(A,m/(2n)) ≥ r + t for the
second inequality. This proves conclusion 2.

Next we show Conclusion 3. Note that ‖B‖max = O(2nm).
By [37, Chapter 8], we can find S such that

‖S‖max ≤ n2n+5(
√
n‖B‖max)4n‖B‖max = n4n+5‖B‖4n+1

max .

It follows immediately that ‖ΦB‖max = ‖R‖max ≤ ‖S‖max =
exp(O(n2 + n logm)).

LEMMA 14. Suppose that A is a deterministic automaton with
sketching matrix ΦA such that ‖ΦA‖max ≤ 2M for some M ≥
max{20 log2(mn), 100}. Then there exists a deterministic au-
tomaton B such that

1. B is an output restriction of A on Zn|m|;
2. S(B,m) ≤ 2(3 + logM (mn))S(A,m) +O(logn);
3. ΦB has integer entries such that ‖ΦB‖max ≤M3.

PROOF. Suppose that x ∈ {−4m2n32M , . . . , 4m2n32M} \
{0} and P = {p is a prime : p ≤ M10}. Choose p uniformly
at random from P . Since x has most log2(4m2n32M ) ≤ 1.2M
distinct prime factors and |P | ≥M3/(11 lnM), we see that
Pr{p divides x} ≤ (13.2 lnM)/M2.

Suppose that ΦA has r rows and rank(ΦA) = r. Let X =
{ΦAx : x ∈ Zn|m|}. Let p1, . . . , pt be i.i.d. uniform on P and S be
a random t×rmatrix of entries i.i.d uniform over {0, . . . , 2M−1},
where t = 2 logM |X|. Construct a matrix ΦB such that (ΦB)ij =
(SΦA)ij mod pi. To show that B can be realized as an output
restriction of A, we shall show that if for any x, y ∈ Zn|m|, if
ΦAx 6= ΦAy then ΦBx 6= ΦBy. Let z = x − y, then ΦAz 6=
0. Then for each i, Prρi{〈ρi,ΦAz〉 = 0} ≤ 1/(2M). Since
|〈ρi,ΦAz〉| ≤ 4m2n32M , it follows from the argument at the be-
ginning of the proof that

Prpi
{
〈ρi,ΦAz〉 mod pi = 0

∣∣〈ρi,ΦAz〉 6= 0
}

≤ (13.2 lnM)/M2 < 1/(2M)

Summing the two probabilities above, we see that

Prpi {〈ρi,ΦAx〉 = 0} ≤ Prpi {〈ρi,ΦAx〉 mod pi = 0} < 1/M.

Thus

Prp1,...,pt,ρ1,...,ρt{ΦBz = 0} < (1/M)t = 1/|X|2.

Now, taking a union bound over at most |X|2 pairs of (x, y) such
that ΦAx 6= ΦAy, we see that there exists a choice of p1, . . . , pt
and ρ1, . . . , ρt such that the associated ΦB meets our requirement.

Finally,

S(B,m) ≤ log2

∣∣{ΦBx : x ∈ Zn|m|}
∣∣+O(logn)

≤ log2(‖ΦB‖max ·mn)t +O(logn)

≤ t log2(M3mn) +O(logn)

≤ 2 log2 |X| · (3 + logM (mn)) +O(logn)

≤ 2(3 + logM (mn))S(A,m) +O(logn).

Combining Lemma 13 and Lemma 14, we conclude this section
with

THEOREM 15. Suppose that m ≥ 2n. Given a deterministic
path-independent automaton A, one can construct a deterministic
free automaton B such that

1. B is an output restriction of A on Zn|m/(2n)|;
2. S(B,m/(2n)) ≤ 8S(A,m) logm+O(logn);
3. The sketching matrix ΦB satisfies ‖ΦB‖max = O((n2 +
n logm)3).

Finally, combining with Theorem 10 we conclude the paper with

THEOREM 16 (MAIN). Let m,n be positive integers. Sup-
pose that a randomized algorithm A solves P on any stream with
probability at least 1 − δ. There exists a randomized free automa-
ton B which solve P on Zn|m| with probability at least 1− 7δ such
that

1. S(B,m) = O(S(A, 2mn) log(mn) logn + log logm +
log(1/δ));

2. Each deterministic instance of B corresponds to a sketching
matrix ΦB that satisfies ‖ΦB‖max = O((n2+n log(mn))3).

REMARK 17. On input x ∈ Zn|m|, it is possible that the fre-
quency vector, at intermediate steps, has coordinates exceeding m.
However the automaton B can easily handle this by maintaining
ΦBx mod (‖ΦB‖maxmn). Because of the bound on the number
of rows of ΦB in Theorem 15, the space of B remains bounded by
O(S(A, 2mn) log(mn) + logn+ log logm+ log(1/δ)).
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APPENDIX
A. OMITTED DETAILS IN THE PROOF OF

THEOREM 5

PROOF OF LEMMA 6. Let v = u ⊕′ ei = α(com(rep(u) ⊕
ei)). Let σ be a stream with freq(σ) = ~0 such that (rep(u) ⊕
(ei)) ⊕ σ = rep(v). Note that freq(ei ◦ σ ◦ −ei) = ~0 and u is



terminal, we have α(com(rep(u)⊕ ei ◦ σ ◦ −ei)) = u. Thus,

u⊕′ ei ◦ −ei = α(com(rep(v)⊕−ei))
= α(com(rep(u)⊕ ei ◦ σ ◦ −ei))
= u.

PROOF OF LEMMA 7. Let u, v be two vertices in some (possi-
bly different) terminal components reachable from s⊕ σ. Assume
that s⊕σ⊕σu = u, s⊕σ⊕σv = v, where freq(σu) = freq(σv) =
~0. Since s belongs to a terminal component and freq(σ ◦ σu ◦
σ−1) = ~0, there is a stream σ′u of frequency ~0 such that u ⊕
σ−1 ◦ σ′u = s. We have u ⊕ σ−1 ◦ σ′u ◦ σ ◦ σv = v and
freq(σ−1 ◦σ′u ◦σ ◦σv) = ~0. This implies that u, v must belong to
the same terminal component since they are both in terminal com-
ponents.

PROOF OF LEMMA 8. We prove by induction. Let u′ be the
current state of AR and C′ the current state of B. By the induction
hypothesis, C′ = α(com(u′)). Consider the transition induced
by processing ei. Because C′ is the unique terminal component
reachable from u′, there is a stream σ of frequency ~0 such that
(u′ ⊕ ei)⊕−ei ◦ σ = rep(C′). By definition, the state of B after
the transition is α(com(rep(C′) ⊕ ei)) = α(com((u′ ⊕ ei) ⊕
−ei ◦ σ ◦ ei)), which is the unique terminal component reachable
from u′ ⊕ ei via streams of frequency ~0.

B. PROOF OF LEMMA 11

Algorithm 2 Finding an independent set of M
1: X ← {0}
2: t← 0
3: while (M \X) ∩ Zn|2m| 6= ∅ do
4: Pick y ∈ (M \X) ∩ Zn|2m|
5: if t = 0 then
6: b1 ← y
7: else
8: ρ← d(y,P(b1, . . . , bt))
9: Y ← {x ∈M \X : d(x,P(b1, . . . , bt)) ≤ ρ}

10: bt+1 ← arg minz∈Y d(z,P(b1, . . . , bt)) . pick an
arbitrary one if there is a tie

11: end if
12: t← t+ 1
13: X = span{b1, . . . , bt}
14: end while
15: return b1, . . . , bt

PROOF. We run Algorithm 2 to find linearly independent vec-
tors b1, . . . , bt ∈M for some t. Since Y is a finite set, it is always
possible to find a bi+1 in Line 10. The algorithm will always termi-
nate since Zn|2m| is a finite set, and it is easy to see that the returned
set of vectors b1, . . . , bt are linearly independent. It is not diffi-
cult to verify inductively that ‖bi‖∞ ≤ C2im for some absolute
constant C > 0.

Now letM ′ = 〈b1, . . . , bt〉, the module generated by b1, . . . , bt.
It is clear that M ′ is a submodule of M . Suppose that x, y ∈ Zn|m|
and x+M = y +M . We want to show that x+M ′ = y +M ′.
Let z = x − y. By the termination condition of the algorithm,
there exist α1, . . . , αt ∈ R such that z = α1b1 + · · · + αtbt. It
is a standard argument as in [8, Lemma 10.2] to show that all αi’s
are integers and thus z ∈ M ′. We include the argument below for

completeness. Let

z′ = [α1]b1 + · · ·+ [αt]bt ∈M ′.

It is clear that z − z′ ∈ M . If z − z′ 6= 0, then there exists a
maximum i such that αi is not an integer, so

z − z′ = (α1 − [α1])b1 + · · ·+ (αi − [αi])bi,

where αi− [αi] > 0. Let b̃i be the orthogonal projection of bi onto
span{b1, . . . , bi−1}⊥. Then

d(z − z′, span{b1, . . . , bi−1}) = (αi − [αi])‖b̃i‖2
d(bi, span{b1, . . . , bi−1}) = ‖b̃i‖2

so

d(z − z′, span(b1, . . . , bi−1)) < d(bi, span(b1, . . . , bi−1)).

Now, let x be the orthogonal projection of z−z′ onto span(b1, . . . , bi−1)
such that

x = β1b1 + · · ·+ βi−1bi−1, β1, . . . , βi−1 ∈ R

and let

x′ = [β1]b1 + · · ·+ [βi−1]bi−1,

then x′ ∈M ∩ span(b1, . . . , bi−1), x−x′ ∈ P(b1, . . . , bi−1) and
z − z′ − x′ ∈M \X . It follows that

d(z − z′ − x′,P(b1, . . . , bi−1)) ≤ d(z − z′ − x′, x− x′)
= d(z − z′, x)

= d(z − z′, span{b1, . . . , bi−1})
< d(bi, span{b1, . . . , bi−1})
≤ d(bi,P(b1, . . . , bi−1)).

Observe that our choice of bi actually guarantees that

d(bi,P(b1, . . . , bi−1)) ≤ d(w,P(b1, . . . , bi−1)),

∀w ∈M \ span{b1, . . . , bi−1}

We meet a contradiction. Therefore, z = z′ and αi ∈ Z for all
i.

C. FREQUENCY MOMENTS
Provided that streaming algorithms can be implemented by a lin-

ear sketch without much loss in space complexity, a lower bound
of frequency moment problem follows easily, without resorting to
complicated communication complexity.

C.1 Information Theory and Hellinger Distance
Suppose that X is a discrete random variable on Ω with distri-

bution p(x). Then the entropy H(X) of the random variable X is
defined by H(X) = −

∑
x∈Ω p(x) log2 p(x). The joint entropy

H(X,Y ) of a pair of discrete random variables (X,Y ) with joint
distribution p(x, y) is defined asH(X,Y ) = −

∑
x

∑
y p(x, y) log p(x, y).

We also define the conditional entropy H(X|Y ) as H(X|Y ) =∑
yH(X|Y = y) Pr{Y = y}, where H(X|Y = y) is the en-

tropy of the conditional distribution of X given the event {Y =
y}. The mutual information I(X;Y ) is the relative entropy be-
tween the joint distribution and the product distribution p(x)p(y)
(where p(x) and p(y) are marginal distributions), i.e., I(X;Y ) =∑
x,y p(x, y) log p(x,y)

p(x)p(y)
. The following are the basic properties

regarding entropy and mutual information.



PROPOSITION 18. Let X,Y, Z be discrete random variables
defined on ΩX ,ΩY ,ΩZ respectively and f a function defined on
Ω. Then

1. 0 ≤ H(X) ≤ log |ΩX |, the right equality is attained iff X is
uniform on ΩX .

2. Conditioning reduces entropy: H(X|Y ) ≤ H(X).
3. I(X;Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X) ≥ 0

and the equality is attained iff X and Y are independent;
4. Chain rule for mutual information: I(X,Y ;Z) = I(X;Z)+
I(X;Y |Z);

5. If X,Y are jointly independent of Z then H(X|Y,Z) =
H(X|Y ).

DEFINITION 7. The Hellinger distance h(P,Q) between prob-
ability distributions P and Q on a domain Ω is defined by

h2(P,Q) = 1−
∑
ω∈Ω

√
P (ω)Q(ω) =

1

2

∑
ω∈Ω

(
√
P (ω)−

√
Q(ω))2.

One can verify that the Hellinger distance is a metric satisfying
the triangle inequality, see, e.g., [7]. The following proposition
connects the Hellinger distance and the total variation distance.

PROPOSITION 19. (see, e.g., [5]) h2(P,Q) ≤ dTV (P,Q) ≤√
2h(P,Q).

In connection with mutual information, we have that

LEMMA 20 ([7]). Let Fz1 and Fz2 be two random variables.
LetZ denote a random variable with uniform distribution in {z1, z2}.
Suppose F (z) is independent of Z for each z ∈ {z1, z2}. Then,
I(Z;F (Z)) ≥ h2(Fz1 , Fz2).

C.2 Lower bound
Suppose that x ∈ Rn. We say that a data stream algorithm solves

the (ε, p)-NORM problem if its output X satisfies (1 − ε)‖x‖pp ≤
X ≤ (1 + ε)‖x‖pp with probability ≥ 1− δ.

Let µ be a distribution Zn defined as follows. Choose x uni-
formly at random from {0, 1}n and i uniformly at random from
{1, . . . , n}. With probability 1/2, let xi = (2n)1/p. Let µ be the
distribution of the resulting x.

THEOREM 21. For any p > 2, any randomized free automaton
that solves (c, p)-NORM problem (c <

√
2) for x ∼ µ with proba-

bility ≥ 19/20, where m ≤ poly(n), requires Ω(n1−2/p/ log2 n)
space.

PROOF. In the light of Theorem 15, we may increase the space
complexity by a logm factor but assume that the algorithm takes
linear sketches and the sketching matrix Φ ∈ Zk×n satisfies ‖Φ‖max =
O(poly(n)). Suppose that Φ = (φ1, . . . , φn) and x ∼ {0, 1}n.
We shall show that

I(Φx;x) = Ω(n1−2/p). (1)

Assume this is true for the moment, on the other hand, since entries
of Φ have size O(n3), we have that

I(Φx;x) ≤ H(Φx) ≤ log((poly(n))k) = O(k logn),

it follows that

k = Ω(n1−2/p/ logn)

as desired.

Next we prove (1). Observe that

I(Φx;x) =
∑
i

I(Φx;xi|x1, . . . , xi−1)

=
∑
i

H(xi|x1, . . . , xi−1)−H(xi|Φx, x1, . . . , xi−1)

=
∑
i

H(xi)−H(xi|Φx, x1, . . . , xi−1)

(since xi’s are independent)

≥
∑
i

H(xi)−H(xi|Φx) (conditioning reduces entropy)

=
∑
i

I(Φx;xi)

=
∑
i

I(xiφi +Ri;xi)

whereRi =
∑
j 6=i xjφj . It suffices to show that I(xiφi+Ri;Ri) =

Ω(n−2/p) for Ω(n) i’s.
By correctness of the sketch, it must hold that

h2((2n)1/pφi +Ri, j0φi +Ri) = Ω(1) for Ω(n) i’s

for either j0 = 0 or 1. Observe that h2(jφi+Ri, (j−1)φi+Ri) =
h2(φi + Ri, Ri) for all j ≥ 1, no matter whether j0 = 0 or 1, we
have that

Ω(1) = h2((2n)1/pφi +Ri, j0φi +Ri)

≤

(2n)1/p∑
j=j0

h(jφi +Ri, (j − 1)φi +Ri)

2

= O(n2/ph2(φi +Ri, Ri)),

whence it follows immediately that

I(xiφi +Ri;xi) ≥ h2(φ+Ri, Ri) = Ω(1/n2/p),

where we invoked Lemma 20 for the inequality, noting that Ri and
xi are independent.


