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Princeton

Ilya Razenshteyn
MIT

Abstract
We present a new data structure for the c–approximate near neighbor problem (ANN) in

the Euclidean space. For n points in Rd, our algorithm achieves Oc(dnρ) query time and
Oc(n1+ρ + nd) space, where ρ ≤ 7/(8c2) + O(1/c3) + oc(1). This is the first improvement
over the result by Andoni and Indyk (FOCS 2006) and the first data structure that bypasses
a locality–sensitive hashing lower bound proved by O’Donnell, Wu and Zhou (ITCS 2011). By
a standard reduction we obtain a data structure for the Hamming space and `1 norm with
ρ ≤ 7/(8c) + O(1/c3/2) + oc(1), which is the first improvement over the result of Indyk and
Motwani (STOC 1998).

1 Introduction
The near neighbor search problem is defined as follows: given a set P of n points in a d-dimensional
space, build a data structure that, given a query point q, reports any point within a given distance r
to the query (if one exists). The problem is of major importance in several areas, such as databases
and data mining, information retrieval, computer vision, databases and signal processing.

Many efficient near(est) neighbor algorithms are known for the case when the dimension d
is “low” (e.g., see [Mei93], building on [Cla88]). However, despite decades of effort, the current
solutions suffer from either space or query time that are exponential in the dimension d. This
phenomenon is often called “the curse of dimensionality”. To overcome this state of affairs, several
researchers proposed approximation algorithms for the problem. In the (c, r)–approximate near
neighbor problem (ANN), the data structure is allowed to return any data point whose distance
from the query is at most cr, for an approximation factor c > 1. Many approximation algorithms
for the problem are known, offering tradeoffs between the approximation factor, the space and the
query time. See [And09] for an up to date survey.

From the practical perspective, the space used by an algorithm should be as close to linear as
possible. If the space bound is (say) sub-quadratic, and the approximation factor c is a constant,
the best existing solutions are based on locality sensitive hashing [IM98]. The idea of that approach
is to hash the points in a way that the probability of collision is much higher for objects which are
close (with the distance r) to each other than for those which are far apart (with distance at least
cr). Given such hash functions, one can retrieve near neighbors by hashing the query point and
retrieving elements stored in buckets containing that point. If the probability of collision is at least
p1 for the close points and at most p2 for the far points, the algorithm solves the (c, r)–ANN using
n1+ρ+o(1) extra space and dnρ+o(1) query time1, where ρ = log(1/p1)/ log(1/p2) [HPIM12]. The
value of the exponent ρ depends on the distance function and the locality-sensitive hash functions

1Assuming that each hash function can be evaluated in no(1) time, that distances can be computed in O(d) time
and that 1/p1 = no(1).
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used. In particular, it is possible to achieve ρ = 1/c for the `1 norm [IM98], and ρ = 1/c2 + oc(1)
for the `2 norm [AI06].

It is known that the above bounds for the value of ρ are tight. Specifically, we have that, for all
values of c, ρ ≥ 1/c − oc(1) for the `1 norm2 [OWZ11]. A straightforward reduction implies that
ρ ≥ 1/c2−oc(1) for the `2 norm. Thus, the running time of the simple LSH-based algorithm, which
is determined by ρ, cannot be improved.

Results In this paper we show that, despite the aforementioned limitation, the space and query
time bounds for ANN can be substantially improved. In particular, for the `2 norm, we give an
algorithm with query time dnη and space dn + n1+η, where η = η(c) ≤ 7/(8c2) + O(1/c3) + oc(1)
that gives an improvement for large enough c. This also implies an algorithm with the exponent
η ≤ 7/(8c)+O(1/c3/2)+oc(1) for the `1 norm, by a classic reduction from `1 to `2-squared [LLR95].
These results constitute the first improvement to the complexity of the problem since the works of
[IM98] and [AI06].

Techniques Perhaps surprisingly, our results are obtained by using essentially the same LSH
functions families as described in [AI06] or [IM98]. However, the properties of those hash functions
that we exploit, as well as the overall algorithm, are different. On a high-level, our algorithms are
obtained by combining the following two observations:

1. After a slight modification, the existing LSH functions can yield better values of the exponent
ρ if the search radius r is comparable to the diameter3 of the point-set. This is achieved by
augmenting those functions with a “center point” around which the hashing is performed.

2. We can ensure that the diameter of the point-set is small by applying standard LSH functions
to the original point-set P , and building a separate data structure for each bucket.

This approach leads to a two-level hashing algorithm. The outer hash table partitions the data
sets into buckets of bounded diameter. Then, for each bucket, we build the inner hash table, which
uses (after some pruning) the center of the minimum enclosing ball of the points in the bucket
as a center point. Note that the resulting two-level hash functions cannot be “unwrapped” to
yield a standard LSH family, as each bucket uses slightly different LSH functions, parametrized by
different center points. That is, the two-level hashing is done in a data dependent manner, while the
standard LSH functions are chosen from a distribution independent from the data. This enables
us to overcome the lower bound of [OWZ11].

Related work In this paper we assume worst case input. If the input is generated at random,
it is known that one can achieve better running times. Specifically, assume that all points are
generated uniformly at random from {0, 1}d, and the query point is “planted” at distance d/(2c)
from its near neighbor. In this setting, the work of [CR93, GPY94, KWZ95, PRR95] gives an
exponent of roughly 1

ln 4·c ≈
1

1.39c .
2Assuming 1/p1 = no(1).
3In the analysis we use a notion that is weaker than the diameter. However, we ignore this detail for now for the

sake of clarity.
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Even better results are known for the problem of finding the closest pair of points in a dataset.
In particular, the algorithm of [Dub10] for the closest pair has an exponent of 1 + 1

2c−1 .
4 More

recently, [Val12] showed how to obtain an algorithm with a runtime exponent < 1.79 for any
approximation c = 1 + ε in the random case. Moreover, [Val12] also gives an algorithm for the
worst-case closest pair problem with a runtime exponent of 2−Ω(

√
ε) for c = 1 + ε approximation.

There are also two related lines of lower bounds for ANN. First, the work of [MNP06] showed
that LSH for Hamming space must have ρ ≥ 1/(2c)−O(1/c2)− oc(1), and [OWZ11] improved the
lower bound to ρ ≥ 1/c− oc(1). Second, [PTW08, PTW10] have given cell-probe lower bounds for
`1 and `2, roughly showing that any randomized ANN algorithm must either use space n1+Ω(1/(tc))

or more than t cell–probes. We note that the LSH lower bound of ρ ≥ 1/(2c) from [MNP06]
might more naturally predict lower bounds for ANN because it induces a “hard distribution” that
corresponds to the aforementioned “random case” . In contrast, if one tries to generalize the LSH
lower bound of [OWZ11] into a near neighbor hard distribution, one obtains a dataset with special
structure, which one can exploit (and our algorithm will indeed exploit such structure). In fact,
the LSH lower bound of [MNP06] has been used (at least implicitly) in the data structure lower
bounds from [PTW08, PTW10].

Notation In the text we denote the `2 norm by ‖ · ‖. When we use O(·), o(·), Ω(·) or ω(·) we
explicitly write all the parameters that the corresponding constant factors depend on as subscripts.

2 Preliminaries
Definition 1. The (c, r)–approximate near neighbor problem (ANN) with failure probability f is
to construct a data structure over a set of points P in metric space (X,D) supporting the following
query: given any fixed query point q ∈ X, if there exists p ∈ P with D(p, q) ≤ r, then report some
p′ ∈ P such that D(p′, q) ≤ cr, with probability at least 1− f .

Remark: note that we allow preprocessing to be randomized as well, and we measure the
probability of success over the random coins tossed during both preprocessing and query phases.

Definition 2 ([HPIM12]). For a metric space (X,D) we call a family of hash functions H on X
(r1, r2, p1, p2)-sensitive, if for every x, y ∈ X we have

• if D(x, y) ≤ r1, then Prh∼H[h(x) = h(y)] ≥ p1;

• if D(x, y) ≥ r2, then Prh∼H[h(x) = h(y)] ≤ p2.

Remark: for H to be useful we should have r1 < r2 and p1 > p2.

Definition 3. If H is a family of hash functions on a metric space X, then for any k ∈ N we
can define a family of hash function H⊗k as follows: to sample a function from H⊗k we sample k
functions h1, h2, . . . , hk from H independently and map x ∈ X to (h1(x), h2(x), . . . , hk(x)).

Lemma 4. If H is (r1, r2, p1, p2)-sensitive, then H⊗k is (r1, r2, p
k
1, p

k
2)-sensitive.

4Note that a near neighbor search algorithm with query time nρ and space/preprocessing time of n1+ρ naturally
leads to a solution for the closest pair problem with the runtime of n1+ρ.
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Theorem 5 ([HPIM12]). Suppose there is a (r, cr, p1, p2)-sensitive family H for (X,D), where
p1, p2 ∈ (0, 1) and let ρ = ln(1/p1)/ ln(1/p2). Then there exists a data structure for (c, r)–ANN
over a set P ⊆ X of at most n points, such that:

• the query procedure requires at most O(nρ/p1) distance computations and at most O(nρ/p1 ·
dlog1/p2 ne) evaluations of the hash functions from H or other operations;

• the data structure uses at most O(n1+ρ/p1) words of space, in addition to the space needed to
store the set P .

The failure probability of the data structure can be made to be arbitrarily small constant.

Remark: this theorem says that in order to construct a good data structure for the (c, r)–ANN
it is sufficient to have a (r, cr, p1, p2)-sensitive family H with small ρ = ln(1/p1)/ ln(1/p2) and not
too small p1.

We use the LSH family crafted in [AI06]. The properties of this family that we need are
summarized in the following theorem.

Theorem 6 ([AI06]). For every sufficiently large d and n there exists a family H of hash functions
for `d2 such that

• a function from H can be sampled in time, stored in space, and computed in time tO(t) · logn+
O(dt), where t = log2/3 n;

• the collision probability of H for two points u, v ∈ Rd depends only on the distance between u
and v; let us denote it by p(‖u− v‖);

• one has the following inequalities for p(·):

p(1) ≥ L,

∀c > 1 p(c) ≤ U(c),

where

L = A

2
√
t
· 1

(1 + ε+ 8ε2)t/2
,

U(c) = 2
(1 + c2ε)t/2

,

where A is an absolute positive constant that is less than 1, and ε = 1/(4t1/2).

Combining Theorem 5 and Theorem 6 one has the following corollary.

Corollary 7. There exists a data structure for (c, r)–ANN for `d2 with preprocessing time and space
Oc(n1+1/c2+oc(1) + nd) and query time Oc(dn1/c2+oc(1)).

Proof. By rescaling one can assume wlog that r = 1. Then, it is left to check that L = n−oc(1) and

ln(1/L)/ ln(1/U(c)) ≤ 1/c2 + oc(1).

These computations can be found in [AI06].
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We use the following standard estimate on tails of Gaussians (see, e.g., [KMS98]).

Lemma 8 ([KMS98]). For every t > 0

1√
2π
·
(1
t
− 1
t3

)
· e−t2/2 ≤ PrX∼N(0,1)[X ≥ t] ≤

1√
2π
· 1
t
· e−t2/2.

We use Johnson–Lindenstrauss dimension reduction procedure.

Theorem 9 ([JL84], [DG03]). For every d ∈ N and ε, δ > 0 there exists a distribution over linear
maps A : Rd → RO(log(1/δ)/ε2) such that for every x ∈ Rd one has

PrA[‖Ax‖ ∈ (1± ε)‖x‖] ≥ 1− δ.

Moreover, such a map can be sampled in time O(d log(1/δ)/ε2).

3 Gaussian LSH
In this section we present and analyze a (1, c, p1, p2)–sensitive family of hash functions for the `2
norm that gives an improvement upon [AI06] for the case, when all the points and queries lie on
a spherical shell of radius O(c) and width O(1). The construction is similar to an SDP rounding
scheme from [KMS98].

First, we present an “idealized” family. In the following theorem we do not care about time and
space complexity and assume that all points lie on a sphere of radius O(c).

Theorem 10. For a sufficiently large c, every ν ≥ 1/2 and 1/2 ≤ η ≤ ν there exists an LSH family
for ηc · Sd−1 =

{
x ∈ Rd | ‖x‖ = ηc

}
with the `2 norm that is (1, c, p1, p2)–sensitive, where

• p1 = exp(−oc,ν(d));

• one has
ρ = ln(1/p1)

ln(1/p2) =
(

1− 1
4η2

)
· 1
c2 +Oν

( 1
c3

)
+ oc,ν(1).

Proof. Let ε > 0 be a positive parameter that depends on d as follows: ε = o(1) and ε = ω(d−1/2).
Let H be a family of hash functions described by Algorithm 1 (the pseudocode describes how to
sample h ∼ H).

Clearly for u, v ∈ ηc · Sd−1 with angle α between them

Prh∼H[h(u) = h(v)] =
Prw∼N(0,1)d [〈u,w〉 ≥ ηc · ε

√
d ∧ 〈v, w〉 ≥ ηc · ε

√
d]

Prw∼N(0,1)d [〈u,w〉 ≥ ηc · ε
√
d ∨ 〈v, w〉 ≥ ηc · ε

√
d]

= Θ(1) ·
PrX,Y∼N(0,1)[X ≥ ε

√
d ∧ cosα ·X − sinα · Y ≥ ε

√
d]

PrX∼N(0,1)[X ≥ ε
√
d]

= Θ(ε
√
d) ·

PrX,Y∼N(0,1)[X ≥ ε
√
d ∧ cosα ·X − sinα · Y ≥ ε

√
d]

e−ε2d/2 . (1)

In the last equality we use Lemma 8 and the fact that ε = ω(d−1/2).
The following two lemmas allow us to estimate the numerator of the right–hand side of (1).
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Algorithm 1 Gaussian partitioning
P ← ∅ . eventually, P will be a partition of ηc · Sd−1

while
⋃
P 6= ηc · Sd−1 do . we denote

⋃
P the union of all sets that belong to P

sample w ∼ N(0, 1)d

S ←
{
u ∈ ηc · Sd−1 | 〈u,w〉 ≥ ηc · ε

√
d
}
\
⋃
P

if S 6= ∅ then
P ← P ∪ {S}

end if
end while
define h to be the function that maps a point u ∈ ηc · Sd−1 to the part of P that it belongs to

Lemma 11.

PrX,Y∼N(0,1)[X ≥ ε
√
d ∧ cosα ·X − sinα · Y ≥ ε

√
d] = O

(
e−ε

2d·(1+tan2 α
2 )/2

ε
√
d

)
.

Proof.

PrX,Y∼N(0,1)[X ≥ ε
√
d ∧ cosα ·X − sinα · Y ≥ ε

√
d]

≤ PrX,Y∼N(0,1)[(1 + cosα) ·X − sinα · Y ≥ 2ε
√
d]

= PrZ∼N(0,1)[
√

(1 + cosα)2 + sin2 α · Z ≥ 2ε
√
d]

= PrZ∼N(0,1)[
√

2 · (1 + cosα) · Z ≥ 2ε
√
d] = O

(
e−ε

2d·(1+tan2 α
2 )/2

ε
√
d

)

In the last equality we used Lemma 8, the fact that ε = ω(d−1/2) and the identity

2
1 + cosα = 1 + tan2 α

2 .

Lemma 12. If 0 ≤ α < α0 for some constant 0 < α0 < π/2, then

PrX,Y∼N(0,1)[X ≥ ε
√
d ∧ cosα ·X − sinα · Y ≥ ε

√
d] = Ω

(
e−ε

2d·(1+tan2 α0
2 )/2

ε2d · tan α0
2

)
.

Proof.

PrX,Y∼N(0,1)[X ≥ ε
√
d ∧ cosα ·X − sinα · Y ≥ ε

√
d]

≥ PrX,Y∼N(0,1)[X ≥ ε
√
d ∧ Y ≤ − tan α2 · ε

√
d]

= PrX∼N(0,1)[X ≥ ε
√
d] · PrY∼N(0,1)[Y ≥ tan α2 · ε

√
d]

≥ PrX∼N(0,1)[X ≥ ε
√
d] · PrY∼N(0,1)[Y ≥ tan α0

2 · ε
√
d] = Ω

(
e−ε

2d·(1+tan2 α0
2 )/2

ε2d · tan α0
2

)
.
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In the first inequality we use that for α < α0 < π/2 the right–hand side event implies the left–hand
side event. Indeed,

cosα ·X − sinα · Y ≥ cosα · ε
√
d+ sinα · tan α2 · ε

√
d = ε

√
d.

In the last equality we used Lemma 8, the fact that α0 is constant and ε = ω(d−1/2).

Thus, combining (1), Lemma 11 and Lemma 12, we have the following estimates on the proba-
bility of collision.

Lemma 13. One has

ln 1
Prh∼H[h(u) = h(v)] ≥

ε2d

2 · tan2 α

2 −O(1);

and if α < α0 for some constant 0 < α0 < π/2, then

ln 1
Prh∼H[h(u) = h(v)] ≤

ε2d

2 · tan2 α0
2 + ln

(
ε
√
d · tan α0

2

)
+O(1).

Since
tan2 α

2 = ‖u− v‖2/(ηc)2

4− ‖u− v‖2/(ηc)2 ,

by setting ε = d−1/4 and invoking Lemma 13 for the angles that correspond to distances 1 and c,
we have

ln 1
p1
≤
√
d

2 ·
1/(ηc)2

4− 1/(ηc)2 +Oc,ν(ln d),

ln 1
p2
≥
√
d

2 ·
1/η2

4− 1/η2 −O(1).

Note that here we use that c is large enough, since we must have α0 < π/2 in order to be able to
apply Lemma 13.

Thus, we have p1 = exp(−oc,ν(d)). A similar estimate holds for p2 provided that η is separated
from 1/2. Therefore

ρ = ln(1/p1)
ln(1/p2) = 4− 1/η2

4− 1/(ηc)2 ·
1
c2 + oc,ν(1) =

(
1− 1

4η2

)
· 1
c2 +Oν

( 1
c3

)
+ oc,ν(1).

Remark: we could have had Oν(1/c4) term in the expression for ρ, but we state the theorem
with Oν(1/c3) in order to be consistent with the next theorem.

Now we show how to convert this “idealized” family to a real one.

Theorem 14. For a sufficiently large c, every ν ≥ 1/2 and 1/2 ≤ η ≤ ν there exists an LSH family
H for {

x ∈ Rd | ‖x‖ ∈ [ηc− 1; ηc+ 1]
}

with the `2 norm such that
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• it satisfies the conclusion of Theorem 10;

• for every k ∈ N one can sample a function from H in time exp(o(d)), store it in space
exp(o(d)) and query in time exp(o(d)).

Proof. We use the family from the proof of Theorem 10, but with two modifications. First, if we
want to compute h(x) for h ∼ H, then before doing so, we normalize x to the length ηc. Second,
in Algorithm 1 instead of checking the condition

⋃
P = ηc · Sd−1, we simply run the partitioning

process for exp(o(d)) steps. Namely, we require that after the end the probability of the event⋃
P = ηc · Sd−1 is at least 1− exp(−d) (one can see that this will be the case after exp(o(d)) steps

by a standard ε-net argument). Such a high probability means that this LSH family achieves the
same parameters as the one from Theorem 10. Clearly, such a function can be stored in space
exp(o(d)) and queried in time exp(o(d)).

It is left to argue that normalizing a vector before computing h does not affect the quality
(namely, we are interested in p1, p2 and ρ) by a lot.

Lemma 15. For any vectors u and v,

‖u/‖u‖ − v/‖v‖‖2 = 1
‖u‖ · ‖v‖

(
(‖u− v‖2 − |‖u‖ − ‖v‖|2)

)
Proof.

‖u/‖u‖ − v/‖v‖‖2 = 2− 2〈u, v〉
‖u‖ · ‖v‖

= 1
‖u‖ · ‖v‖

(
(‖u− v‖2 − |‖u‖ − ‖v‖|2)

)

By the above lemma, one can check that for u, v ∈
{
x ∈ Rd | ‖x‖ ∈ [ηc− 1; ηc+ 1]

}
• if ‖u− v‖ ≤ 1, then

(ηc · ‖u/‖u‖ − v/‖v‖‖)2 ≤ (ηc)2

(ηc− 1)2

≤ 1 +Oν

(1
c

)

• if ‖u− v‖ ≥ c, then

(ηc · ‖u/‖u‖ − v/‖v‖‖)2 ≥ (ηc)2

(ηc+ 1)2 (c2 − 4)

≥ c2 ·
(

1−Oν
(1
c

))
.

Clearly, from these inequalities we can see that the conclusion of Theorem 10 is still true for our
case.

8



4 Two–level hashing
We now describe our near neighbor data structure. The data structure is composed of several
independent data structures, where each one is a two-level hashing scheme, described next. We
will conclude with proving our main theorem for ANN search.

Construction

We want to solve (c, 1)–ANN for `d2. As a first step, we apply Johnson–Lindenstrauss transform
(Thereom 9) and reduce our problem to (c − 1, 1)–ANN for `Oc(logn)

2 by increasing the failure
probability by an arbitrarily small constant. This means that all quantities of order exp(o(d)) are
now noc(1). Abusing notation, let us assume that we are solving (c, 1)–ANN in `Oc(logn)

2 .

Preprocessing

Let τ > 1 be a constant parameter that we will choose later. We consider the following two-level
hashing scheme. It consists of an outer hash table and several inner hash tables.

First, let us construct an outer hash table. We hash all the points from P using a function from
H⊗k0

1 , where H1 is the hash family from Theorem 6, and k0 is the smallest positive integer such
that (

U(τc− 1)
L

)k0

≤ 1
100n (2)

(L and U(·) are from Theorem 6). Then, for every non–empty bucket we do the following. While
there exist a pair of points in a bucket with distance more than τc, we remove both of them. Let
us call all the removed points filtered out. If there are no points left, we proceed to the next bucket.
Otherwise, we find a (1 + 1/c)–approximation to the minimum enclosing ball for the remaining
points. Such a ball can be found in time Oc(n logn) using the algorithm from [BC03]. Note that
by Jung’s theorem (for a modern treatment see Exercise 1.3.5 in [Mat02]) the radius of this ball is
at most (

1 + 1
c

)
· τc√

2
,

since the diameter of the set of the remaining points is at most τc. For every non–empty bucket
we store the center of its ball. In addition to it, we store a remaining point that is closest to the
center.

For a point u ∈ Rd let B(u) ⊆ P be the points from the bucket of u that are not filtered out,
and let p0(u) be the center of the corresponding ball (provided that B(u) is non–empty). Let s(u)
denote the closest to p0(u) point from B(u).

Second, let us show how to construct inner hash tables. We consider buckets one by one. Let
p0 be a center of a ball that corresponds to a non–empty bucket whose set of points we denote by
R. For every integer 0 ≤ l ≤

⌈
(1 + 1/c)τc/

√
2− c/2

⌉
we consider a set

Pl = {p− p0 | p ∈ R, ‖p− p0‖ ∈ [c/2 + l − 1; c/2 + l + 1]} .

We hash every Pl using H⊗k2 , where H2 is the LSH family from Theorem 14 and k is the smallest
positive integer such that for every u, v ∈ Rd with ‖u‖, ‖v‖ ∈ [c/2+ l−1; c/2+ l+1] and ‖u−v‖ ≥ c
we have

U(c)k0 · Prh∼H⊗k2
[h(u) = h(v)] ≤ 1

3n. (3)
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Query

Suppose that q ∈ Rd is a query point. To query the two-level data structure we do the following.
If B(q) is empty, we stop. If ‖q− s(q)‖ ≤ c, then we output s(q) and stop. Otherwise, we locate all
non-empty Pl’s such that [c/2 + l− 1; c/2 + l + 1] 3 ‖q − p0(q)‖, consider the (q − p0(q))’s buckets
in the corresponding inner hash tables and enumerate all the points from these buckets. If we find
a point p ∈ P such that ‖p− q‖ ≤ c, then we output it and stop.

Analysis

Let q be a query point. We want to analyze collision probabilities for a point p ∈ P and q. Let A be
the event “p and q collide in the outer hash table”, B be the event “every point from P that is more
than τc− 1 apart from q does not collide with q in the outer hash table”, C be the event “p and q
collide in an inner hash table, where we search for q − p0(q)” and D be the event “‖q − s(q)‖ ≤ c”.

Lemma 16. If ‖p− q‖ ≥ c, then
Pr[C] ≤ 1

n
.

Proof. Since C implies A,
Pr[C] = Pr[A] · Pr[C | A]

By (3) and the fact that we query at most 3 inner hash tables, the latter quantity is at most
1/n.

Lemma 17. If ‖p− q‖ ≤ 1, then

Pr[C ∨ D] ≥ Q = n−
(
1− 1

2τ2 + 1
2τ4
)
· 1
c2 +Oτ

(
1
c3
)
+oτ,c(1).

Proof. Since C and D are disjoint, we have

Pr[C ∨ D] ≥ Pr[A ∧ B ∧ (C ∨ D)] = Pr[A] · Pr[B | A] · Pr[C ∨ D | A,B]
≥ Pr[A] · Pr[B | A] · Pr[C | A,B,¬D]

(in the last inequality we use that if U and V are two disjoint events, then Pr[U ∨V] ≥ Pr[U | ¬V]).
Let us go through these probabilities one by one. From Theorem 6 we have Pr[A] ≥ Lk0 .

Lemma 18.

Pr[C | A,B,¬D] ≥
( 1

3n ·
1

U(c)k0

)(1− 1
2τ2
)
· 1
c2 +Oτ

(
1
c3
)
+oτ,c(1)

Proof. First, observe that if A and B hold, then p is not filtered out. Second, since we condition
on ‖s(q) − q‖ > c we have ‖p − p0(q)‖, ‖q − p0(q)‖ > (c − 1)/2, so p will be in some Sl and thus
from Theorem 14 (invoked for ν = τ/

√
2 +Oτ (1/c)) and (3) we have the desired bound.

Now let us bound Pr[B | A] from below.

Lemma 19.
Pr[B | A] ≥ 0.99

10



Proof. We will prove that Pr[¬B | A] ≤ 0.01. Clearly,

Pr[¬B | A] ≤
∑
p′∈P :

‖q−p′‖>τc−1

Pr[q and p′ collide in the outer hash table | A]

≤
∑
p′∈P :

‖q−p′‖>τc−1

Pr[q and p′ collide in the outer hash table]
Pr[A]

≤ n ·
(
U(τc− 1)

L

)k0

≤ 0.01.

The last inequality is due to (2).

In order to combine the estimates and prove the lemma it is left to estimate Lk0 and U(c)k0

(using (2)). Because for any constant x, ln 1/L
ln 1/U(x) = (1 + o(1))x−2, we have

U(τc− 1) ≤ L(1−o(1))(τc−1)2

U(c) ≤ L(1−o(1))c2

By the definition of k0 and the fact that k0 = ω(1),

1
100n ≤

(
U(τc− 1)

L

)k0−1
≤ L(1−o(1))(τ2c2−2τc)k0

In other words,
Lk0 ≥ n−(1+o(1))/(τ2c2−2τc)

Combining all these estimates, we can finally bound Pr[C ∨ D].

Pr[C ∨ D] ≥ n−(1− 1
2τ2 )· 1

c2−Oτ
(

1
c3
)
−oτ,c(1)Lk0(1−(1−o(1))(1− 1

2τ2 )−Oτ( 1
c )−oτ,c(1))

≥ n−(1− 1
2τ2 )· 1

c2−Oτ
(

1
c3
)
−oτ,c(1)Lk0(1+o(1)) 1

2τ2

≥ n−(1− 1
2τ2 )· 1

c2−
1

2τ2(τ2c2−2τc)
−Oτ

(
1
c3
)
−oτ,c(1)

≥ n−(1− 1
2τ2 + 1

2τ4 )· 1
c2−Oτ

(
1
c3
)
−oτ,c(1)

Finally, we are ready to prove our main result.

Theorem 20. There exists a data structure for (c, 1)–ANN for `d2 that has preprocessing time and
space Oc(n1+ρ + d · logn) and query time Oc(nρ + d · logn), where

ρ ≤ 7/8
c2 +O

( 1
c3

)
+ oc(1).

11



Proof. We set τ =
√

2 and then proceed exactly as in the proof of Theorem 5 (see [HPIM12]). The
details are included for completeness.

The data structure consists of 1/Q independent copies of the two-level hashing scheme, where
Q is the lower bound of Pr[C ∨ D] in Lemma 17. Given a query q, the algorithm looks for a near
neighbor in all the copies and stops when a near neighbor is found or more than 3/Q+1 points have
been examined. Observe that the space of the algorithm is Oc(n1+oc(1)Q + d logn) and the query
time is Oc(noc(1)Q+d logn) (the O(d logn) terms come from storing and applying the matrix of the
Johnson-Lindenstrauss transform). It remains to argue that the algorithm succeeds with constant
probability. Assume that there exists p∗ such that ‖q − p∗‖ ≤ 1.

By Lemma 16, in each copy, the expected number of points in that are more than c apart from
q colliding with q in some inner hash table is at most 1. The expected number of collisions in 1/Q
tables is at most 1/Q. Thus, by Markov’s inequality, the probability that it exceeds 3/Q is at most
1/3.

Next, we compute the probability that p∗ collides with q or the event D happens (in which case
we succeed as well) in some copy. It is bounded from below by 1− (1−Q)1/Q ≥ 1− 1/e.

Therefore, with probability at least 1−1/3−1/e, after examining 3/Q+1 points, the algorithm
finds some point within distance c from q.
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