
Reasoning under uncertainty

Huy L. Nguy�ên

In this note, we will study tools for rational decision making under uncertainty. Unlike the

traditional settings where we are given all of the input at once, there are cases where the algorithm

needs to interact with the environment and make decisions based on partial information. We will

explore one particular formalism to de�ne uncertainty and rationality.

In our simple setup, uncertainty is modeled using probability: there is a distribution on future

events that is known to the decision maker. To de�ne rational choices, we also need to assign to

each outcome an utility, which is a number. The decision maker is rational if it maximizes the

expected utility.

Example 1. A famous example is Pascal's wager. He argues that a rational human should live

as though God exists. This is because there are 2 possibilities. If god exists and you live a sinful

life, you will su�er in�nite loss (eternal damnation, etc). If god does not exist and you live like a

believer, it is all for naught. Thus, if our prior is that the probability that god exists is nonzero,

you must choose to believe to avoid an in�nite expected loss.

We consider another example to illustrate the meaning of utility.

Example 2. You bought a cake and have to eat it within 5 days before it is spoiled. Suppose

that eating x fraction of the cake brings x1/3 amount of satisfaction. You would like to divide the

cake to maximize your total amount of satisfaction.

Example 3. You are eating cake again but since immediate satisfaction is better than future

satisfaction, the amount of satisfaction on day i is discounted by a factor γi. You again would like

to maximize your total amount of satisfaction.

Notice that our model does not capture many real life instances such as lottery where the

expected utility is worse than the ticket price. Another problem is that in many cases, the utility

is not known to the decision maker. These are just some of the limitation of the model.

1 Markov decision process

The Markov decision process (MDP) framework is a way to model the task of the decision maker

in its interaction with the environment. There are states that model all necessary knowledge from

the past that might a�ect the future outcome. In each state, there are a number of actions that can

be performed by the decision maker. Given the current state and the action, there is a probability

distribution that will move the decision maker to a new state. Additionally, the decision maker

will also get a reward that is a function of the previous state, the new state, and the action. The

name Markov comes from the memoryless property of the model: conditioned the current state, the

future outcome is independent of the history.

Formally, let's label the time by integers 1, 2, 3, . . . Suppose that there areN states and A actions.

Let si be the state at time i. For each state s and action a, there is a probability distribution p(s′|s, a)
that determines the next state s′. The transition from state s to state s′ using action a also results

in the reward R(a, s, s′). We also include a discount factor γi to reward from day i. Thus, the total

1



reward is
∞∑
i=1

γiR(ai, si, si+1)

Note that for γ < 1 this sum is bounded.

2 Optimal MDP policies with �nite time horizon

First we consider the setting where we are only concerned with the utility up to a �nite time T .
Let Vx,t be the maximum expected utility if we start from state x at time t and �nish at time T .
For the base case, we have Vx,T+1 = 0 ∀x.

For the recursive case, the decision maker should pick the action with the maximum expected

utility:

Vx,t = max
a

N∑
y=1

p(st+1 = y|st = x, at = a)(R(a, x, y) + γVy,t+1)

In order to compute the best action and the maximum expected utility, we can use dynamic

programming. That is, we apply the above recursive relation and store all the intermediate answers

so that we do not need to recompute any of them. The running time is O(N2AT ).

3 Optimal MDP policies using LP

In this section, we are concerned with computing the best possible policies if we have an in�nite

time horizon. There are several ways to de�ne our objective. One way is to use the discount factor

γ < 1 and thus, the sum of the reward is �nite. Another way is to use no discount factor i.e. γ = 1
but we are concerned with the limit of the average reward

lim
T→∞

1

T

T∑
i=1

R(ai, si, si+1)

A special class of policies we are interested in is history-independent policies: we choose the

same action every time we enter the same state. Note that the number of history independent

policies is AN , which is very large. Under certain technical conditions, it turns out that there are

optimal policies that are history independent.

Thus, our task is reduced to computing the optimal policy that is history independent. Let

π : {1, 2, . . . , N} → {1, 2, . . . , A} be the optimal policy. Let Vx be the expected utility of the

optimal policy if we start from state x. We have

Vx =

N∑
y=1

p(s′ = y|s = x, a = π(x))(R(π(x), x, y) + γVy)

Since this is the optimal policy, the action π(x) must give utility at least as good as any other

action. Thus, for any action z, we have

Vx ≥
N∑
y=1

p(s′ = y|s = x, a = z)(R(z, x, y) + γVy) ∀z ∈ {1, . . . , A}

2



We can thus formulate an LP to compute the values Vx. The above inequalities are the constraint.
Since we are looking for the optimal policy, the objective is to minimize

∑N
x=1 Vx.

In practice, solving the LP is typically too slow and the preferred methods are iterative algo-

rithms. We will see some examples of iterative algorithms later in the course.

3


