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We have seen several examples where the LP gives exact solution for discrete optimization

problems. In general, there might be no integral optimal solution for an LP relaxation and we

cannot obtain the optimal solution for the discrete problem. Nonetheless, we can use the fraction

solution to construct an approximation solution that is close in quality compared with the optimal

solution. We will explore a few examples of this approach.

1 Vertex cover

Consider a graph G = (V,E) where each node u has a weight wu ≥ 0. The goal is to �nd a vertex

cover, which is a subset of vertices that is adjacent to all edges in the graph. Furthermore, we would

like to �nd the vertex cover of minimum total weight.

We can write this problem as an integer linear program as follows.

min
∑
u∈V

wuxu :

xu + xv ≥ 1 ∀(u, v) ∈ E

xu ∈ {0, 1}

To obtain an LP, we can relax the integral constraints:

min
∑
u∈V

wuxu :

xu + xv ≥ 1 ∀(u, v) ∈ E

0 ≤ xu ≤ 1

From the fractional solution, we can simply round all xu up to 1 if xu ≥ 1/2 and down to 0 if

xu < 1/2. Let S be the set of vertices selected by the algorithm. We will show that this is a valid

solution whose weight is at most twice that of the optimal solution.

Lemma 1.1. S is a valid vertex cover.

Proof. For each edge (u, v), we know xu+xv ≥ 1 so either xu or xv is at least 1/2. Therefore, either
u or v is selected in S and the edge (u, v) is covered.

Lemma 1.2. The weight of S is at most twice that of the optimal solution.

Proof. Because we only pick vertices with xu ≥ 1/2, the weight of S is at most 2 times
∑

u xuwu.

Because the LP is a relaxation, the optimal integral solution is a valid solution for the LP. Thus,

the LP value is at most the weight of the optimal integral solution. Thus, the weight of S is at most

2 times the weight of the optimal integral solution.
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2 MAX2SAT

A 2CNF formula consists of n Boolean variables x1, . . . , xn and m clauses of the form y ∨ z, where
each y, z is called a literal, which is either a variable or its negation. Given a formula, our goal is to

set the variables so as to maximize the number of satis�ed clauses.

We start with an integral formulation. We use variable zj to indicate whether clause j is satis�ed
or not.

max
m∑
j=1

zj

yj1 + yj2 ≥ zj ∀j
zj ≤ 1 ∀jxi ∈ {0, 1}

where yj1 is the shorthand for xi if the �rst literal in clause j is variable i and for 1−xi if the literal
is the negation of variable i.

We relax the integral formulation to obtain an LP by replacing xi ∈ {0, 1} with 0 ≤ xi ≤ 1.
Now to obtain an integral solution, independently for each variable i, we randomly set it to 1

with probability xi and to 0 with probability 1− xi.

Lemma 2.1. The expected number of satis�ed clause is at least 3
4 times the optimal value.

Proof. We will prove that the probability a given clause is satis�ed is at least 3zj/4. The lemma

then follows from linearity of expectation.

Suppose the clause is xa ∨ xb. Notice that at the optimal solution, zj = min(1, xa + xb) since
the LP tries to maximize

∑
j zj .

The probability that randomized rounding satis�es this clause is exactly

1− (1− xa)(1− xb) = xa + xb − xaxb

Consider two cases. First, consider the case xa + xb ≤ 1. We have xaxb ≤ (xa + xb)
2/4 ≤

(xa + xb)/4. Thus,

xa + xb − xaxb ≥
3

4
(xa + xb) ≥ 3zj/4

Next, consider the case t = xa + xb ≥ 1. We have xaxb ≤ (xa + xb)
2/4 = t2/4. Thus,

xa + xb − xaxb ≥ t− t2/4 ≥ 3/4 ∀t ∈ [1, 2]

Thus, in both cases, the probability that randomized rounding satis�es a clause is at least 3zj/4.

2


