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1 Duality

An important question in linear programming is to be able to certify the optimality of the solution.

Consider a small example:

minx+ y subject to

3x+ y ≥ 6

x+ 3y ≥ 4

2x+ y ≥ 5

x, y ≥ 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0

1

2

3

4

5

6

If the software gives us the solution x = 11/5, y = 3/5, how good is this solution? This question

is intimately connected to the question of giving an lower bound on the solution.

One possible lower bound comes from adding up 1/4 times the �rst inequality plus 1/4 times

the second inequality:

x+ y =
1

4
(3x+ y) +

1

4
(x+ 3y) ≥ 1

4
· 6 + 1

4
· 4 =

5

2

Question: can you �nd a better lower bound?

This question brings us to the concept of duality. For each linear program, there is an associated

dual linear program:

Primal

min cTx

Ax ≥ b
x ≥ 0

Dual

max bT y

AT y ≤ c
y ≥ 0

Notice that for each constraint in the original problem, there is a corresponding variable in the

dual problem. Similarly, for each variable in the original problem there is a corresponding constraint

in the dual problem.

Question. Write the dual linear programs for the assignment problem and the shortest path

problem.
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Notice that every solution for the dual linear program gives a lower bound on the value of the

primal problem.

Theorem 1.1 (Weak duality). Consider an arbitrary feasible solution y for the dual LP and an

arbitrary feasible solution x for the primal LP. we have

xT c ≥ yT b

Proof. Because x is a feasible solution for the primal LP:

Ax ≥ b

Because y ≥ 0, we can take dot product of both sides with y and obtain yTAx ≥ yT b.
Similarly, because y is a feasible solution for the dual LP:

AT y ≤ c

Because x ≥ 0, we can take dot product of both sides with x and obtain xTAT y ≤ xT c
Combining the two inequalities, we obtain xT c ≥ yT b

Theorem 1.2 (Strong duality). If the primal and dual problems are feasible then their optimal

values are equal.

To prove the theorem, we will make use of a useful theorem:

Lemma 1.3 (Separating hyperplane theorem). Let P be a closed convex set and x be a point not

in P . There exists a vector w such that wTx > maxz∈P w
T z.

The theorem is intuitive but proving it requires some formal math so we will skip it. We now

proceed to prove the duality theorem.

Lemma 1.4. Let x∗ be the optimal solution for the primal LP. Let S be the set of constraints j that

are tight i.e. (Ax∗)j = bj. There exist {λj ≥ 0}j∈S such that ci =
∑

j∈S λjAji for all i.

Proof. Suppose for contradiction that no such {λj} exist. Let Aj denote row j of the constraint

matrix A. Let

P =

v
∣∣∣∣∣∣v =

∑
j∈S

λjAj for some {λj ≥ 0}j∈S


i.e. P is the set of all linear combinations with nonnegative coe�cients of the rows of A in S.

Observe that P is closed and convex (why?) and by our assumption, c 6∈ S so there exists some

w such that wT c > maxv∈P w
T v. Note that this means wT c > 0 and wTAj ≤ 0 ∀j ∈ S (why?).

Consider the vector x − εw for a tiny positive constant ε. We will show that this is a feasible

solution with better objective value than x, which is a contradiction:

• For constraint j 6∈ S, because AT
j x > bj and ε is su�ciently small, AT

j (x − εw) > bj . For

constraint j ∈ S, we have AT
j (x− εw) = bj − εAT

j wbj ≥ bj because AT
j w ≤ 0.

• The objective value decreases since cT (x− εw) = cTx− εcTw < cTx.
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Thus, the objective coe�cients is a conic combination of the coe�cients in the constraints in S.
Consider a set of values for λj ≥ 0 so that c =

∑
j λjAj and set λj = 0 ∀j 6∈ S.

Observe that

• λ ≥ 0

• ATλ =
∑

j λjAj = c

• bTλ =
∑

j∈S bjλj =
∑

j∈S(x
TAj)λj = xT c

Thus, λ is a solution to the dual problem with dual objective value exactly equal to the optimal

primal objective value.

2 Special cases of the duality theorem

There are many interesting special cases of the duality theorem for linear programming. We will

mention an example, which many of you might have seen in an undergraduate course.

Consider the maximum �ow problem. We are given a directed graph G = (V,E) with source s
and sink t. Each edge e has a capacity ce. The �ow on each edge must be at most its capacity and

at any vertex other than s, t, the �ow must be conserved: the total incoming �ow must be equal to

the total outgoing �ow. We would like to maximize the total �ow we can send from s to t.
Let's formulate this problem as a linear program. Let P be the set of directed simple paths from

s to t. Let xp be the variable measuring the amount of �ow we are sending on the path p. We have

max
∑
p∈P

xp :∑
p:e∈p

xp ≤ ce ∀e ∈ E

xp ≥ 0 ∀p ∈ P

Let's write the dual of this linear program.

min
∑
e∈E

ceye :∑
e∈p

ye ≥ 1 ∀p ∈ P

ye ≥ 0 ∀e ∈ E

Notice that this dual represents a fractional version of the minimum cut problem: each edge is

picked up to a fraction ye with the constraint that on any path from s to t, the total fraction of

edges being picked is at least 1. The usual minimum cut problem restricts the variables ye to be

either 0 or 1. It turns out that this LP also has an optimal integral solution so its value is equal to

the value of a cut in the graph.

Thus, LP duality implies that the maximum �ow is equal to the capacity of the minimum cut.
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