Power of two choices

Huy L. Nguyễn

1 Power of two choices

Now we consider a radical new idea to improve the load: use two random bins instead of one. When ball i arrives, we consider two random bins and assign i to the least loaded bin. How does the maximum load change?

First let's try to have a hand-wavy argument on the load. Let B_{i} denote the number of bins with at least i balls. Let $B_{i, j}$ denote the number of bins with at least i balls after j balls are assigned. Notice that $0=B_{i, 0} \leq B_{i, 1} \leq B_{i, 2} \leq \cdots \leq B_{i, n}=B_{i}$.

Suppose we stack the balls in each bin. Let $\operatorname{Height}(i)$ be the height of ball i in its bin. For example, if a bin has 3 balls $5,2,7$, then $\operatorname{Height}(5)=1, \operatorname{Height}(2)=2, \operatorname{Height}(7)=3$.

Suppose we have already assigned $j-1$ balls. In order for ball j to have height at least $i+1$, both of its assigned bins $h(j), g(j)$ must have load at least i. Therefore,

$$
\begin{gathered}
\operatorname{Pr}[\operatorname{Height}(j) \geq i+1] \leq\left(\frac{B_{i, j-1}}{n}\right)^{2} \\
B_{i+1} \leq \text { Number of balls with height at least } i+1 \leq n \cdot\left(\frac{B_{i}}{n}\right)^{2}
\end{gathered}
$$

As the base case, since we have n balls, the number of bins with at least 2 balls is bounded by $n / 2$. Thus, $\frac{B_{2}}{n} \leq \frac{1}{2}$. Using our formula above, we have

$$
\begin{aligned}
& \frac{B_{3}}{n} \leq \frac{1}{2^{2}} \\
& \frac{B_{4}}{n} \leq \frac{1}{\left(2^{2}\right)^{2}}
\end{aligned}
$$

In general, $\frac{B_{i}}{n} \leq \frac{1}{2^{2^{i-2}}}$. Thus, for $i>2+\log _{2} \log _{2} n$, we have $\frac{B_{i}}{n}<1$. In other words, we do not expect to have bins with more than $\Theta(\log \log n)$ balls. Note that this is an exponential improvement over our previous load of $\Theta(\log n /(\log \log n))$.

Next, let's try to have a formal argument. We will use a strategy similar to above, and bound the number of bins with at least i balls for $i=6,7,8, \ldots$ using induction. Let $\beta_{6}=\frac{n}{2 e}>\frac{n}{6}$ and $\beta_{i+1}=e \cdot \frac{\beta_{i}^{2}}{n}$. Notice that β_{i} decays at a similar speed compared with our hand-wavy bounds above i.e. $\beta_{6+i}=\frac{1}{2^{2^{i}} e}$.

Let E_{i} be the event that $B_{i} \leq \beta_{i}$. Notice that the event $E_{6}\left(B_{6} \leq \beta_{6}\right)$ always holds. We will show that for $i=O(\log \log n), E_{i}$ holds with probability at least $1-\frac{2 i}{n^{2}}$.

Let Y_{j} be the indicator random variable that is 1 if $\operatorname{Height}(j) \geq i+1$ and after $j-1$ balls are assigned, $B_{i, j-1} \leq \beta_{i}$. We have

$$
\operatorname{Pr}\left[Y_{j}=1 \mid \text { choices for balls } 1,2, \ldots, j-1\right] \leq\left(\frac{B_{i, j-1}}{n}\right)^{2} \leq \frac{\beta_{i}^{2}}{n^{2}}
$$

The sum of Y_{j} 's is bounded by the sum of n Bernoulli random variables X_{j} 's, each of them is 1 with probability $\frac{\beta_{i}^{2}}{n^{2}}$. The expectation of this sum is $\frac{\beta_{i}^{2}}{n}$. By the Chernoff bound, the probability that it is more than $\frac{e \beta_{i}^{2}}{n}$ is at most $\exp \left(-\beta_{i}^{2} / n\right) \leq \frac{1}{n^{2}}$ as long as $\beta_{i}^{2} / n \geq 2 \ln n$.

Thus,

$$
\begin{aligned}
\operatorname{Pr}\left[\neg E_{i+1} \mid E_{i}\right] & =\operatorname{Pr}\left[\sum_{j} Y_{j} \geq \beta_{i+1} \mid E_{i}\right] \\
& \leq \operatorname{Pr}\left[\sum_{j} X_{j} \geq \beta_{i+1} \mid E_{i}\right] \\
& =\frac{\operatorname{Pr}\left[\sum_{j} X_{j} \geq \beta_{i+1}\right]}{\operatorname{Pr}\left[E_{i}\right]} \\
& \leq \frac{1}{n^{2} \operatorname{Pr}\left[E_{i}\right]}
\end{aligned}
$$

Note that $\operatorname{Pr}\left[E_{i}\right]$ is close to 1 so $\operatorname{Pr}\left[\neg E_{i+1} \mid E_{i}\right]$ is at most $\frac{2}{n^{2}}$. Thus,

$$
\operatorname{Pr}\left[E_{i+1}\right] \geq\left(1-\frac{2}{n^{2}}\right) \operatorname{Pr}\left[E_{i}\right] \geq \operatorname{Pr}\left[E_{i}\right]-\frac{2}{n^{2}}
$$

This concludes the induction.
Let i^{*} be the minimum number of balls such that $\beta_{i^{*}}^{2} \leq 2 n \ln n$. Note that $i^{*} \leq \log \log n+6$. Let $B(n, p)$ denote a random variable distributed according to the binomial distribution with parameters n and p. By a similar argument as above,

$$
\operatorname{Pr}\left[\text { at least } 6 \log n \text { balls at height } i^{*}+1 \mid E_{i}\right] \leq \frac{\operatorname{Pr}[B(n,(2 \ln n) / n) \geq 6 \log n]}{\operatorname{Pr}\left[E_{i}\right]} \leq \frac{1}{n^{2} \operatorname{Pr}\left[E_{i}\right]}
$$

Thus, with high probability, there are at most $6 \log n$ balls at height $i^{*}+1$. We now have
$\operatorname{Pr}\left[\right.$ at least 1 balls at height $i^{*}+2 \mid$ at most $6 \log n$ balls at height $\left.i^{*}+1\right] \leq \frac{\operatorname{Pr}\left[B\left(n,(6 \log n)^{2} / n^{2}\right) \geq 1\right]}{\operatorname{Pr}\left[E_{i}\right]}$

$$
\leq \frac{36 \log ^{2}(n)}{n \operatorname{Pr}\left[E_{i}\right]}
$$

Therefore, with high probability, there is no ball at height $i^{*}+2$.
The next question is, what happens if we use 3 random bins?

